#![allow(overflowing_literals)] mod parse; mod rawfp; // Take a float literal, turn it into a string in various ways (that are all trusted // to be correct) and see if those strings are parsed back to the value of the literal. // Requires a *polymorphic literal*, i.e., one that can serve as f64 as well as f32. macro_rules! test_literal { ($x: expr) => {{ let x32: f32 = $x; let x64: f64 = $x; let inputs = &[stringify!($x).into(), format!("{:?}", x64), format!("{:e}", x64)]; for input in inputs { assert_eq!(input.parse(), Ok(x64)); assert_eq!(input.parse(), Ok(x32)); let neg_input = &format!("-{}", input); assert_eq!(neg_input.parse(), Ok(-x64)); assert_eq!(neg_input.parse(), Ok(-x32)); } }}; } #[test] fn ordinary() { test_literal!(1.0); test_literal!(3e-5); test_literal!(0.1); test_literal!(12345.); test_literal!(0.9999999); if cfg!(miri) { // Miri is too slow return; } test_literal!(2.2250738585072014e-308); } #[test] fn special_code_paths() { test_literal!(36893488147419103229.0); // 2^65 - 3, triggers half-to-even with even significand test_literal!(101e-33); // Triggers the tricky underflow case in AlgorithmM (for f32) test_literal!(1e23); // Triggers AlgorithmR test_literal!(2075e23); // Triggers another path through AlgorithmR test_literal!(8713e-23); // ... and yet another. } #[test] fn large() { test_literal!(1e300); test_literal!(123456789.34567e250); test_literal!(943794359898089732078308743689303290943794359843568973207830874368930329.); } #[test] #[cfg_attr(miri, ignore)] // Miri is too slow fn subnormals() { test_literal!(5e-324); test_literal!(91e-324); test_literal!(1e-322); test_literal!(13245643e-320); test_literal!(2.22507385851e-308); test_literal!(2.1e-308); test_literal!(4.9406564584124654e-324); } #[test] #[cfg_attr(miri, ignore)] // Miri is too slow fn infinity() { test_literal!(1e400); test_literal!(1e309); test_literal!(2e308); test_literal!(1.7976931348624e308); } #[test] fn zero() { test_literal!(0.0); test_literal!(1e-325); if cfg!(miri) { // Miri is too slow return; } test_literal!(1e-326); test_literal!(1e-500); } #[test] fn fast_path_correct() { // This number triggers the fast path and is handled incorrectly when compiling on // x86 without SSE2 (i.e., using the x87 FPU stack). test_literal!(1.448997445238699); } #[test] fn lonely_dot() { assert!(".".parse::().is_err()); assert!(".".parse::().is_err()); } #[test] fn exponentiated_dot() { assert!(".e0".parse::().is_err()); assert!(".e0".parse::().is_err()); } #[test] fn lonely_sign() { assert!("+".parse::().is_err()); assert!("-".parse::().is_err()); } #[test] fn whitespace() { assert!(" 1.0".parse::().is_err()); assert!("1.0 ".parse::().is_err()); } #[test] fn nan() { assert!("NaN".parse::().unwrap().is_nan()); assert!("NaN".parse::().unwrap().is_nan()); } #[test] fn inf() { assert_eq!("inf".parse(), Ok(f64::INFINITY)); assert_eq!("-inf".parse(), Ok(f64::NEG_INFINITY)); assert_eq!("inf".parse(), Ok(f32::INFINITY)); assert_eq!("-inf".parse(), Ok(f32::NEG_INFINITY)); } #[test] fn massive_exponent() { let max = i64::MAX; assert_eq!(format!("1e{}000", max).parse(), Ok(f64::INFINITY)); assert_eq!(format!("1e-{}000", max).parse(), Ok(0.0)); assert_eq!(format!("1e{}000", max).parse(), Ok(f64::INFINITY)); } #[test] fn borderline_overflow() { let mut s = "0.".to_string(); for _ in 0..375 { s.push('3'); } // At the time of this writing, this returns Err(..), but this is a bug that should be fixed. // It makes no sense to enshrine that in a test, the important part is that it doesn't panic. let _ = s.parse::(); }