import vec; import str; import uint; import std::ufind; import std::map; import std::map::hashmap; import std::math; import option; import option::none; import option::some; import std::smallintmap; import driver::session; import syntax::ast; import syntax::ast::*; import syntax::ast_util; import syntax::codemap::span; import metadata::csearch; import util::common::*; import syntax::util::interner; import util::ppaux::ty_to_str; import util::ppaux::ty_constr_to_str; import util::ppaux::mode_str_1; import syntax::print::pprust::*; export node_id_to_monotype; export node_id_to_type; export node_id_to_type_params; export node_id_to_ty_param_substs_opt_and_ty; export arg; export args_eq; export ast_constr_to_constr; export bind_params_in_type; export block_ty; export constr; export cast_type; export constr_general; export constr_table; export count_ty_params; export ctxt; export def_has_ty_params; export eq_ty; export expr_has_ty_params; export expr_ty; export expr_ty_params_and_ty; export expr_is_lval; export fold_ty; export field; export field_idx; export get_field; export fm_general; export get_element_type; export hash_ty; export idx_nil; export is_binopable; export is_pred_ty; export lookup_item_type; export method; export method_idx; export method_ty_to_fn_ty; export mk_bool; export mk_bot; export mk_box; export mk_char; export mk_constr; export mk_ctxt; export mk_float; export mk_fn; export mk_imm_box; export mk_imm_uniq; export mk_mut_ptr; export mk_int; export mk_str; export mk_vec; export mk_mach_int; export mk_mach_uint; export mk_mach_float; export mk_native; export mk_native_fn; export mk_nil; export mk_obj; export mk_res; export mk_param; export mk_ptr; export mk_rec; export mk_tag; export mk_tup; export mk_type; export mk_uint; export mk_uniq; export mk_var; export mode; export mt; export node_type_table; export pat_ty; export cname; export rename; export ret_ty_of_fn; export sequence_element_type; export struct; export sort_methods; export stmt_node_id; export strip_cname; export sty; export substitute_type_params; export t; export tag_variants; export tag_variant_with_id; export triv_cast; export triv_eq_ty; export ty_param_substs_opt_and_ty; export ty_param_kinds_and_ty; export ty_native_fn; export ty_bool; export ty_bot; export ty_box; export ty_constr; export ty_constr_arg; export ty_float; export ty_fn; export ty_fn_proto; export ty_fn_ret; export ty_fn_ret_style; export ty_int; export ty_str; export ty_vec; export ty_native; export ty_nil; export ty_obj; export ty_res; export ty_param; export ty_ptr; export ty_rec; export ty_tag; export ty_to_machine_ty; export ty_tup; export ty_type; export ty_uint; export ty_uniq; export ty_var; export ty_var_id; export ty_param_substs_opt_and_ty_to_monotype; export ty_fn_args; export type_constr; export type_contains_params; export type_contains_vars; export kind_lteq; export type_kind; export type_err; export type_err_to_str; export type_has_dynamic_size; export type_needs_drop; export type_is_bool; export type_is_bot; export type_is_box; export type_is_boxed; export type_is_unique_box; export type_is_unsafe_ptr; export type_is_vec; export type_is_fp; export type_allows_implicit_copy; export type_is_integral; export type_is_numeric; export type_is_native; export type_is_nil; export type_is_pod; export type_is_scalar; export type_is_immediate; export type_is_sequence; export type_is_signed; export type_is_structural; export type_is_copyable; export type_is_tup_like; export type_is_str; export type_is_unique; export type_structurally_contains_uniques; export type_autoderef; export type_param; export unify; export variant_info; export walk_ty; export occurs_check_fails; // Data types type arg = {mode: mode, ty: t}; type field = {ident: ast::ident, mt: mt}; type method = {proto: ast::proto, ident: ast::ident, inputs: [arg], output: t, cf: ret_style, constrs: [@constr]}; type constr_table = hashmap; type mt = {ty: t, mut: ast::mutability}; // Contains information needed to resolve types and (in the future) look up // the types of AST nodes. type creader_cache = hashmap<{cnum: int, pos: uint, len: uint}, ty::t>; tag cast_type { /* cast may be ignored after substituting primitive with machine types since expr already has the right type */ triv_cast; } type ctxt = // constr_table fn_constrs, // We need the ext_map just for printing the types of tags defined in // other crates. Once we get cnames back it should go. @{ts: @type_store, sess: session::session, def_map: resolve::def_map, ext_map: resolve::ext_map, cast_map: hashmap, node_types: node_type_table, items: ast_map::map, freevars: freevars::freevar_map, tcache: type_cache, rcache: creader_cache, short_names_cache: hashmap, needs_drop_cache: hashmap, kind_cache: hashmap, ast_ty_to_ty_cache: hashmap<@ast::ty, option::t>}; type ty_ctxt = ctxt; // Needed for disambiguation from unify::ctxt. // Convert from method type to function type. Pretty easy; we just drop // 'ident'. fn method_ty_to_fn_ty(cx: ctxt, m: method) -> t { ret mk_fn(cx, m.proto, m.inputs, m.output, m.cf, m.constrs); } // Never construct these manually. These are interned. type raw_t = {struct: sty, cname: option::t, hash: uint, has_params: bool, has_vars: bool}; type t = uint; // NB: If you change this, you'll probably want to change the corresponding // AST structure in front/ast::rs as well. tag sty { ty_nil; ty_bot; ty_bool; ty_int(ast::int_ty); ty_uint(ast::uint_ty); ty_float(ast::float_ty); ty_str; ty_tag(def_id, [t]); ty_box(mt); ty_uniq(mt); ty_vec(mt); ty_ptr(mt); ty_rec([field]); ty_fn(ast::proto, [arg], t, ret_style, [@constr]); ty_native_fn([arg], t); ty_obj([method]); ty_res(def_id, t, [t]); ty_tup([t]); ty_var(int); // type variable ty_param(uint, ast::kind); // fn/tag type param ty_type; ty_native(def_id); ty_constr(t, [@type_constr]); // TODO: ty_fn_arg(t), for a possibly-aliased function argument } // In the middle end, constraints have a def_id attached, referring // to the definition of the operator in the constraint. type constr_general = spanned>; type type_constr = constr_general<@path>; type constr = constr_general; // Data structures used in type unification tag type_err { terr_mismatch; terr_ret_style_mismatch(ast::ret_style, ast::ret_style); terr_box_mutability; terr_vec_mutability; terr_tuple_size(uint, uint); terr_record_size(uint, uint); terr_record_mutability; terr_record_fields(ast::ident, ast::ident); terr_meth_count; terr_obj_meths(ast::ident, ast::ident); terr_arg_count; terr_mode_mismatch(mode, mode); terr_constr_len(uint, uint); terr_constr_mismatch(@type_constr, @type_constr); } type ty_param_kinds_and_ty = {kinds: [ast::kind], ty: t}; type type_cache = hashmap; const idx_nil: uint = 0u; const idx_bool: uint = 1u; const idx_int: uint = 2u; const idx_float: uint = 3u; const idx_uint: uint = 4u; const idx_i8: uint = 5u; const idx_i16: uint = 6u; const idx_i32: uint = 7u; const idx_i64: uint = 8u; const idx_u8: uint = 9u; const idx_u16: uint = 10u; const idx_u32: uint = 11u; const idx_u64: uint = 12u; const idx_f32: uint = 13u; const idx_f64: uint = 14u; const idx_char: uint = 15u; const idx_str: uint = 16u; const idx_type: uint = 17u; const idx_bot: uint = 18u; const idx_first_others: uint = 19u; type type_store = interner::interner<@raw_t>; type ty_param_substs_opt_and_ty = {substs: option::t<[ty::t]>, ty: ty::t}; type node_type_table = @smallintmap::smallintmap; fn populate_type_store(cx: ctxt) { intern(cx, ty_nil, none); intern(cx, ty_bool, none); intern(cx, ty_int(ast::ty_i), none); intern(cx, ty_float(ast::ty_f), none); intern(cx, ty_uint(ast::ty_u), none); intern(cx, ty_int(ast::ty_i8), none); intern(cx, ty_int(ast::ty_i16), none); intern(cx, ty_int(ast::ty_i32), none); intern(cx, ty_int(ast::ty_i64), none); intern(cx, ty_uint(ast::ty_u8), none); intern(cx, ty_uint(ast::ty_u16), none); intern(cx, ty_uint(ast::ty_u32), none); intern(cx, ty_uint(ast::ty_u64), none); intern(cx, ty_float(ast::ty_f32), none); intern(cx, ty_float(ast::ty_f64), none); intern(cx, ty_int(ast::ty_char), none); intern(cx, ty_str, none); intern(cx, ty_type, none); intern(cx, ty_bot, none); assert (vec::len(cx.ts.vect) == idx_first_others); } fn mk_rcache() -> creader_cache { type val = {cnum: int, pos: uint, len: uint}; fn hash_cache_entry(k: val) -> uint { ret (k.cnum as uint) + k.pos + k.len; } fn eq_cache_entries(a: val, b: val) -> bool { ret a.cnum == b.cnum && a.pos == b.pos && a.len == b.len; } ret map::mk_hashmap(hash_cache_entry, eq_cache_entries); } fn mk_ctxt(s: session::session, dm: resolve::def_map, em: hashmap, amap: ast_map::map, freevars: freevars::freevar_map) -> ctxt { let ntt: node_type_table = @smallintmap::mk::(); let tcache = new_def_hash::(); let ts = @interner::mk::<@raw_t>(hash_raw_ty, eq_raw_ty); let cx = @{ts: ts, sess: s, def_map: dm, ext_map: em, cast_map: ast_util::new_node_hash(), node_types: ntt, items: amap, freevars: freevars, tcache: tcache, rcache: mk_rcache(), short_names_cache: map::mk_hashmap(ty::hash_ty, ty::eq_ty), needs_drop_cache: map::mk_hashmap(ty::hash_ty, ty::eq_ty), kind_cache: map::mk_hashmap(ty::hash_ty, ty::eq_ty), ast_ty_to_ty_cache: map::mk_hashmap(ast_util::hash_ty, ast_util::eq_ty)}; populate_type_store(cx); ret cx; } // Type constructors fn mk_raw_ty(cx: ctxt, st: sty, _in_cname: option::t) -> @raw_t { let cname: option::t = none; let h = hash_type_info(st, cname); let has_params: bool = false; let has_vars: bool = false; fn derive_flags_t(cx: ctxt, &has_params: bool, &has_vars: bool, tt: t) { let rt = interner::get::<@raw_t>(*cx.ts, tt); has_params = has_params || rt.has_params; has_vars = has_vars || rt.has_vars; } fn derive_flags_mt(cx: ctxt, &has_params: bool, &has_vars: bool, m: mt) { derive_flags_t(cx, has_params, has_vars, m.ty); } fn derive_flags_arg(cx: ctxt, &has_params: bool, &has_vars: bool, a: arg) { derive_flags_t(cx, has_params, has_vars, a.ty); } fn derive_flags_sig(cx: ctxt, &has_params: bool, &has_vars: bool, args: [arg], tt: t) { for a: arg in args { derive_flags_arg(cx, has_params, has_vars, a); } derive_flags_t(cx, has_params, has_vars, tt); } alt st { ty_nil. | ty_bot. | ty_bool. | ty_int(_) | ty_float(_) | ty_uint(_) | ty_str. | ty_type. | ty_native(_) {/* no-op */ } ty_param(_, _) { has_params = true; } ty_var(_) { has_vars = true; } ty_tag(_, tys) { for tt: t in tys { derive_flags_t(cx, has_params, has_vars, tt); } } ty_box(m) { derive_flags_mt(cx, has_params, has_vars, m); } ty_uniq(m) { derive_flags_mt(cx, has_params, has_vars, m); } ty_vec(m) { derive_flags_mt(cx, has_params, has_vars, m); } ty_ptr(m) { derive_flags_mt(cx, has_params, has_vars, m); } ty_rec(flds) { for f: field in flds { derive_flags_mt(cx, has_params, has_vars, f.mt); } } ty_tup(ts) { for tt in ts { derive_flags_t(cx, has_params, has_vars, tt); } } ty_fn(_, args, tt, _, _) { derive_flags_sig(cx, has_params, has_vars, args, tt); } ty_native_fn(args, tt) { derive_flags_sig(cx, has_params, has_vars, args, tt); } ty_obj(meths) { for m: method in meths { derive_flags_sig(cx, has_params, has_vars, m.inputs, m.output); } } ty_res(_, tt, tps) { derive_flags_t(cx, has_params, has_vars, tt); for tt: t in tps { derive_flags_t(cx, has_params, has_vars, tt); } } ty_constr(tt, _) { derive_flags_t(cx, has_params, has_vars, tt); } } ret @{struct: st, cname: cname, hash: h, has_params: has_params, has_vars: has_vars}; } fn intern(cx: ctxt, st: sty, cname: option::t) { interner::intern(*cx.ts, mk_raw_ty(cx, st, cname)); } fn gen_ty_full(cx: ctxt, st: sty, cname: option::t) -> t { let raw_type = mk_raw_ty(cx, st, cname); ret interner::intern(*cx.ts, raw_type); } // These are private constructors to this module. External users should always // use the mk_foo() functions below. fn gen_ty(cx: ctxt, st: sty) -> t { ret gen_ty_full(cx, st, none); } fn mk_nil(_cx: ctxt) -> t { ret idx_nil; } fn mk_bot(_cx: ctxt) -> t { ret idx_bot; } fn mk_bool(_cx: ctxt) -> t { ret idx_bool; } fn mk_int(_cx: ctxt) -> t { ret idx_int; } fn mk_float(_cx: ctxt) -> t { ret idx_float; } fn mk_uint(_cx: ctxt) -> t { ret idx_uint; } fn mk_mach_int(_cx: ctxt, tm: ast::int_ty) -> t { alt tm { ast::ty_i. { ret idx_int; } ast::ty_char. { ret idx_char; } ast::ty_i8. { ret idx_i8; } ast::ty_i16. { ret idx_i16; } ast::ty_i32. { ret idx_i32; } ast::ty_i64. { ret idx_i64; } } } fn mk_mach_uint(_cx: ctxt, tm: ast::uint_ty) -> t { alt tm { ast::ty_u. { ret idx_uint; } ast::ty_u8. { ret idx_u8; } ast::ty_u16. { ret idx_u16; } ast::ty_u32. { ret idx_u32; } ast::ty_u64. { ret idx_u64; } } } fn mk_mach_float(_cx: ctxt, tm: ast::float_ty) -> t { alt tm { ast::ty_f. { ret idx_float; } ast::ty_f32. { ret idx_f32; } ast::ty_f64. { ret idx_f64; } } } fn mk_char(_cx: ctxt) -> t { ret idx_char; } fn mk_str(_cx: ctxt) -> t { ret idx_str; } fn mk_tag(cx: ctxt, did: ast::def_id, tys: [t]) -> t { ret gen_ty(cx, ty_tag(did, tys)); } fn mk_box(cx: ctxt, tm: mt) -> t { ret gen_ty(cx, ty_box(tm)); } fn mk_uniq(cx: ctxt, tm: mt) -> t { ret gen_ty(cx, ty_uniq(tm)); } fn mk_imm_uniq(cx: ctxt, ty: t) -> t { ret mk_uniq(cx, {ty: ty, mut: ast::imm}); } fn mk_ptr(cx: ctxt, tm: mt) -> t { ret gen_ty(cx, ty_ptr(tm)); } fn mk_imm_box(cx: ctxt, ty: t) -> t { ret mk_box(cx, {ty: ty, mut: ast::imm}); } fn mk_mut_ptr(cx: ctxt, ty: t) -> t { ret mk_ptr(cx, {ty: ty, mut: ast::mut}); } fn mk_vec(cx: ctxt, tm: mt) -> t { ret gen_ty(cx, ty_vec(tm)); } fn mk_rec(cx: ctxt, fs: [field]) -> t { ret gen_ty(cx, ty_rec(fs)); } fn mk_constr(cx: ctxt, t: t, cs: [@type_constr]) -> t { ret gen_ty(cx, ty_constr(t, cs)); } fn mk_tup(cx: ctxt, ts: [t]) -> t { ret gen_ty(cx, ty_tup(ts)); } fn mk_fn(cx: ctxt, proto: ast::proto, args: [arg], ty: t, cf: ret_style, constrs: [@constr]) -> t { ret gen_ty(cx, ty_fn(proto, args, ty, cf, constrs)); } fn mk_native_fn(cx: ctxt, args: [arg], ty: t) -> t { ret gen_ty(cx, ty_native_fn(args, ty)); } fn mk_obj(cx: ctxt, meths: [method]) -> t { ret gen_ty(cx, ty_obj(meths)); } fn mk_res(cx: ctxt, did: ast::def_id, inner: t, tps: [t]) -> t { ret gen_ty(cx, ty_res(did, inner, tps)); } fn mk_var(cx: ctxt, v: int) -> t { ret gen_ty(cx, ty_var(v)); } fn mk_param(cx: ctxt, n: uint, k: ast::kind) -> t { ret gen_ty(cx, ty_param(n, k)); } fn mk_type(_cx: ctxt) -> t { ret idx_type; } fn mk_native(cx: ctxt, did: def_id) -> t { ret gen_ty(cx, ty_native(did)); } // Returns the one-level-deep type structure of the given type. pure fn struct(cx: ctxt, typ: t) -> sty { interner::get(*cx.ts, typ).struct } // Returns the canonical name of the given type. fn cname(cx: ctxt, typ: t) -> option::t { ret interner::get(*cx.ts, typ).cname; } // Type folds type ty_walk = fn@(t); fn walk_ty(cx: ctxt, walker: ty_walk, ty: t) { alt struct(cx, ty) { ty_nil. | ty_bot. | ty_bool. | ty_int(_) | ty_uint(_) | ty_float(_) | ty_str. | ty_type. | ty_native(_) {/* no-op */ } ty_box(tm) | ty_vec(tm) | ty_ptr(tm) { walk_ty(cx, walker, tm.ty); } ty_tag(tid, subtys) { for subty: t in subtys { walk_ty(cx, walker, subty); } } ty_rec(fields) { for fl: field in fields { walk_ty(cx, walker, fl.mt.ty); } } ty_tup(ts) { for tt in ts { walk_ty(cx, walker, tt); } } ty_fn(proto, args, ret_ty, _, _) { for a: arg in args { walk_ty(cx, walker, a.ty); } walk_ty(cx, walker, ret_ty); } ty_native_fn(args, ret_ty) { for a: arg in args { walk_ty(cx, walker, a.ty); } walk_ty(cx, walker, ret_ty); } ty_obj(methods) { for m: method in methods { for a: arg in m.inputs { walk_ty(cx, walker, a.ty); } walk_ty(cx, walker, m.output); } } ty_res(_, sub, tps) { walk_ty(cx, walker, sub); for tp: t in tps { walk_ty(cx, walker, tp); } } ty_constr(sub, _) { walk_ty(cx, walker, sub); } ty_var(_) {/* no-op */ } ty_param(_, _) {/* no-op */ } ty_uniq(tm) { walk_ty(cx, walker, tm.ty); } } walker(ty); } tag fold_mode { fm_var(fn@(int) -> t); fm_param(fn@(uint, ast::kind) -> t); fm_general(fn@(t) -> t); } fn fold_ty(cx: ctxt, fld: fold_mode, ty_0: t) -> t { let ty = ty_0; // Fast paths. alt fld { fm_var(_) { if !type_contains_vars(cx, ty) { ret ty; } } fm_param(_) { if !type_contains_params(cx, ty) { ret ty; } } fm_general(_) {/* no fast path */ } } alt struct(cx, ty) { ty_nil. | ty_bot. | ty_bool. | ty_int(_) | ty_uint(_) | ty_float(_) | ty_str. | ty_type. | ty_native(_) {/* no-op */ } ty_box(tm) { ty = mk_box(cx, {ty: fold_ty(cx, fld, tm.ty), mut: tm.mut}); } ty_uniq(tm) { ty = mk_uniq(cx, {ty: fold_ty(cx, fld, tm.ty), mut: tm.mut}); } ty_ptr(tm) { ty = mk_ptr(cx, {ty: fold_ty(cx, fld, tm.ty), mut: tm.mut}); } ty_vec(tm) { ty = mk_vec(cx, {ty: fold_ty(cx, fld, tm.ty), mut: tm.mut}); } ty_tag(tid, subtys) { let new_subtys: [t] = []; for subty: t in subtys { new_subtys += [fold_ty(cx, fld, subty)]; } ty = copy_cname(cx, mk_tag(cx, tid, new_subtys), ty); } ty_rec(fields) { let new_fields: [field] = []; for fl: field in fields { let new_ty = fold_ty(cx, fld, fl.mt.ty); let new_mt = {ty: new_ty, mut: fl.mt.mut}; new_fields += [{ident: fl.ident, mt: new_mt}]; } ty = copy_cname(cx, mk_rec(cx, new_fields), ty); } ty_tup(ts) { let new_ts = []; for tt in ts { new_ts += [fold_ty(cx, fld, tt)]; } ty = copy_cname(cx, mk_tup(cx, new_ts), ty); } ty_fn(proto, args, ret_ty, cf, constrs) { let new_args: [arg] = []; for a: arg in args { let new_ty = fold_ty(cx, fld, a.ty); new_args += [{mode: a.mode, ty: new_ty}]; } ty = copy_cname(cx, mk_fn(cx, proto, new_args, fold_ty(cx, fld, ret_ty), cf, constrs), ty); } ty_native_fn(args, ret_ty) { let new_args: [arg] = []; for a: arg in args { let new_ty = fold_ty(cx, fld, a.ty); new_args += [{mode: a.mode, ty: new_ty}]; } ty = copy_cname(cx, mk_native_fn(cx, new_args, fold_ty(cx, fld, ret_ty)), ty); } ty_obj(methods) { let new_methods: [method] = []; for m: method in methods { let new_args: [arg] = []; for a: arg in m.inputs { new_args += [{mode: a.mode, ty: fold_ty(cx, fld, a.ty)}]; } new_methods += [{proto: m.proto, ident: m.ident, inputs: new_args, output: fold_ty(cx, fld, m.output), cf: m.cf, constrs: m.constrs}]; } ty = copy_cname(cx, mk_obj(cx, new_methods), ty); } ty_res(did, subty, tps) { let new_tps = []; for tp: t in tps { new_tps += [fold_ty(cx, fld, tp)]; } ty = copy_cname(cx, mk_res(cx, did, fold_ty(cx, fld, subty), new_tps), ty); } ty_var(id) { alt fld { fm_var(folder) { ty = folder(id); } _ {/* no-op */ } } } ty_param(id, k) { alt fld { fm_param(folder) { ty = folder(id, k); } _ {/* no-op */ } } } } // If this is a general type fold, then we need to run it now. alt fld { fm_general(folder) { ret folder(ty); } _ { ret ty; } } } // Type utilities fn rename(cx: ctxt, typ: t, new_cname: str) -> t { ret gen_ty_full(cx, struct(cx, typ), some(new_cname)); } fn strip_cname(cx: ctxt, typ: t) -> t { ret gen_ty_full(cx, struct(cx, typ), none); } // Returns a type with the structural part taken from `struct_ty` and the // canonical name from `cname_ty`. fn copy_cname(cx: ctxt, struct_ty: t, cname_ty: t) -> t { ret gen_ty_full(cx, struct(cx, struct_ty), cname(cx, cname_ty)); } fn type_is_nil(cx: ctxt, ty: t) -> bool { alt struct(cx, ty) { ty_nil. { ret true; } _ { ret false; } } } fn type_is_bot(cx: ctxt, ty: t) -> bool { alt struct(cx, ty) { ty_bot. { ret true; } _ { ret false; } } } fn type_is_bool(cx: ctxt, ty: t) -> bool { alt struct(cx, ty) { ty_bool. { ret true; } _ { ret false; } } } fn type_is_structural(cx: ctxt, ty: t) -> bool { alt struct(cx, ty) { ty_rec(_) { ret true; } ty_tup(_) { ret true; } ty_tag(_, _) { ret true; } ty_fn(_, _, _, _, _) { ret true; } ty_native_fn(_, _) { ret true; } ty_obj(_) { ret true; } ty_res(_, _, _) { ret true; } _ { ret false; } } } fn type_is_copyable(cx: ctxt, ty: t) -> bool { ret alt struct(cx, ty) { ty_res(_, _, _) { false } ty_fn(proto_block., _, _, _, _) { false } _ { true } }; } fn type_is_sequence(cx: ctxt, ty: t) -> bool { alt struct(cx, ty) { ty_str. { ret true; } ty_vec(_) { ret true; } _ { ret false; } } } fn type_is_str(cx: ctxt, ty: t) -> bool { alt struct(cx, ty) { ty_str. { ret true; } _ { ret false; } } } fn sequence_element_type(cx: ctxt, ty: t) -> t { alt struct(cx, ty) { ty_str. { ret mk_mach_uint(cx, ast::ty_u8); } ty_vec(mt) { ret mt.ty; } _ { cx.sess.bug("sequence_element_type called on non-sequence value"); } } } pure fn type_is_tup_like(cx: ctxt, ty: t) -> bool { let sty = struct(cx, ty); alt sty { ty_box(_) | ty_rec(_) | ty_tup(_) | ty_tag(_,_) { true } _ { false } } } fn get_element_type(cx: ctxt, ty: t, i: uint) -> t { alt struct(cx, ty) { ty_rec(flds) { ret flds[i].mt.ty; } ty_tup(ts) { ret ts[i]; } _ { cx.sess.bug("get_element_type called on type " + ty_to_str(cx, ty) + " - expected a \ tuple or record"); } } // NB: This is not exhaustive -- struct(cx, ty) could be a box or a // tag. } pure fn type_is_box(cx: ctxt, ty: t) -> bool { alt struct(cx, ty) { ty_box(_) { ret true; } _ { ret false; } } } pure fn type_is_boxed(cx: ctxt, ty: t) -> bool { alt struct(cx, ty) { ty_box(_) { ret true; } _ { ret false; } } } pure fn type_is_unique_box(cx: ctxt, ty: t) -> bool { alt struct(cx, ty) { ty_uniq(_) { ret true; } _ { ret false; } } } pure fn type_is_unsafe_ptr(cx: ctxt, ty: t) -> bool { alt struct(cx, ty) { ty_ptr(_) { ret true; } _ { ret false; } } } pure fn type_is_vec(cx: ctxt, ty: t) -> bool { ret alt struct(cx, ty) { ty_vec(_) { true } ty_str. { true } _ { false } }; } pure fn type_is_unique(cx: ctxt, ty: t) -> bool { alt struct(cx, ty) { ty_uniq(_) { ret true; } ty_vec(_) { true } ty_str. { true } _ { ret false; } } } pure fn type_is_scalar(cx: ctxt, ty: t) -> bool { alt struct(cx, ty) { ty_nil. | ty_bool. | ty_int(_) | ty_float(_) | ty_uint(_) | ty_type. | ty_native(_) | ty_ptr(_) { true } _ { false } } } // FIXME maybe inline this for speed? fn type_is_immediate(cx: ctxt, ty: t) -> bool { ret type_is_scalar(cx, ty) || type_is_boxed(cx, ty) || type_is_unique(cx, ty) || type_is_native(cx, ty); } fn type_needs_drop(cx: ctxt, ty: t) -> bool { alt cx.needs_drop_cache.find(ty) { some(result) { ret result; } none. {/* fall through */ } } let accum = false; let result = alt struct(cx, ty) { // scalar types ty_nil. | ty_bot. | ty_bool. | ty_int(_) | ty_float(_) | ty_uint(_) | ty_type. | ty_native(_) | ty_ptr(_) { false } ty_rec(flds) { for f in flds { if type_needs_drop(cx, f.mt.ty) { accum = true; } } accum } ty_tup(elts) { for m in elts { if type_needs_drop(cx, m) { accum = true; } } accum } ty_tag(did, tps) { let variants = tag_variants(cx, did); for variant in variants { for aty in variant.args { // Perform any type parameter substitutions. let arg_ty = substitute_type_params(cx, tps, aty); if type_needs_drop(cx, arg_ty) { accum = true; } } if accum { break; } } accum } _ { true } }; cx.needs_drop_cache.insert(ty, result); ret result; } fn kind_lteq(a: kind, b: kind) -> bool { alt a { kind_noncopyable. { true } kind_copyable. { b != kind_noncopyable } kind_sendable. { b == kind_sendable } } } fn lower_kind(a: kind, b: kind) -> kind { if ty::kind_lteq(a, b) { a } else { b } } fn type_kind(cx: ctxt, ty: t) -> ast::kind { alt cx.kind_cache.find(ty) { some(result) { ret result; } none. {/* fall through */ } } // Insert a default in case we loop back on self recursively. cx.kind_cache.insert(ty, ast::kind_sendable); let result = alt struct(cx, ty) { // Scalar and unique types are sendable ty_nil. | ty_bot. | ty_bool. | ty_int(_) | ty_uint(_) | ty_float(_) | ty_native(_) | ty_ptr(_) | ty_type. | ty_str. | ty_native_fn(_, _) { ast::kind_sendable } // FIXME: obj is broken for now, since we aren't asserting // anything about its fields. ty_obj(_) { kind_copyable } // FIXME: the environment capture mode is not fully encoded // here yet, leading to weirdness around closure. ty_fn(proto, _, _, _, _) { alt proto { ast::proto_block. { ast::kind_noncopyable } ast::proto_shared(_) { ast::kind_copyable } ast::proto_send. { ast::kind_sendable } ast::proto_bare. { ast::kind_sendable } } } // Those with refcounts-to-inner raise pinned to shared, // lower unique to shared. Therefore just set result to shared. ty_box(mt) { ast::kind_copyable } // Boxes and unique pointers raise pinned to shared. ty_vec(tm) | ty_uniq(tm) { type_kind(cx, tm.ty) } // Records lower to the lowest of their members. ty_rec(flds) { let lowest = ast::kind_sendable; for f in flds { lowest = lower_kind(lowest, type_kind(cx, f.mt.ty)); } lowest } // Tuples lower to the lowest of their members. ty_tup(tys) { let lowest = ast::kind_sendable; for ty in tys { lowest = lower_kind(lowest, type_kind(cx, ty)); } lowest } // Tags lower to the lowest of their variants. ty_tag(did, tps) { let lowest = ast::kind_sendable; for variant in tag_variants(cx, did) { for aty in variant.args { // Perform any type parameter substitutions. let arg_ty = substitute_type_params(cx, tps, aty); lowest = lower_kind(lowest, type_kind(cx, arg_ty)); if lowest == ast::kind_noncopyable { break; } } } lowest } // Resources are always noncopyable. ty_res(did, inner, tps) { ast::kind_noncopyable } ty_param(_, k) { k } ty_constr(t, _) { type_kind(cx, t) } }; cx.kind_cache.insert(ty, result); ret result; } // FIXME: should we just return true for native types in // type_is_scalar? fn type_is_native(cx: ctxt, ty: t) -> bool { alt struct(cx, ty) { ty_native(_) { ret true; } _ { ret false; } } } fn type_structurally_contains(cx: ctxt, ty: t, test: fn(sty) -> bool) -> bool { let sty = struct(cx, ty); if test(sty) { ret true; } alt sty { ty_tag(did, tps) { for variant in tag_variants(cx, did) { for aty in variant.args { let sty = substitute_type_params(cx, tps, aty); if type_structurally_contains(cx, sty, test) { ret true; } } } ret false; } ty_rec(fields) { for field in fields { if type_structurally_contains(cx, field.mt.ty, test) { ret true; } } ret false; } ty_tup(ts) { for tt in ts { if type_structurally_contains(cx, tt, test) { ret true; } } ret false; } ty_res(_, sub, tps) { let sty = substitute_type_params(cx, tps, sub); ret type_structurally_contains(cx, sty, test); } _ { ret false; } } } pure fn type_has_dynamic_size(cx: ctxt, ty: t) -> bool { /* type_structurally_contains can't be declared pure because it takes a function argument. But it should be referentially transparent, since a given type's size should never change once it's created. (It would be interesting to think about how to make such properties actually checkable. It seems to me like a lot of properties that the type context tracks about types should be immutable.) */ unchecked{ type_structurally_contains(cx, ty, fn (sty: sty) -> bool { ret alt sty { ty_param(_, _) { true } _ { false } }; }) } } // Returns true for noncopyable types and types where a copy of a value can be // distinguished from the value itself. I.e. types with mutable content that's // not shared through a pointer. fn type_allows_implicit_copy(cx: ctxt, ty: t) -> bool { ret !type_structurally_contains(cx, ty, fn (sty: sty) -> bool { ret alt sty { ty_param(_, _) { true } ty_vec(mt) { mt.mut != ast::imm } ty_rec(fields) { for field in fields { if field.mt.mut != ast::imm { ret true; } } false } _ { false } }; }) && type_kind(cx, ty) != ast::kind_noncopyable; } fn type_structurally_contains_uniques(cx: ctxt, ty: t) -> bool { ret type_structurally_contains(cx, ty, fn (sty: sty) -> bool { ret alt sty { ty_uniq(_) { ret true; } ty_vec(_) { true } ty_str. { true } _ { ret false; } }; }); } fn type_is_integral(cx: ctxt, ty: t) -> bool { alt struct(cx, ty) { ty_int(_) | ty_uint(_) | ty_bool. { true } _ { false } } } fn type_is_fp(cx: ctxt, ty: t) -> bool { alt struct(cx, ty) { ty_float(_) { true } _ { false } } } fn type_is_numeric(cx: ctxt, ty: t) -> bool { ret type_is_integral(cx, ty) || type_is_fp(cx, ty); } fn type_is_signed(cx: ctxt, ty: t) -> bool { alt struct(cx, ty) { ty_int(_) { true } _ { false } } } // Whether a type is Plain Old Data (i.e. can be safely memmoved). fn type_is_pod(cx: ctxt, ty: t) -> bool { let result = true; alt struct(cx, ty) { // Scalar types ty_nil. | ty_bot. | ty_bool. | ty_int(_) | ty_float(_) | ty_uint(_) | ty_type. | ty_native(_) | ty_ptr(_) { result = true; } // Boxed types ty_str. | ty_box(_) | ty_uniq(_) | ty_vec(_) | ty_fn(_, _, _, _, _) | ty_native_fn(_, _) | ty_obj(_) { result = false; } // Structural types ty_tag(did, tps) { let variants = tag_variants(cx, did); for variant: variant_info in variants { let tup_ty = mk_tup(cx, variant.args); // Perform any type parameter substitutions. tup_ty = substitute_type_params(cx, tps, tup_ty); if !type_is_pod(cx, tup_ty) { result = false; } } } ty_rec(flds) { for f: field in flds { if !type_is_pod(cx, f.mt.ty) { result = false; } } } ty_tup(elts) { for elt in elts { if !type_is_pod(cx, elt) { result = false; } } } ty_res(_, inner, tps) { result = type_is_pod(cx, substitute_type_params(cx, tps, inner)); } ty_constr(subt, _) { result = type_is_pod(cx, subt); } ty_var(_) { fail "ty_var in type_is_pod"; } ty_param(_, _) { result = false; } } ret result; } fn type_param(cx: ctxt, ty: t) -> option::t { alt struct(cx, ty) { ty_param(id, _) { ret some(id); } _ {/* fall through */ } } ret none; } // Returns a vec of all the type variables // occurring in t. It may contain duplicates. fn vars_in_type(cx: ctxt, ty: t) -> [int] { fn collect_var(cx: ctxt, vars: @mutable [int], ty: t) { alt struct(cx, ty) { ty_var(v) { *vars += [v]; } _ { } } } let rslt: @mutable [int] = @mutable []; walk_ty(cx, bind collect_var(cx, rslt, _), ty); // Works because of a "convenient" bug that lets us // return a mutable vec as if it's immutable ret *rslt; } fn type_autoderef(cx: ctxt, t: ty::t) -> ty::t { let t1 = t; while true { alt struct(cx, t1) { ty_box(mt) | ty_uniq(mt) { t1 = mt.ty; } ty_res(_, inner, tps) { t1 = substitute_type_params(cx, tps, inner); } ty_tag(did, tps) { let variants = tag_variants(cx, did); if vec::len(variants) != 1u || vec::len(variants[0].args) != 1u { break; } t1 = substitute_type_params(cx, tps, variants[0].args[0]); } _ { break; } } } ret t1; } // Type hashing. This function is private to this module (and slow); external // users should use `hash_ty()` instead. fn hash_type_structure(st: sty) -> uint { fn hash_uint(id: uint, n: uint) -> uint { let h = id; h += (h << 5u) + n; ret h; } fn hash_def(id: uint, did: ast::def_id) -> uint { let h = id; h += (h << 5u) + (did.crate as uint); h += (h << 5u) + (did.node as uint); ret h; } fn hash_subty(id: uint, subty: t) -> uint { let h = id; h += (h << 5u) + hash_ty(subty); ret h; } fn hash_type_constr(id: uint, c: @type_constr) -> uint { let h = id; h += (h << 5u) + hash_def(h, c.node.id); ret hash_type_constr_args(h, c.node.args); } fn hash_type_constr_args(id: uint, args: [@ty_constr_arg]) -> uint { let h = id; for a: @ty_constr_arg in args { alt a.node { carg_base. { h += h << 5u; } carg_lit(_) { // FIXME fail "lit args not implemented yet"; } carg_ident(p) { // FIXME: Not sure what to do here. h += h << 5u; } } } ret h; } fn hash_fn(id: uint, args: [arg], rty: t) -> uint { let h = id; for a: arg in args { h += (h << 5u) + hash_ty(a.ty); } h += (h << 5u) + hash_ty(rty); ret h; } alt st { ty_nil. { 0u } ty_bool. { 1u } ty_int(t) { alt t { ast::ty_i. { 2u } ast::ty_char. { 3u } ast::ty_i8. { 4u } ast::ty_i16. { 5u } ast::ty_i32. { 6u } ast::ty_i64. { 7u } } } ty_uint(t) { alt t { ast::ty_u. { 8u } ast::ty_u8. { 9u } ast::ty_u16. { 10u } ast::ty_u32. { 11u } ast::ty_u64. { 12u } } } ty_float(t) { alt t { ast::ty_f. { 13u } ast::ty_f32. { 14u } ast::ty_f64. { 15u } } } ty_str. { ret 17u; } ty_tag(did, tys) { let h = hash_def(18u, did); for typ: t in tys { h += (h << 5u) + hash_ty(typ); } ret h; } ty_box(mt) { ret hash_subty(19u, mt.ty); } ty_vec(mt) { ret hash_subty(21u, mt.ty); } ty_rec(fields) { let h = 26u; for f: field in fields { h += (h << 5u) + hash_ty(f.mt.ty); } ret h; } ty_tup(ts) { let h = 25u; for tt in ts { h += (h << 5u) + hash_ty(tt); } ret h; } // ??? ty_fn(_, args, rty, _, _) { ret hash_fn(27u, args, rty); } ty_native_fn(args, rty) { ret hash_fn(28u, args, rty); } ty_obj(methods) { let h = 29u; for m: method in methods { h += (h << 5u) + str::hash(m.ident); } ret h; } ty_var(v) { ret hash_uint(30u, v as uint); } ty_param(pid, _) { ret hash_uint(31u, pid); } ty_type. { ret 32u; } ty_native(did) { ret hash_def(33u, did); } ty_bot. { ret 34u; } ty_ptr(mt) { ret hash_subty(35u, mt.ty); } ty_res(did, sub, tps) { let h = hash_subty(hash_def(18u, did), sub); for tp: t in tps { h += (h << 5u) + hash_ty(tp); } ret h; } ty_constr(t, cs) { let h = 36u; for c: @type_constr in cs { h += (h << 5u) + hash_type_constr(h, c); } ret h; } ty_uniq(mt) { let h = 37u; h += (h << 5u) + hash_ty(mt.ty); ret h; } } } fn hash_type_info(st: sty, cname_opt: option::t) -> uint { let h = hash_type_structure(st); alt cname_opt { none. {/* no-op */ } some(s) { h += (h << 5u) + str::hash(s); } } ret h; } fn hash_raw_ty(&&rt: @raw_t) -> uint { ret rt.hash; } fn hash_ty(&&typ: t) -> uint { ret typ; } // Type equality. This function is private to this module (and slow); external // users should use `eq_ty()` instead. fn eq_int(&&x: uint, &&y: uint) -> bool { ret x == y; } fn arg_eq(eq: fn(T, T) -> bool, a: @sp_constr_arg, b: @sp_constr_arg) -> bool { alt a.node { ast::carg_base. { alt b.node { ast::carg_base. { ret true; } _ { ret false; } } } ast::carg_ident(s) { alt b.node { ast::carg_ident(t) { ret eq(s, t); } _ { ret false; } } } ast::carg_lit(l) { alt b.node { ast::carg_lit(m) { ret ast_util::lit_eq(l, m); } _ { ret false; } } } } } fn args_eq(eq: fn(T, T) -> bool, a: [@sp_constr_arg], b: [@sp_constr_arg]) -> bool { let i: uint = 0u; for arg: @sp_constr_arg in a { if !arg_eq(eq, arg, b[i]) { ret false; } i += 1u; } ret true; } fn constr_eq(c: @constr, d: @constr) -> bool { ret path_to_str(c.node.path) == path_to_str(d.node.path) && // FIXME: hack args_eq(eq_int, c.node.args, d.node.args); } fn constrs_eq(cs: [@constr], ds: [@constr]) -> bool { if vec::len(cs) != vec::len(ds) { ret false; } let i = 0u; for c: @constr in cs { if !constr_eq(c, ds[i]) { ret false; } i += 1u; } ret true; } // An expensive type equality function. This function is private to this // module. fn eq_raw_ty(&&a: @raw_t, &&b: @raw_t) -> bool { // Check hashes (fast path). if a.hash != b.hash { ret false; } // Check canonical names. alt a.cname { none. { alt b.cname { none. {/* ok */ } _ { ret false; } } } some(s_a) { alt b.cname { some(s_b) { if !str::eq(s_a, s_b) { ret false; } } _ { ret false; } } } } // Check structures. ret a.struct == b.struct; } // This is the equality function the public should use. It works as long as // the types are interned. fn eq_ty(&&a: t, &&b: t) -> bool { ret a == b; } // Convert type to machine type // (i.e. replace uint, int, float with target architecture machine types) // // FIXME somewhat expensive but this should only be called rarely fn ty_to_machine_ty(cx: ctxt, ty: t) -> t { fn sub_fn(cx: ctxt, uint_ty: t, int_ty: t, float_ty: t, in: t) -> t { alt struct(cx, in) { ty_uint(ast::ty_u.) { ret uint_ty; } ty_int(ast::ty_i.) { ret int_ty; } ty_float(ast::ty_f.) { ret float_ty; } _ { ret in; } } } let cfg = cx.sess.get_targ_cfg(); let uint_ty = mk_mach_uint(cx, cfg.uint_type); let int_ty = mk_mach_int(cx, cfg.int_type); let float_ty = mk_mach_float(cx, cfg.float_type); let fold_m = fm_general(bind sub_fn(cx, uint_ty, int_ty, float_ty, _)); ret fold_ty(cx, fold_m, ty); } // Two types are trivially equal if they are either // equal or if they are equal after substituting all occurences of // machine independent primitive types by their machine type equivalents // for the current target architecture fn triv_eq_ty(cx: ctxt, &&a: t, &&b: t) -> bool { ret eq_ty(a, b) || eq_ty(ty_to_machine_ty(cx, a), ty_to_machine_ty(cx, b)); } // Type lookups fn node_id_to_ty_param_substs_opt_and_ty(cx: ctxt, id: ast::node_id) -> ty_param_substs_opt_and_ty { // Pull out the node type table. alt smallintmap::find(*cx.node_types, id as uint) { none. { cx.sess.bug("node_id_to_ty_param_substs_opt_and_ty() called on " + "an untyped node (" + int::to_str(id, 10u) + ")"); } some(tpot) { ret tpot; } } } fn node_id_to_type(cx: ctxt, id: ast::node_id) -> t { ret node_id_to_ty_param_substs_opt_and_ty(cx, id).ty; } fn node_id_to_type_params(cx: ctxt, id: ast::node_id) -> [t] { alt node_id_to_ty_param_substs_opt_and_ty(cx, id).substs { none. { ret []; } some(tps) { ret tps; } } } fn node_id_has_type_params(cx: ctxt, id: ast::node_id) -> bool { ret vec::len(node_id_to_type_params(cx, id)) > 0u; } // Returns a type with type parameter substitutions performed if applicable. fn ty_param_substs_opt_and_ty_to_monotype(cx: ctxt, tpot: ty_param_substs_opt_and_ty) -> t { alt tpot.substs { none. { ret tpot.ty; } some(tps) { ret substitute_type_params(cx, tps, tpot.ty); } } } // Returns the type of an annotation, with type parameter substitutions // performed if applicable. fn node_id_to_monotype(cx: ctxt, id: ast::node_id) -> t { let tpot = node_id_to_ty_param_substs_opt_and_ty(cx, id); ret ty_param_substs_opt_and_ty_to_monotype(cx, tpot); } // Returns the number of distinct type parameters in the given type. fn count_ty_params(cx: ctxt, ty: t) -> uint { fn counter(cx: ctxt, param_indices: @mutable [uint], ty: t) { alt struct(cx, ty) { ty_param(param_idx, _) { let seen = false; for other_param_idx: uint in *param_indices { if param_idx == other_param_idx { seen = true; } } if !seen { *param_indices += [param_idx]; } } _ {/* fall through */ } } } let param_indices: @mutable [uint] = @mutable []; let f = bind counter(cx, param_indices, _); walk_ty(cx, f, ty); ret vec::len::(*param_indices); } fn type_contains_vars(cx: ctxt, typ: t) -> bool { ret interner::get(*cx.ts, typ).has_vars; } fn type_contains_params(cx: ctxt, typ: t) -> bool { ret interner::get(*cx.ts, typ).has_params; } // Type accessors for substructures of types fn ty_fn_args(cx: ctxt, fty: t) -> [arg] { alt struct(cx, fty) { ty::ty_fn(_, a, _, _, _) { ret a; } ty::ty_native_fn(a, _) { ret a; } _ { cx.sess.bug("ty_fn_args() called on non-fn type"); } } } fn ty_fn_proto(cx: ctxt, fty: t) -> ast::proto { alt struct(cx, fty) { ty::ty_fn(p, _, _, _, _) { ret p; } ty::ty_native_fn(_, _) { // FIXME: This should probably be proto_bare ret ast::proto_shared(ast::sugar_normal); } _ { cx.sess.bug("ty_fn_proto() called on non-fn type"); } } } pure fn ty_fn_ret(cx: ctxt, fty: t) -> t { let sty = struct(cx, fty); alt sty { ty::ty_fn(_, _, r, _, _) { ret r; } ty::ty_native_fn(_, r) { ret r; } _ { // Unchecked is ok since we diverge here // (might want to change the typechecker to allow // it without an unchecked) // Or, it wouldn't be necessary if we had the right // typestate constraint on cx and t (then we could // call unreachable() instead) unchecked { cx.sess.bug("ty_fn_ret() called on non-fn type"); }} } } fn ty_fn_ret_style(cx: ctxt, fty: t) -> ast::ret_style { alt struct(cx, fty) { ty::ty_fn(_, _, _, rs, _) { rs } ty::ty_native_fn(_, _) { ast::return_val } _ { cx.sess.bug("ty_fn_ret_style() called on non-fn type"); } } } fn is_fn_ty(cx: ctxt, fty: t) -> bool { alt struct(cx, fty) { ty::ty_fn(_, _, _, _, _) { ret true; } ty::ty_native_fn(_, _) { ret true; } _ { ret false; } } } // Just checks whether it's a fn that returns bool, // not its purity. fn is_pred_ty(cx: ctxt, fty: t) -> bool { is_fn_ty(cx, fty) && type_is_bool(cx, ty_fn_ret(cx, fty)) } fn ty_var_id(cx: ctxt, typ: t) -> int { alt struct(cx, typ) { ty::ty_var(vid) { ret vid; } _ { log_err "ty_var_id called on non-var ty"; fail; } } } // Type accessors for AST nodes fn block_ty(cx: ctxt, b: ast::blk) -> t { ret node_id_to_type(cx, b.node.id); } // Returns the type of a pattern as a monotype. Like @expr_ty, this function // doesn't provide type parameter substitutions. fn pat_ty(cx: ctxt, pat: @ast::pat) -> t { ret node_id_to_monotype(cx, pat.id); } // Returns the type of an expression as a monotype. // // NB: This type doesn't provide type parameter substitutions; e.g. if you // ask for the type of "id" in "id(3)", it will return "fn(&int) -> int" // instead of "fn(t) -> T with T = int". If this isn't what you want, see // expr_ty_params_and_ty() below. fn expr_ty(cx: ctxt, expr: @ast::expr) -> t { ret node_id_to_monotype(cx, expr.id); } fn expr_ty_params_and_ty(cx: ctxt, expr: @ast::expr) -> {params: [t], ty: t} { ret {params: node_id_to_type_params(cx, expr.id), ty: node_id_to_type(cx, expr.id)}; } fn expr_has_ty_params(cx: ctxt, expr: @ast::expr) -> bool { ret node_id_has_type_params(cx, expr.id); } fn expr_is_lval(tcx: ty::ctxt, e: @ast::expr) -> bool { alt e.node { ast::expr_path(_) | ast::expr_index(_, _) | ast::expr_unary(ast::deref., _) { true } ast::expr_field(base, ident) { let basety = type_autoderef(tcx, expr_ty(tcx, base)); alt struct(tcx, basety) { ty_obj(_) { false } ty_rec(_) { true } } } _ { false } } } fn stmt_node_id(s: @ast::stmt) -> ast::node_id { alt s.node { ast::stmt_decl(_, id) { ret id; } ast::stmt_expr(_, id) { ret id; } } } fn field_idx(sess: session::session, sp: span, id: ast::ident, fields: [field]) -> uint { let i: uint = 0u; for f: field in fields { if str::eq(f.ident, id) { ret i; } i += 1u; } sess.span_fatal(sp, "unknown field '" + id + "' of record"); } fn get_field(tcx: ctxt, rec_ty: t, id: ast::ident) -> field { alt struct(tcx, rec_ty) { ty_rec(fields) { alt vec::find({|f| str::eq(f.ident, id) }, fields) { some(f) { ret f; } } } } } fn method_idx(sess: session::session, sp: span, id: ast::ident, meths: [method]) -> uint { let i: uint = 0u; for m: method in meths { if str::eq(m.ident, id) { ret i; } i += 1u; } sess.span_fatal(sp, "unknown method '" + id + "' of obj"); } fn sort_methods(meths: [method]) -> [method] { fn method_lteq(a: method, b: method) -> bool { ret str::lteq(a.ident, b.ident); } ret std::sort::merge_sort::(bind method_lteq(_, _), meths); } fn occurs_check_fails(tcx: ctxt, sp: option::t, vid: int, rt: t) -> bool { if !type_contains_vars(tcx, rt) { // Fast path ret false; } // Occurs check! if vec::member(vid, vars_in_type(tcx, rt)) { alt sp { some(s) { // Maybe this should be span_err -- however, there's an // assertion later on that the type doesn't contain // variables, so in this case we have to be sure to die. tcx.sess.span_fatal (s, "Type inference failed because I \ could not find a type\n that's both of the form " + ty_to_str(tcx, ty::mk_var(tcx, vid)) + " and of the form " + ty_to_str(tcx, rt) + ". Such a type would have to be infinitely large."); } _ { ret true; } } } else { ret false; } } // Type unification via Robinson's algorithm (Robinson 1965). Implemented as // described in Hoder and Voronkov: // // http://www.cs.man.ac.uk/~hoderk/ubench/unification_full.pdf mod unify { export fixup_result; export fixup_vars; export fix_ok; export fix_err; export mk_var_bindings; export resolve_type_structure; export resolve_type_var; export result; export unify; export ures_ok; export ures_err; export var_bindings; tag result { ures_ok(t); ures_err(type_err); } tag union_result { unres_ok; unres_err(type_err); } tag fixup_result { fix_ok(t); // fixup succeeded fix_err(int); // fixup failed because a type variable was unresolved } type var_bindings = {sets: ufind::ufind, types: smallintmap::smallintmap}; type ctxt = {vb: @var_bindings, tcx: ty_ctxt}; fn mk_var_bindings() -> @var_bindings { ret @{sets: ufind::make(), types: smallintmap::mk::()}; } // Unifies two sets. fn union(cx: @ctxt, set_a: uint, set_b: uint, variance: variance) -> union_result { ufind::grow(cx.vb.sets, math::max(set_a, set_b) + 1u); let root_a = ufind::find(cx.vb.sets, set_a); let root_b = ufind::find(cx.vb.sets, set_b); let replace_type = bind fn (cx: @ctxt, t: t, set_a: uint, set_b: uint) { ufind::union(cx.vb.sets, set_a, set_b); let root_c: uint = ufind::find(cx.vb.sets, set_a); smallintmap::insert::(cx.vb.types, root_c, t); }(_, _, set_a, set_b); alt smallintmap::find(cx.vb.types, root_a) { none. { alt smallintmap::find(cx.vb.types, root_b) { none. { ufind::union(cx.vb.sets, set_a, set_b); ret unres_ok; } some(t_b) { replace_type(cx, t_b); ret unres_ok; } } } some(t_a) { alt smallintmap::find(cx.vb.types, root_b) { none. { replace_type(cx, t_a); ret unres_ok; } some(t_b) { alt unify_step(cx, t_a, t_b, variance) { ures_ok(t_c) { replace_type(cx, t_c); ret unres_ok; } ures_err(terr) { ret unres_err(terr); } } } } } } } fn record_var_binding_for_expected( cx: @ctxt, key: int, typ: t, variance: variance) -> result { record_var_binding( cx, key, typ, variance_transform(variance, covariant)) } fn record_var_binding_for_actual( cx: @ctxt, key: int, typ: t, variance: variance) -> result { // Unifying in 'the other direction' so flip the variance record_var_binding( cx, key, typ, variance_transform(variance, contravariant)) } fn record_var_binding( cx: @ctxt, key: int, typ: t, variance: variance) -> result { ufind::grow(cx.vb.sets, (key as uint) + 1u); let root = ufind::find(cx.vb.sets, key as uint); let result_type = typ; alt smallintmap::find::(cx.vb.types, root) { some(old_type) { alt unify_step(cx, old_type, typ, variance) { ures_ok(unified_type) { result_type = unified_type; } rs { ret rs; } } } none. {/* fall through */ } } smallintmap::insert::(cx.vb.types, root, result_type); ret ures_ok(typ); } // Wraps the given type in an appropriate cname. // // TODO: This doesn't do anything yet. We should carry the cname up from // the expected and/or actual types when unification results in a type // identical to one or both of the two. The precise algorithm for this is // something we'll probably need to develop over time. // Simple structural type comparison. fn struct_cmp(cx: @ctxt, expected: t, actual: t) -> result { if struct(cx.tcx, expected) == struct(cx.tcx, actual) { ret ures_ok(expected); } ret ures_err(terr_mismatch); } // Right now this just checks that the lists of constraints are // pairwise equal. fn unify_constrs(base_t: t, expected: [@type_constr], actual: [@type_constr]) -> result { let expected_len = vec::len(expected); let actual_len = vec::len(actual); if expected_len != actual_len { ret ures_err(terr_constr_len(expected_len, actual_len)); } let i = 0u; let rslt; for c: @type_constr in expected { rslt = unify_constr(base_t, c, actual[i]); alt rslt { ures_ok(_) { } ures_err(_) { ret rslt; } } i += 1u; } ret ures_ok(base_t); } fn unify_constr(base_t: t, expected: @type_constr, actual_constr: @type_constr) -> result { let ok_res = ures_ok(base_t); let err_res = ures_err(terr_constr_mismatch(expected, actual_constr)); if expected.node.id != actual_constr.node.id { ret err_res; } let expected_arg_len = vec::len(expected.node.args); let actual_arg_len = vec::len(actual_constr.node.args); if expected_arg_len != actual_arg_len { ret err_res; } let i = 0u; let actual; for a: @ty_constr_arg in expected.node.args { actual = actual_constr.node.args[i]; alt a.node { carg_base. { alt actual.node { carg_base. { } _ { ret err_res; } } } carg_lit(l) { alt actual.node { carg_lit(m) { if l != m { ret err_res; } } _ { ret err_res; } } } carg_ident(p) { alt actual.node { carg_ident(q) { if p.node != q.node { ret err_res; } } _ { ret err_res; } } } } i += 1u; } ret ok_res; } // Unifies two mutability flags. fn unify_mut(expected: ast::mutability, actual: ast::mutability, variance: variance) -> option::t<(ast::mutability, variance)> { // If you're unifying on something mutable then we have to // be invariant on the inner type let newvariance = alt expected { ast::mut. { variance_transform(variance, invariant) } _ { variance_transform(variance, covariant) } }; if expected == actual { ret some((expected, newvariance)); } if variance == covariant { if expected == ast::maybe_mut { ret some((actual, newvariance)); } } else if variance == contravariant { if actual == ast::maybe_mut { ret some((expected, newvariance)); } } ret none; } tag fn_common_res { fn_common_res_err(result); fn_common_res_ok([arg], t); } fn unify_fn_common(cx: @ctxt, _expected: t, _actual: t, expected_inputs: [arg], expected_output: t, actual_inputs: [arg], actual_output: t, variance: variance) -> fn_common_res { let expected_len = vec::len::(expected_inputs); let actual_len = vec::len::(actual_inputs); if expected_len != actual_len { ret fn_common_res_err(ures_err(terr_arg_count)); } // TODO: as above, we should have an iter2 iterator. let result_ins: [arg] = []; let i = 0u; while i < expected_len { let expected_input = expected_inputs[i]; let actual_input = actual_inputs[i]; // Unify the result modes. let result_mode = if expected_input.mode == ast::mode_infer { actual_input.mode } else if actual_input.mode == ast::mode_infer { expected_input.mode } else if expected_input.mode != actual_input.mode { ret fn_common_res_err (ures_err(terr_mode_mismatch(expected_input.mode, actual_input.mode))); } else { expected_input.mode }; // The variance changes (flips basically) when descending // into arguments of function types let result = unify_step( cx, expected_input.ty, actual_input.ty, variance_transform(variance, contravariant)); alt result { ures_ok(rty) { result_ins += [{mode: result_mode, ty: rty}]; } _ { ret fn_common_res_err(result); } } i += 1u; } // Check the output. let result = unify_step(cx, expected_output, actual_output, variance); alt result { ures_ok(rty) { ret fn_common_res_ok(result_ins, rty); } _ { ret fn_common_res_err(result); } } } fn unify_fn_proto(e_proto: ast::proto, a_proto: ast::proto, variance: variance) -> option::t { fn rank(proto: ast::proto) -> int { ret alt proto { ast::proto_block. { 0 } ast::proto_shared(_) { 1 } ast::proto_send. { 2 } ast::proto_bare. { 3 } }; } fn gt(e_proto: ast::proto, a_proto: ast::proto) -> bool { ret rank(e_proto) > rank(a_proto); } ret if e_proto == a_proto { none } else if variance == invariant { some(ures_err(terr_mismatch)) } else if variance == covariant { if gt(e_proto, a_proto) { some(ures_err(terr_mismatch)) } else { none } } else if variance == contravariant { if gt(a_proto, e_proto) { some(ures_err(terr_mismatch)) } else { none } } else { fail } } fn unify_fn(cx: @ctxt, e_proto: ast::proto, a_proto: ast::proto, expected: t, actual: t, expected_inputs: [arg], expected_output: t, actual_inputs: [arg], actual_output: t, expected_cf: ret_style, actual_cf: ret_style, _expected_constrs: [@constr], actual_constrs: [@constr], variance: variance) -> result { alt unify_fn_proto(e_proto, a_proto, variance) { some(err) { ret err; } none. { /* fall through */ } } if actual_cf != ast::noreturn && actual_cf != expected_cf { /* even though typestate checking is mostly responsible for checking control flow annotations, this check is necessary to ensure that the annotation in an object method matches the declared object type */ ret ures_err(terr_ret_style_mismatch(expected_cf, actual_cf)); } let t = unify_fn_common(cx, expected, actual, expected_inputs, expected_output, actual_inputs, actual_output, variance); alt t { fn_common_res_err(r) { ret r; } fn_common_res_ok(result_ins, result_out) { let t2 = mk_fn(cx.tcx, e_proto, result_ins, result_out, actual_cf, actual_constrs); ret ures_ok(t2); } } } fn unify_native_fn(cx: @ctxt, expected: t, actual: t, expected_inputs: [arg], expected_output: t, actual_inputs: [arg], actual_output: t, variance: variance) -> result { let t = unify_fn_common(cx, expected, actual, expected_inputs, expected_output, actual_inputs, actual_output, variance); alt t { fn_common_res_err(r) { ret r; } fn_common_res_ok(result_ins, result_out) { let t2 = mk_native_fn(cx.tcx, result_ins, result_out); ret ures_ok(t2); } } } fn unify_obj(cx: @ctxt, expected: t, actual: t, expected_meths: [method], actual_meths: [method], variance: variance) -> result { let result_meths: [method] = []; let i: uint = 0u; let expected_len: uint = vec::len::(expected_meths); let actual_len: uint = vec::len::(actual_meths); if expected_len != actual_len { ret ures_err(terr_meth_count); } while i < expected_len { let e_meth = expected_meths[i]; let a_meth = actual_meths[i]; if !str::eq(e_meth.ident, a_meth.ident) { ret ures_err(terr_obj_meths(e_meth.ident, a_meth.ident)); } let r = unify_fn(cx, e_meth.proto, a_meth.proto, expected, actual, e_meth.inputs, e_meth.output, a_meth.inputs, a_meth.output, e_meth.cf, a_meth.cf, e_meth.constrs, a_meth.constrs, variance); alt r { ures_ok(tfn) { alt struct(cx.tcx, tfn) { ty_fn(proto, ins, out, cf, constrs) { result_meths += [{inputs: ins, output: out, cf: cf, constrs: constrs with e_meth}]; } } } _ { ret r; } } i += 1u; } let t = mk_obj(cx.tcx, result_meths); ret ures_ok(t); } // If the given type is a variable, returns the structure of that type. fn resolve_type_structure(tcx: ty_ctxt, vb: @var_bindings, typ: t) -> fixup_result { alt struct(tcx, typ) { ty_var(vid) { if vid as uint >= ufind::set_count(vb.sets) { ret fix_err(vid); } let root_id = ufind::find(vb.sets, vid as uint); alt smallintmap::find::(vb.types, root_id) { none. { ret fix_err(vid); } some(rt) { ret fix_ok(rt); } } } _ { ret fix_ok(typ); } } } // Specifies the allowable subtyping between expected and actual types tag variance { // Actual may be a subtype of expected covariant; // Actual may be a supertype of expected contravariant; // Actual must be the same type as expected invariant; } // The calculation for recursive variance // "Taming the Wildcards: Combining Definition- and Use-Site Variance" // by John Altidor, et. al. // // I'm just copying the table from figure 1 - haven't actually // read the paper (yet). fn variance_transform(a: variance, b: variance) -> variance { alt a { covariant. { alt b { covariant. { covariant } contravariant. { contravariant } invariant. { invariant } } } contravariant. { alt b { covariant. { contravariant } contravariant. { covariant } invariant. { invariant } } } invariant. { alt b { covariant. { invariant } contravariant. { invariant } invariant. { invariant } } } } } fn unify_step(cx: @ctxt, expected: t, actual: t, variance: variance) -> result { // TODO: rewrite this using tuple pattern matching when available, to // avoid all this rightward drift and spikiness. // Fast path. if eq_ty(expected, actual) { ret ures_ok(expected); } // Stage 1: Handle the cases in which one side or another is a type // variable. alt struct(cx.tcx, actual) { // If the RHS is a variable type, then just do the // appropriate binding. ty::ty_var(actual_id) { let actual_n = actual_id as uint; alt struct(cx.tcx, expected) { ty::ty_var(expected_id) { let expected_n = expected_id as uint; alt union(cx, expected_n, actual_n, variance) { unres_ok. {/* fall through */ } unres_err(t_e) { ret ures_err(t_e); } } } _ { // Just bind the type variable to the expected type. alt record_var_binding_for_actual( cx, actual_id, expected, variance) { ures_ok(_) {/* fall through */ } rs { ret rs; } } } } ret ures_ok(mk_var(cx.tcx, actual_id)); } _ {/* empty */ } } alt struct(cx.tcx, expected) { ty::ty_var(expected_id) { // Add a binding. (`actual` can't actually be a var here.) alt record_var_binding_for_expected( cx, expected_id, actual, variance) { ures_ok(_) {/* fall through */ } rs { ret rs; } } ret ures_ok(mk_var(cx.tcx, expected_id)); } _ {/* fall through */ } } // Stage 2: Handle all other cases. alt struct(cx.tcx, actual) { ty::ty_bot. { ret ures_ok(expected); } _ {/* fall through */ } } alt struct(cx.tcx, expected) { ty::ty_nil. { ret struct_cmp(cx, expected, actual); } // _|_ unifies with anything ty::ty_bot. { ret ures_ok(actual); } ty::ty_bool. | ty::ty_int(_) | ty_uint(_) | ty_float(_) | ty::ty_str. | ty::ty_type. { ret struct_cmp(cx, expected, actual); } ty::ty_native(ex_id) { alt struct(cx.tcx, actual) { ty_native(act_id) { if ex_id.crate == act_id.crate && ex_id.node == act_id.node { ret ures_ok(actual); } else { ret ures_err(terr_mismatch); } } _ { ret ures_err(terr_mismatch); } } } ty::ty_param(_, _) { ret struct_cmp(cx, expected, actual); } ty::ty_tag(expected_id, expected_tps) { alt struct(cx.tcx, actual) { ty::ty_tag(actual_id, actual_tps) { if expected_id.crate != actual_id.crate || expected_id.node != actual_id.node { ret ures_err(terr_mismatch); } // TODO: factor this cruft out let result_tps: [t] = []; let i = 0u; let expected_len = vec::len::(expected_tps); while i < expected_len { let expected_tp = expected_tps[i]; let actual_tp = actual_tps[i]; let result = unify_step( cx, expected_tp, actual_tp, variance); alt result { ures_ok(rty) { result_tps += [rty]; } _ { ret result; } } i += 1u; } ret ures_ok(mk_tag(cx.tcx, expected_id, result_tps)); } _ {/* fall through */ } } ret ures_err(terr_mismatch); } ty::ty_box(expected_mt) { alt struct(cx.tcx, actual) { ty::ty_box(actual_mt) { let (mut, var) = alt unify_mut( expected_mt.mut, actual_mt.mut, variance) { none. { ret ures_err(terr_box_mutability); } some(mv) { mv } }; let result = unify_step( cx, expected_mt.ty, actual_mt.ty, var); alt result { ures_ok(result_sub) { let mt = {ty: result_sub, mut: mut}; ret ures_ok(mk_box(cx.tcx, mt)); } _ { ret result; } } } _ { ret ures_err(terr_mismatch); } } } ty::ty_uniq(expected_mt) { alt struct(cx.tcx, actual) { ty::ty_uniq(actual_mt) { let (mut, var) = alt unify_mut( expected_mt.mut, actual_mt.mut, variance) { none. { ret ures_err(terr_box_mutability); } some(mv) { mv } }; let result = unify_step( cx, expected_mt.ty, actual_mt.ty, var); alt result { ures_ok(result_mt) { let mt = {ty: result_mt, mut: mut}; ret ures_ok(mk_uniq(cx.tcx, mt)); } _ { ret result; } } } _ { ret ures_err(terr_mismatch); } } } ty::ty_vec(expected_mt) { alt struct(cx.tcx, actual) { ty::ty_vec(actual_mt) { let (mut, var) = alt unify_mut( expected_mt.mut, actual_mt.mut, variance) { none. { ret ures_err(terr_vec_mutability); } some(mv) { mv } }; let result = unify_step( cx, expected_mt.ty, actual_mt.ty, var); alt result { ures_ok(result_sub) { let mt = {ty: result_sub, mut: mut}; ret ures_ok(mk_vec(cx.tcx, mt)); } _ { ret result; } } } _ { ret ures_err(terr_mismatch); } } } ty::ty_ptr(expected_mt) { alt struct(cx.tcx, actual) { ty::ty_ptr(actual_mt) { let (mut, var) = alt unify_mut( expected_mt.mut, actual_mt.mut, variance) { none. { ret ures_err(terr_vec_mutability); } some(mv) { mv } }; let result = unify_step( cx, expected_mt.ty, actual_mt.ty, var); alt result { ures_ok(result_sub) { let mt = {ty: result_sub, mut: mut}; ret ures_ok(mk_ptr(cx.tcx, mt)); } _ { ret result; } } } _ { ret ures_err(terr_mismatch); } } } ty::ty_res(ex_id, ex_inner, ex_tps) { alt struct(cx.tcx, actual) { ty::ty_res(act_id, act_inner, act_tps) { if ex_id.crate != act_id.crate || ex_id.node != act_id.node { ret ures_err(terr_mismatch); } let result = unify_step( cx, ex_inner, act_inner, variance); alt result { ures_ok(res_inner) { let i = 0u; let res_tps = []; for ex_tp: t in ex_tps { let result = unify_step( cx, ex_tp, act_tps[i], variance); alt result { ures_ok(rty) { res_tps += [rty]; } _ { ret result; } } i += 1u; } ret ures_ok(mk_res(cx.tcx, act_id, res_inner, res_tps)); } _ { ret result; } } } _ { ret ures_err(terr_mismatch); } } } ty::ty_rec(expected_fields) { alt struct(cx.tcx, actual) { ty::ty_rec(actual_fields) { let expected_len = vec::len::(expected_fields); let actual_len = vec::len::(actual_fields); if expected_len != actual_len { let err = terr_record_size(expected_len, actual_len); ret ures_err(err); } // TODO: implement an iterator that can iterate over // two arrays simultaneously. let result_fields: [field] = []; let i = 0u; while i < expected_len { let expected_field = expected_fields[i]; let actual_field = actual_fields[i]; let (mut, var) = alt unify_mut( expected_field.mt.mut, actual_field.mt.mut, variance) { none. { ret ures_err(terr_record_mutability); } some(mv) { mv } }; if !str::eq(expected_field.ident, actual_field.ident) { let err = terr_record_fields(expected_field.ident, actual_field.ident); ret ures_err(err); } let result = unify_step(cx, expected_field.mt.ty, actual_field.mt.ty, var); alt result { ures_ok(rty) { let mt = {ty: rty, mut: mut}; result_fields += [{mt: mt with expected_field}]; } _ { ret result; } } i += 1u; } ret ures_ok(mk_rec(cx.tcx, result_fields)); } _ { ret ures_err(terr_mismatch); } } } ty::ty_tup(expected_elems) { alt struct(cx.tcx, actual) { ty::ty_tup(actual_elems) { let expected_len = vec::len(expected_elems); let actual_len = vec::len(actual_elems); if expected_len != actual_len { let err = terr_tuple_size(expected_len, actual_len); ret ures_err(err); } // TODO: implement an iterator that can iterate over // two arrays simultaneously. let result_elems = []; let i = 0u; while i < expected_len { let expected_elem = expected_elems[i]; let actual_elem = actual_elems[i]; let result = unify_step( cx, expected_elem, actual_elem, variance); alt result { ures_ok(rty) { result_elems += [rty]; } _ { ret result; } } i += 1u; } ret ures_ok(mk_tup(cx.tcx, result_elems)); } _ { ret ures_err(terr_mismatch); } } } ty::ty_fn(ep, expected_inputs, expected_output, expected_cf, expected_constrs) { alt struct(cx.tcx, actual) { ty::ty_fn(ap, actual_inputs, actual_output, actual_cf, actual_constrs) { ret unify_fn(cx, ep, ap, expected, actual, expected_inputs, expected_output, actual_inputs, actual_output, expected_cf, actual_cf, expected_constrs, actual_constrs, variance); } _ { ret ures_err(terr_mismatch); } } } ty::ty_native_fn(expected_inputs, expected_output) { alt struct(cx.tcx, actual) { ty::ty_native_fn(actual_inputs, actual_output) { ret unify_native_fn(cx, expected, actual, expected_inputs, expected_output, actual_inputs, actual_output, variance); } _ { ret ures_err(terr_mismatch); } } } ty::ty_obj(expected_meths) { alt struct(cx.tcx, actual) { ty::ty_obj(actual_meths) { ret unify_obj(cx, expected, actual, expected_meths, actual_meths, variance); } _ { ret ures_err(terr_mismatch); } } } ty::ty_constr(expected_t, expected_constrs) { // unify the base types... alt struct(cx.tcx, actual) { ty::ty_constr(actual_t, actual_constrs) { let rslt = unify_step( cx, expected_t, actual_t, variance); alt rslt { ures_ok(rty) { // FIXME: probably too restrictive -- // requires the constraints to be // syntactically equal ret unify_constrs(expected, expected_constrs, actual_constrs); } _ { ret rslt; } } } _ { // If the actual type is *not* a constrained type, // then we go ahead and just ignore the constraints on // the expected type. typestate handles the rest. ret unify_step( cx, expected_t, actual, variance); } } } } } fn unify(expected: t, actual: t, vb: @var_bindings, tcx: ty_ctxt) -> result { let cx = @{vb: vb, tcx: tcx}; ret unify_step(cx, expected, actual, covariant); } fn dump_var_bindings(tcx: ty_ctxt, vb: @var_bindings) { let i = 0u; while i < vec::len::(vb.sets.nodes) { let sets = ""; let j = 0u; while j < vec::len::>(vb.sets.nodes) { if ufind::find(vb.sets, j) == i { sets += #fmt[" %u", j]; } j += 1u; } let typespec; alt smallintmap::find::(vb.types, i) { none. { typespec = ""; } some(typ) { typespec = " =" + ty_to_str(tcx, typ); } } log_err #fmt["set %u:%s%s", i, typespec, sets]; i += 1u; } } // Fixups and substitutions // Takes an optional span - complain about occurs check violations // iff the span is present (so that if we already know we're going // to error anyway, we don't complain) fn fixup_vars(tcx: ty_ctxt, sp: option::t, vb: @var_bindings, typ: t) -> fixup_result { fn subst_vars(tcx: ty_ctxt, sp: option::t, vb: @var_bindings, unresolved: @mutable option::t, vid: int) -> t { // Should really return a fixup_result instead of a t, but fold_ty // doesn't allow returning anything but a t. if vid as uint >= ufind::set_count(vb.sets) { *unresolved = some(vid); ret ty::mk_var(tcx, vid); } let root_id = ufind::find(vb.sets, vid as uint); alt smallintmap::find::(vb.types, root_id) { none. { *unresolved = some(vid); ret ty::mk_var(tcx, vid); } some(rt) { if occurs_check_fails(tcx, sp, vid, rt) { // Return the type unchanged, so we can error out // downstream ret rt; } ret fold_ty(tcx, fm_var(bind subst_vars(tcx, sp, vb, unresolved, _)), rt); } } } let unresolved = @mutable none::; let rty = fold_ty(tcx, fm_var(bind subst_vars(tcx, sp, vb, unresolved, _)), typ); let ur = *unresolved; alt ur { none. { ret fix_ok(rty); } some(var_id) { ret fix_err(var_id); } } } fn resolve_type_var(tcx: ty_ctxt, sp: option::t, vb: @var_bindings, vid: int) -> fixup_result { if vid as uint >= ufind::set_count(vb.sets) { ret fix_err(vid); } let root_id = ufind::find(vb.sets, vid as uint); alt smallintmap::find::(vb.types, root_id) { none. { ret fix_err(vid); } some(rt) { ret fixup_vars(tcx, sp, vb, rt); } } } } fn type_err_to_str(err: ty::type_err) -> str { alt err { terr_mismatch. { ret "types differ"; } terr_ret_style_mismatch(expect, actual) { fn to_str(s: ast::ret_style) -> str { alt s { ast::noreturn. { "non-returning" } ast::return_val. { "return-by-value" } } } ret to_str(actual) + " function found where " + to_str(expect) + " function was expected"; } terr_box_mutability. { ret "boxed values differ in mutability"; } terr_vec_mutability. { ret "vectors differ in mutability"; } terr_tuple_size(e_sz, a_sz) { ret "expected a tuple with " + uint::to_str(e_sz, 10u) + " elements but found one with " + uint::to_str(a_sz, 10u) + " elements"; } terr_record_size(e_sz, a_sz) { ret "expected a record with " + uint::to_str(e_sz, 10u) + " fields but found one with " + uint::to_str(a_sz, 10u) + " fields"; } terr_record_mutability. { ret "record elements differ in mutability"; } terr_record_fields(e_fld, a_fld) { ret "expected a record with field '" + e_fld + "' but found one with field '" + a_fld + "'"; } terr_arg_count. { ret "incorrect number of function parameters"; } terr_meth_count. { ret "incorrect number of object methods"; } terr_obj_meths(e_meth, a_meth) { ret "expected an obj with method '" + e_meth + "' but found one with method '" + a_meth + "'"; } terr_mode_mismatch(e_mode, a_mode) { ret "expected argument mode " + mode_str_1(e_mode) + " but found " + mode_str_1(a_mode); } terr_constr_len(e_len, a_len) { ret "Expected a type with " + uint::str(e_len) + " constraints, but found one with " + uint::str(a_len) + " constraints"; } terr_constr_mismatch(e_constr, a_constr) { ret "Expected a type with constraint " + ty_constr_to_str(e_constr) + " but found one with constraint " + ty_constr_to_str(a_constr); } } } // Converts type parameters in a type to type variables and returns the // resulting type along with a list of type variable IDs. fn bind_params_in_type(sp: span, cx: ctxt, next_ty_var: fn@() -> int, typ: t, ty_param_count: uint) -> {ids: [int], ty: t} { let param_var_ids: @mutable [int] = @mutable []; let i = 0u; while i < ty_param_count { *param_var_ids += [next_ty_var()]; i += 1u; } fn binder(sp: span, cx: ctxt, param_var_ids: @mutable [int], _next_ty_var: fn@() -> int, index: uint, _kind: ast::kind) -> t { if index < vec::len(*param_var_ids) { ret mk_var(cx, param_var_ids[index]); } else { cx.sess.span_fatal(sp, "Unbound type parameter in callee's type"); } } let new_typ = fold_ty(cx, fm_param(bind binder(sp, cx, param_var_ids, next_ty_var, _, _)), typ); ret {ids: *param_var_ids, ty: new_typ}; } // Replaces type parameters in the given type using the given list of // substitions. fn substitute_type_params(cx: ctxt, substs: [ty::t], typ: t) -> t { if !type_contains_params(cx, typ) { ret typ; } fn substituter(_cx: ctxt, substs: @[ty::t], idx: uint, _kind: ast::kind) -> t { // FIXME: bounds check can fail ret substs[idx]; } ret fold_ty(cx, fm_param(bind substituter(cx, @substs, _, _)), typ); } fn def_has_ty_params(def: ast::def) -> bool { alt def { ast::def_fn(_, _) { ret true; } ast::def_obj_field(_, _) { ret false; } ast::def_mod(_) { ret false; } ast::def_const(_) { ret false; } ast::def_arg(_, _) { ret false; } ast::def_local(_, _) { ret false; } ast::def_upvar(_, _, _) { ret false; } ast::def_variant(_, _) { ret true; } ast::def_ty(_) { ret false; } ast::def_ty_param(_, _) { ret false; } ast::def_binding(_) { ret false; } ast::def_use(_) { ret false; } ast::def_native_ty(_) { ret false; } ast::def_native_fn(_, _) { ret true; } } } // Tag information type variant_info = {args: [ty::t], ctor_ty: ty::t, id: ast::def_id}; fn tag_variants(cx: ctxt, id: ast::def_id) -> [variant_info] { if ast::local_crate != id.crate { ret csearch::get_tag_variants(cx, id); } let item = alt cx.items.find(id.node) { some(i) { i } none. { cx.sess.bug("expected to find cached node_item") } }; alt item { ast_map::node_item(item) { alt item.node { ast::item_tag(variants, _) { let result: [variant_info] = []; for variant: ast::variant in variants { let ctor_ty = node_id_to_monotype(cx, variant.node.id); let arg_tys: [t] = []; if vec::len(variant.node.args) > 0u { for a: arg in ty_fn_args(cx, ctor_ty) { arg_tys += [a.ty]; } } let did = variant.node.id; result += [{args: arg_tys, ctor_ty: ctor_ty, id: ast_util::local_def(did)}]; } ret result; } } } } } // Returns information about the tag variant with the given ID: fn tag_variant_with_id(cx: ctxt, tag_id: ast::def_id, variant_id: ast::def_id) -> variant_info { let variants = tag_variants(cx, tag_id); let i = 0u; while i < vec::len::(variants) { let variant = variants[i]; if def_eq(variant.id, variant_id) { ret variant; } i += 1u; } cx.sess.bug("tag_variant_with_id(): no variant exists with that ID"); } // If the given item is in an external crate, looks up its type and adds it to // the type cache. Returns the type parameters and type. fn lookup_item_type(cx: ctxt, did: ast::def_id) -> ty_param_kinds_and_ty { if did.crate == ast::local_crate { // The item is in this crate. The caller should have added it to the // type cache already; we simply return it. ret cx.tcache.get(did); } alt cx.tcache.find(did) { some(tpt) { ret tpt; } none. { let tyt = csearch::get_type(cx, did); cx.tcache.insert(did, tyt); ret tyt; } } } fn ret_ty_of_fn(cx: ctxt, id: ast::node_id) -> t { ty_fn_ret(cx, node_id_to_type(cx, id)) } fn is_binopable(cx: ctxt, ty: t, op: ast::binop) -> bool { const tycat_other: int = 0; const tycat_bool: int = 1; const tycat_int: int = 2; const tycat_float: int = 3; const tycat_str: int = 4; const tycat_vec: int = 5; const tycat_struct: int = 6; const tycat_bot: int = 7; const opcat_add: int = 0; const opcat_sub: int = 1; const opcat_mult: int = 2; const opcat_shift: int = 3; const opcat_rel: int = 4; const opcat_eq: int = 5; const opcat_bit: int = 6; const opcat_logic: int = 7; fn opcat(op: ast::binop) -> int { alt op { ast::add. { opcat_add } ast::sub. { opcat_sub } ast::mul. { opcat_mult } ast::div. { opcat_mult } ast::rem. { opcat_mult } ast::and. { opcat_logic } ast::or. { opcat_logic } ast::bitxor. { opcat_bit } ast::bitand. { opcat_bit } ast::bitor. { opcat_bit } ast::lsl. { opcat_shift } ast::lsr. { opcat_shift } ast::asr. { opcat_shift } ast::eq. { opcat_eq } ast::ne. { opcat_eq } ast::lt. { opcat_rel } ast::le. { opcat_rel } ast::ge. { opcat_rel } ast::gt. { opcat_rel } } } fn tycat(cx: ctxt, ty: t) -> int { alt struct(cx, ty) { ty_bool. { tycat_bool } ty_int(_) { tycat_int } ty_uint(_) { tycat_int } ty_float(_) { tycat_float } ty_str. { tycat_str } ty_vec(_) { tycat_vec } ty_rec(_) { tycat_struct } ty_tup(_) { tycat_struct } ty_tag(_, _) { tycat_struct } ty_bot. { tycat_bot } _ { tycat_other } } } const t: bool = true; const f: bool = false; /*. add, shift, bit . sub, rel, logic . mult, eq, */ /*other*/ /*bool*/ /*int*/ /*float*/ /*str*/ /*vec*/ /*bot*/ let tbl = [[f, f, f, f, t, t, f, f], [f, f, f, f, t, t, t, t], [t, t, t, t, t, t, t, f], [t, t, t, f, t, t, f, f], [t, f, f, f, t, t, f, f], [t, f, f, f, t, t, f, f], [f, f, f, f, t, t, f, f], [t, t, t, t, t, t, t, t]]; /*struct*/ ret tbl[tycat(cx, ty)][opcat(op)]; } fn ast_constr_to_constr(tcx: ty::ctxt, c: @ast::constr_general) -> @ty::constr_general { alt tcx.def_map.find(c.node.id) { some(ast::def_fn(pred_id, ast::pure_fn.)) { ret @ast_util::respan(c.span, {path: c.node.path, args: c.node.args, id: pred_id}); } _ { tcx.sess.span_fatal(c.span, "Predicate " + path_to_str(c.node.path) + " is unbound or bound to a non-function or an \ impure function"); } } } // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: