import common::*; import syntax::{ast, ast_util, codemap, ast_map}; import base::get_insn_ctxt; fn const_lit(cx: @crate_ctxt, e: @ast::expr, lit: ast::lit) -> ValueRef { let _icx = cx.insn_ctxt(~"trans_lit"); alt lit.node { ast::lit_int(i, t) => C_integral(T_int_ty(cx, t), i as u64, True), ast::lit_uint(u, t) => C_integral(T_uint_ty(cx, t), u, False), ast::lit_int_unsuffixed(i) => { let lit_int_ty = ty::node_id_to_type(cx.tcx, e.id); alt ty::get(lit_int_ty).struct { ty::ty_int(t) => { C_integral(T_int_ty(cx, t), i as u64, True) } ty::ty_uint(t) => { C_integral(T_uint_ty(cx, t), i as u64, False) } _ => cx.sess.span_bug(lit.span, ~"integer literal doesn't have a type") } } ast::lit_float(fs, t) => C_floating(*fs, T_float_ty(cx, t)), ast::lit_bool(b) => C_bool(b), ast::lit_nil => C_nil(), ast::lit_str(s) => C_estr_slice(cx, *s) } } // FIXME (#2530): this should do some structural hash-consing to avoid // duplicate constants. I think. Maybe LLVM has a magical mode that does so // later on? fn const_vec_and_sz(cx: @crate_ctxt, e: @ast::expr, es: &[@ast::expr]) -> (ValueRef, ValueRef) { let vec_ty = ty::expr_ty(cx.tcx, e); let unit_ty = ty::sequence_element_type(cx.tcx, vec_ty); let llunitty = type_of::type_of(cx, unit_ty); let v = C_array(llunitty, es.map(|e| const_expr(cx, e))); let unit_sz = shape::llsize_of(cx, llunitty); let sz = llvm::LLVMConstMul(C_uint(cx, es.len()), unit_sz); return (v, sz); } fn const_expr(cx: @crate_ctxt, e: @ast::expr) -> ValueRef { let _icx = cx.insn_ctxt(~"const_expr"); alt e.node { ast::expr_lit(lit) => consts::const_lit(cx, e, *lit), ast::expr_binary(b, e1, e2) => { let te1 = const_expr(cx, e1); let te2 = const_expr(cx, e2); let te2 = base::cast_shift_const_rhs(b, te1, te2); /* Neither type is bottom, and we expect them to be unified already, * so the following is safe. */ let ty = ty::expr_ty(cx.tcx, e1); let is_float = ty::type_is_fp(ty); let signed = ty::type_is_signed(ty); return alt b { ast::add => { if is_float { llvm::LLVMConstFAdd(te1, te2) } else { llvm::LLVMConstAdd(te1, te2) } } ast::subtract => { if is_float { llvm::LLVMConstFSub(te1, te2) } else { llvm::LLVMConstSub(te1, te2) } } ast::mul => { if is_float { llvm::LLVMConstFMul(te1, te2) } else { llvm::LLVMConstMul(te1, te2) } } ast::div => { if is_float { llvm::LLVMConstFDiv(te1, te2) } else if signed { llvm::LLVMConstSDiv(te1, te2) } else { llvm::LLVMConstUDiv(te1, te2) } } ast::rem => { if is_float { llvm::LLVMConstFRem(te1, te2) } else if signed { llvm::LLVMConstSRem(te1, te2) } else { llvm::LLVMConstURem(te1, te2) } } ast::and | ast::or => cx.sess.span_unimpl(e.span, ~"binop logic"), ast::bitxor => llvm::LLVMConstXor(te1, te2), ast::bitand => llvm::LLVMConstAnd(te1, te2), ast::bitor => llvm::LLVMConstOr(te1, te2), ast::shl => llvm::LLVMConstShl(te1, te2), ast::shr => { if signed { llvm::LLVMConstAShr(te1, te2) } else { llvm::LLVMConstLShr(te1, te2) } } ast::eq | ast::lt | ast::le | ast::ne | ast::ge | ast::gt => cx.sess.span_unimpl(e.span, ~"binop comparator") } } ast::expr_unary(u, e) => { let te = const_expr(cx, e); let ty = ty::expr_ty(cx.tcx, e); let is_float = ty::type_is_fp(ty); return alt u { ast::box(_) | ast::uniq(_) | ast::deref => cx.sess.span_bug(e.span, ~"bad unop type in const_expr"), ast::not => llvm::LLVMConstNot(te), ast::neg => { if is_float { llvm::LLVMConstFNeg(te) } else { llvm::LLVMConstNeg(te) } } } } ast::expr_cast(base, tp) => { let ety = ty::expr_ty(cx.tcx, e), llty = type_of::type_of(cx, ety); let basety = ty::expr_ty(cx.tcx, base); let v = const_expr(cx, base); alt check (base::cast_type_kind(basety), base::cast_type_kind(ety)) { (base::cast_integral, base::cast_integral) => { let s = if ty::type_is_signed(basety) { True } else { False }; llvm::LLVMConstIntCast(v, llty, s) } (base::cast_integral, base::cast_float) => { if ty::type_is_signed(basety) { llvm::LLVMConstSIToFP(v, llty) } else { llvm::LLVMConstUIToFP(v, llty) } } (base::cast_float, base::cast_float) => { llvm::LLVMConstFPCast(v, llty) } (base::cast_float, base::cast_integral) => { if ty::type_is_signed(ety) { llvm::LLVMConstFPToSI(v, llty) } else { llvm::LLVMConstFPToUI(v, llty) } } } } ast::expr_addr_of(ast::m_imm, sub) => { let cv = const_expr(cx, sub); let subty = ty::expr_ty(cx.tcx, sub), llty = type_of::type_of(cx, subty); let gv = do str::as_c_str("const") |name| { llvm::LLVMAddGlobal(cx.llmod, llty, name) }; llvm::LLVMSetInitializer(gv, cv); llvm::LLVMSetGlobalConstant(gv, True); gv } ast::expr_tup(es) => { C_struct(es.map(|e| const_expr(cx, e))) } ast::expr_rec(fs, none) => { C_struct(fs.map(|f| const_expr(cx, f.node.expr))) } ast::expr_vec(es, m_imm) => { let (v, _) = const_vec_and_sz(cx, e, es); v } ast::expr_vstore(e, ast::vstore_fixed(_)) => { const_expr(cx, e) } ast::expr_vstore(sub, ast::vstore_slice(_)) => { alt sub.node { ast::expr_lit(lit) => { alt lit.node { ast::lit_str(*) => { const_expr(cx, sub) } _ => { cx.sess.span_bug(e.span, ~"bad const-slice lit") } } } ast::expr_vec(es, m_imm) => { let (cv, sz) = const_vec_and_sz(cx, e, es); let subty = ty::expr_ty(cx.tcx, sub), llty = type_of::type_of(cx, subty); let gv = do str::as_c_str("const") |name| { llvm::LLVMAddGlobal(cx.llmod, llty, name) }; llvm::LLVMSetInitializer(gv, cv); llvm::LLVMSetGlobalConstant(gv, True); C_struct(~[gv, sz]) } _ => cx.sess.span_bug(e.span, ~"bad const-slice expr") } } ast::expr_path(path) => { alt cx.tcx.def_map.find(e.id) { some(ast::def_const(def_id)) => { // Don't know how to handle external consts assert ast_util::is_local(def_id); alt cx.tcx.items.get(def_id.node) { ast_map::node_item(@{ node: ast::item_const(_, subexpr), _ }, _) => { // FIXME (#2530): Instead of recursing here to regenerate // the values for other constants, we should just look up // the already-defined value. const_expr(cx, subexpr) } _ => cx.sess.span_bug(e.span, ~"expected item") } } _ => cx.sess.span_bug(e.span, ~"expected to find a const def") } } _ => cx.sess.span_bug(e.span, ~"bad constant expression type in consts::const_expr") } } fn trans_const(ccx: @crate_ctxt, e: @ast::expr, id: ast::node_id) { let _icx = ccx.insn_ctxt(~"trans_const"); let v = const_expr(ccx, e); // The scalars come back as 1st class LLVM vals // which we have to stick into global constants. let g = base::get_item_val(ccx, id); llvm::LLVMSetInitializer(g, v); llvm::LLVMSetGlobalConstant(g, True); }