// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use attr::AttrMetaMethods; use diagnostic::SpanHandler; use fold::Folder; use {ast, fold, attr}; use codemap::{Spanned, respan}; use ptr::P; use util::small_vector::SmallVector; /// A folder that strips out items that do not belong in the current /// configuration. struct Context where F: FnMut(&[ast::Attribute]) -> bool { in_cfg: F, } // Support conditional compilation by transforming the AST, stripping out // any items that do not belong in the current configuration pub fn strip_unconfigured_items(diagnostic: &SpanHandler, krate: ast::Crate) -> ast::Crate { let krate = process_cfg_attr(diagnostic, krate); let config = krate.config.clone(); strip_items(krate, |attrs| in_cfg(diagnostic, &config, attrs)) } impl fold::Folder for Context where F: FnMut(&[ast::Attribute]) -> bool { fn fold_mod(&mut self, module: ast::Mod) -> ast::Mod { fold_mod(self, module) } fn fold_block(&mut self, block: P) -> P { fold_block(self, block) } fn fold_foreign_mod(&mut self, foreign_mod: ast::ForeignMod) -> ast::ForeignMod { fold_foreign_mod(self, foreign_mod) } fn fold_item_underscore(&mut self, item: ast::Item_) -> ast::Item_ { fold_item_underscore(self, item) } fn fold_expr(&mut self, expr: P) -> P { fold_expr(self, expr) } fn fold_mac(&mut self, mac: ast::Mac) -> ast::Mac { fold::noop_fold_mac(mac, self) } fn fold_item(&mut self, item: P) -> SmallVector> { fold_item(self, item) } } pub fn strip_items(krate: ast::Crate, in_cfg: F) -> ast::Crate where F: FnMut(&[ast::Attribute]) -> bool, { let mut ctxt = Context { in_cfg: in_cfg, }; ctxt.fold_crate(krate) } fn fold_mod(cx: &mut Context, ast::Mod {inner, items}: ast::Mod) -> ast::Mod where F: FnMut(&[ast::Attribute]) -> bool { ast::Mod { inner: inner, items: items.into_iter().flat_map(|a| { cx.fold_item(a).into_iter() }).collect() } } fn filter_foreign_item(cx: &mut Context, item: P) -> Option> where F: FnMut(&[ast::Attribute]) -> bool { if foreign_item_in_cfg(cx, &*item) { Some(item) } else { None } } fn fold_foreign_mod(cx: &mut Context, ast::ForeignMod {abi, items}: ast::ForeignMod) -> ast::ForeignMod where F: FnMut(&[ast::Attribute]) -> bool { ast::ForeignMod { abi: abi, items: items.into_iter() .filter_map(|a| filter_foreign_item(cx, a)) .collect() } } fn fold_item(cx: &mut Context, item: P) -> SmallVector> where F: FnMut(&[ast::Attribute]) -> bool { if item_in_cfg(cx, &*item) { SmallVector::one(item.map(|i| cx.fold_item_simple(i))) } else { SmallVector::zero() } } fn fold_item_underscore(cx: &mut Context, item: ast::Item_) -> ast::Item_ where F: FnMut(&[ast::Attribute]) -> bool { let item = match item { ast::ItemImpl(u, o, a, b, c, impl_items) => { let impl_items = impl_items.into_iter() .filter(|ii| impl_item_in_cfg(cx, ii)) .collect(); ast::ItemImpl(u, o, a, b, c, impl_items) } ast::ItemTrait(u, a, b, methods) => { let methods = methods.into_iter() .filter(|m| trait_method_in_cfg(cx, m)) .collect(); ast::ItemTrait(u, a, b, methods) } ast::ItemStruct(def, generics) => { ast::ItemStruct(fold_struct(cx, def), generics) } ast::ItemEnum(def, generics) => { let variants = def.variants.into_iter().filter_map(|v| { if !(cx.in_cfg)(&v.node.attrs) { None } else { Some(v.map(|Spanned {node: ast::Variant_ {id, name, attrs, kind, disr_expr, vis}, span}| { Spanned { node: ast::Variant_ { id: id, name: name, attrs: attrs, kind: match kind { ast::TupleVariantKind(..) => kind, ast::StructVariantKind(def) => { ast::StructVariantKind(fold_struct(cx, def)) } }, disr_expr: disr_expr, vis: vis }, span: span } })) } }); ast::ItemEnum(ast::EnumDef { variants: variants.collect(), }, generics) } item => item, }; fold::noop_fold_item_underscore(item, cx) } fn fold_struct(cx: &mut Context, def: P) -> P where F: FnMut(&[ast::Attribute]) -> bool { def.map(|ast::StructDef { fields, ctor_id }| { ast::StructDef { fields: fields.into_iter().filter(|m| { (cx.in_cfg)(&m.node.attrs) }).collect(), ctor_id: ctor_id, } }) } fn retain_stmt(cx: &mut Context, stmt: &ast::Stmt) -> bool where F: FnMut(&[ast::Attribute]) -> bool { match stmt.node { ast::StmtDecl(ref decl, _) => { match decl.node { ast::DeclItem(ref item) => { item_in_cfg(cx, &**item) } _ => true } } _ => true } } fn fold_block(cx: &mut Context, b: P) -> P where F: FnMut(&[ast::Attribute]) -> bool { b.map(|ast::Block {id, stmts, expr, rules, span}| { let resulting_stmts: Vec> = stmts.into_iter().filter(|a| retain_stmt(cx, &**a)).collect(); let resulting_stmts = resulting_stmts.into_iter() .flat_map(|stmt| cx.fold_stmt(stmt).into_iter()) .collect(); ast::Block { id: id, stmts: resulting_stmts, expr: expr.map(|x| cx.fold_expr(x)), rules: rules, span: span, } }) } fn fold_expr(cx: &mut Context, expr: P) -> P where F: FnMut(&[ast::Attribute]) -> bool { expr.map(|ast::Expr {id, span, node}| { fold::noop_fold_expr(ast::Expr { id: id, node: match node { ast::ExprMatch(m, arms, source) => { ast::ExprMatch(m, arms.into_iter() .filter(|a| (cx.in_cfg)(&a.attrs)) .collect(), source) } _ => node }, span: span }, cx) }) } fn item_in_cfg(cx: &mut Context, item: &ast::Item) -> bool where F: FnMut(&[ast::Attribute]) -> bool { return (cx.in_cfg)(&item.attrs); } fn foreign_item_in_cfg(cx: &mut Context, item: &ast::ForeignItem) -> bool where F: FnMut(&[ast::Attribute]) -> bool { return (cx.in_cfg)(&item.attrs); } fn trait_method_in_cfg(cx: &mut Context, meth: &ast::TraitItem) -> bool where F: FnMut(&[ast::Attribute]) -> bool { match *meth { ast::RequiredMethod(ref meth) => (cx.in_cfg)(&meth.attrs), ast::ProvidedMethod(ref meth) => (cx.in_cfg)(&meth.attrs), ast::TypeTraitItem(ref typ) => (cx.in_cfg)(&typ.attrs), } } fn impl_item_in_cfg(cx: &mut Context, impl_item: &ast::ImplItem) -> bool where F: FnMut(&[ast::Attribute]) -> bool { match *impl_item { ast::MethodImplItem(ref meth) => (cx.in_cfg)(&meth.attrs), ast::TypeImplItem(ref typ) => (cx.in_cfg)(&typ.attrs), } } // Determine if an item should be translated in the current crate // configuration based on the item's attributes fn in_cfg(diagnostic: &SpanHandler, cfg: &[P], attrs: &[ast::Attribute]) -> bool { attrs.iter().all(|attr| { let mis = match attr.node.value.node { ast::MetaList(_, ref mis) if attr.check_name("cfg") => mis, _ => return true }; if mis.len() != 1 { diagnostic.span_err(attr.span, "expected 1 cfg-pattern"); return true; } attr::cfg_matches(diagnostic, cfg, &*mis[0]) }) } struct CfgAttrFolder<'a> { diag: &'a SpanHandler, config: ast::CrateConfig, } // Process `#[cfg_attr]`. fn process_cfg_attr(diagnostic: &SpanHandler, krate: ast::Crate) -> ast::Crate { let mut fld = CfgAttrFolder { diag: diagnostic, config: krate.config.clone(), }; fld.fold_crate(krate) } impl<'a> fold::Folder for CfgAttrFolder<'a> { fn fold_attribute(&mut self, attr: ast::Attribute) -> Option { if !attr.check_name("cfg_attr") { return fold::noop_fold_attribute(attr, self); } let (cfg, mi) = match attr.meta_item_list() { Some([ref cfg, ref mi]) => (cfg, mi), _ => { self.diag.span_err(attr.span, "expected `#[cfg_attr(, )]`"); return None; } }; if attr::cfg_matches(self.diag, &self.config[], &cfg) { Some(respan(mi.span, ast::Attribute_ { id: attr::mk_attr_id(), style: attr.node.style, value: mi.clone(), is_sugared_doc: false, })) } else { None } } // Need the ability to run pre-expansion. fn fold_mac(&mut self, mac: ast::Mac) -> ast::Mac { fold::noop_fold_mac(mac, self) } }