/* Module: str String manipulation Strings are a packed UTF-8 representation of text, stored as null terminated buffers of u8 bytes. Strings should be indexed in bytes, for efficiency, but UTF-8 unsafe operations should be avoided. For some heavy-duty uses, try std::rope. */ export // Creating a string from_bytes, from_byte, push_char, from_char, from_chars, from_cstr, from_cstr_len, concat, connect, // Adding things to and removing things from a string push_char, pop_char, shift_char, unshift_char, trim_left, trim_right, trim, // Transforming strings bytes, chars, substr, slice, split, splitn, split_nonempty, split_char, splitn_char, split_char_nonempty, split_str, split_str_nonempty, lines, lines_any, words, to_lower, to_upper, replace, // Comparing strings eq, le, hash, // Iterating through strings all, any, all_between, any_between, map, bytes_iter, chars_iter, split_char_iter, splitn_char_iter, words_iter, lines_iter, // Searching find, find_from, find_between, rfind, rfind_from, rfind_between, find_char, find_char_from, find_char_between, rfind_char, rfind_char_from, rfind_char_between, find_str, find_str_from, find_str_between, contains, starts_with, ends_with, // String properties is_ascii, is_empty, is_not_empty, is_whitespace, len, char_len, // Misc is_utf8, count_chars, count_bytes, utf8_char_width, char_range_at, is_char_boundary, char_at, as_bytes, as_buf, sbuf, reserve, unsafe; #[abi = "cdecl"] native mod rustrt { fn rust_str_push(&s: str, ch: u8); fn str_reserve_shared(&ss: str, nn: ctypes::size_t); } // FIXME: add pure to a lot of functions /* Section: Creating a string */ /* Function: from_bytes Convert a vector of bytes to a UTF-8 string. Fails if invalid UTF-8. */ fn from_bytes(vv: [u8]) -> str unsafe { assert is_utf8(vv); ret unsafe::from_bytes(vv); } /* Function: from_byte Convert a byte to a UTF-8 string. Fails if invalid UTF-8. */ fn from_byte(b: u8) -> str unsafe { assert b < 128u8; let v = [b, 0u8]; let s: str = ::unsafe::reinterpret_cast(v); ::unsafe::leak(v); s } /* Function: push_char Appends a character at the end of a string. */ fn push_char(&s: str, ch: char) unsafe { let code = ch as uint; if code < max_one_b { rustrt::rust_str_push(s, code as u8); } else if code < max_two_b { rustrt::rust_str_push(s, (code >> 6u & 31u | tag_two_b) as u8); rustrt::rust_str_push(s, (code & 63u | tag_cont) as u8); } else if code < max_three_b { rustrt::rust_str_push(s, (code >> 12u & 15u | tag_three_b) as u8); rustrt::rust_str_push(s, (code >> 6u & 63u | tag_cont) as u8); rustrt::rust_str_push(s, (code & 63u | tag_cont) as u8); } else if code < max_four_b { rustrt::rust_str_push(s, (code >> 18u & 7u | tag_four_b) as u8); rustrt::rust_str_push(s, (code >> 12u & 63u | tag_cont) as u8); rustrt::rust_str_push(s, (code >> 6u & 63u | tag_cont) as u8); rustrt::rust_str_push(s, (code & 63u | tag_cont) as u8); } else if code < max_five_b { rustrt::rust_str_push(s, (code >> 24u & 3u | tag_five_b) as u8); rustrt::rust_str_push(s, (code >> 18u & 63u | tag_cont) as u8); rustrt::rust_str_push(s, (code >> 12u & 63u | tag_cont) as u8); rustrt::rust_str_push(s, (code >> 6u & 63u | tag_cont) as u8); rustrt::rust_str_push(s, (code & 63u | tag_cont) as u8); } else { rustrt::rust_str_push(s, (code >> 30u & 1u | tag_six_b) as u8); rustrt::rust_str_push(s, (code >> 24u & 63u | tag_cont) as u8); rustrt::rust_str_push(s, (code >> 18u & 63u | tag_cont) as u8); rustrt::rust_str_push(s, (code >> 12u & 63u | tag_cont) as u8); rustrt::rust_str_push(s, (code >> 6u & 63u | tag_cont) as u8); rustrt::rust_str_push(s, (code & 63u | tag_cont) as u8); } } /* Function: from_char Convert a char to a string */ fn from_char(ch: char) -> str { let buf = ""; push_char(buf, ch); ret buf; } /* Function: from_chars Convert a vector of chars to a string */ fn from_chars(chs: [char]) -> str { let buf = ""; reserve(buf, chs.len()); for ch in chs { push_char(buf, ch); } ret buf; } /* Function: from_cstr Create a Rust string from a null-terminated C string */ fn from_cstr(cstr: sbuf) -> str unsafe { let curr = cstr, i = 0u; while *curr != 0u8 { i += 1u; curr = ptr::offset(cstr, i); } ret from_cstr_len(cstr, i); } /* Function: from_cstr_len Create a Rust string from a C string of the given length */ fn from_cstr_len(cstr: sbuf, len: uint) -> str unsafe { let buf: [u8] = []; vec::reserve(buf, len + 1u); vec::as_buf(buf) {|b| ptr::memcpy(b, cstr, len); } vec::unsafe::set_len(buf, len); buf += [0u8]; assert is_utf8(buf); let s: str = ::unsafe::reinterpret_cast(buf); ::unsafe::leak(buf); ret s; } /* Function: concat Concatenate a vector of strings */ fn concat(v: [str]) -> str { let s: str = ""; for ss: str in v { s += ss; } ret s; } /* Function: connect Concatenate a vector of strings, placing a given separator between each */ fn connect(v: [str], sep: str) -> str { let s = "", first = true; for ss: str in v { if first { first = false; } else { s += sep; } s += ss; } ret s; } /* Section: Adding to and removing from a string */ /* Function: pop_char Remove the final character from a string and return it. Failure: If the string does not contain any characters. */ fn pop_char(&s: str) -> char { let end = len(s); assert end > 0u; let {ch, prev} = char_range_at_reverse(s, end); unsafe { unsafe::set_len(s, prev); } ret ch; } /* Function: shift_char Remove the first character from a string and return it. Failure: If the string does not contain any characters. */ fn shift_char(&s: str) -> char unsafe { let {ch, next} = char_range_at(s, 0u); s = unsafe::slice_bytes(s, next, len(s)); ret ch; } /* Function: unshift_char Prepend a char to a string */ fn unshift_char(&s: str, ch: char) { s = from_char(ch) + s; } /* Function: trim_left Returns a string with leading whitespace removed. */ fn trim_left(+s: str) -> str { alt find(s, {|c| !char::is_whitespace(c)}) { none { "" } some(first) { if first == 0u { s } else unsafe { unsafe::slice_bytes(s, first, len(s)) } } } } /* Function: trim_right Returns a string with trailing whitespace removed. */ fn trim_right(+s: str) -> str { alt rfind(s, {|c| !char::is_whitespace(c)}) { none { "" } some(last) { let {next, _} = char_range_at(s, last); if next == len(s) { s } else unsafe { unsafe::slice_bytes(s, 0u, next) } } } } /* Function: trim Returns a string with leading and trailing whitespace removed */ fn trim(+s: str) -> str { trim_left(trim_right(s)) } /* Section: Transforming strings */ /* Function: bytes Converts a string to a vector of bytes. The result vector is not null-terminated. */ fn bytes(s: str) -> [u8] unsafe { as_bytes(s) { |v| vec::slice(v, 0u, vec::len(v) - 1u) } } /* Function: chars Convert a string to a vector of characters */ fn chars(s: str) -> [char] { let buf = [], i = 0u, len = len(s); while i < len { let {ch, next} = char_range_at(s, i); buf += [ch]; i = next; } ret buf; } /* Function: substr Take a substring of another. Returns a string containing `n` characters starting at byte offset `begin`. */ fn substr(s: str, begin: uint, n: uint) -> str { slice(s, begin, begin + count_bytes(s, begin, n)) } // Function: slice // // Return a slice of the given string from the byte range [`begin`..`end`) // or else fail when `begin` and `end` do not point to valid characters or // beyond the last character of the string fn slice(s: str, begin: uint, end: uint) -> str unsafe { assert is_char_boundary(s, begin); assert is_char_boundary(s, end); unsafe::slice_bytes(s, begin, end) } // Function: split_char // // Splits a string into substrings at each occurrence of a given // character fn split_char(s: str, sep: char) -> [str] { split_char_inner(s, sep, len(s), true) } // Function: splitn_char // // Splits a string into substrings at each occurrence of a given // character up to 'count' times // // The byte must be a valid UTF-8/ASCII byte fn splitn_char(s: str, sep: char, count: uint) -> [str] { split_char_inner(s, sep, count, true) } // Function: split_char_nonempty // // Like `split_char`, but omits empty strings from the returned vector. fn split_char_nonempty(s: str, sep: char) -> [str] { split_char_inner(s, sep, len(s), false) } fn split_char_inner(s: str, sep: char, count: uint, allow_empty: bool) -> [str] unsafe { if sep < 128u as char { let result = [], b = sep as u8, l = len(s), done = 0u; let i = 0u, start = 0u; while i < l && done < count { if s[i] == b { if allow_empty || start < i { result += [unsafe::slice_bytes(s, start, i)]; } start = i + 1u; done += 1u; } i += 1u; } if allow_empty || start < l { result += [unsafe::slice_bytes(s, start, l)]; } result } else { splitn(s, {|cur| cur == sep}, count) } } /* Function: split Splits a string into substrings using a character function */ fn split(s: str, sepfn: fn(char) -> bool) -> [str] { split_inner(s, sepfn, len(s), true) } /* Function: splitn Splits a string into substrings using a character function, cutting at most [count] times. */ fn splitn(s: str, sepfn: fn(char) -> bool, count: uint) -> [str] { split_inner(s, sepfn, count, true) } // Function: split_nonempty // // Like `split`, but omits empty strings from the returned vector. fn split_nonempty(s: str, sepfn: fn(char) -> bool) -> [str] { split_inner(s, sepfn, len(s), false) } fn split_inner(s: str, sepfn: fn(cc: char) -> bool, count: uint, allow_empty: bool) -> [str] unsafe { let result = [], i = 0u, l = len(s), start = 0u, done = 0u; while i < l && done < count { let {ch, next} = char_range_at(s, i); if sepfn(ch) { if allow_empty || start < i { result += [unsafe::slice_bytes(s, start, i)]; } start = next; done += 1u; } i = next; } if allow_empty || start < l { result += [unsafe::slice_bytes(s, start, l)]; } result } // FIXME use Boyer-Moore fn iter_matches(s: str, sep: str, f: fn(uint, uint)) { let sep_len = len(sep), l = len(s); assert sep_len > 0u; let i = 0u, match_start = 0u, match_i = 0u; while i < l { if s[i] == sep[match_i] { if match_i == 0u { match_start = i; } match_i += 1u; // Found a match if match_i == sep_len { f(match_start, i + 1u); match_i = 0u; } i += 1u; } else { // Failed match, backtrack if match_i > 0u { match_i = 0u; i = match_start + 1u; } else { i += 1u; } } } } fn iter_between_matches(s: str, sep: str, f: fn(uint, uint)) { let last_end = 0u; iter_matches(s, sep) {|from, to| f(last_end, from); last_end = to; } f(last_end, len(s)); } /* Function: split_str Splits a string into a vector of the substrings separated by a given string Note that this has recently been changed. For example: > assert ["", "XXX", "YYY", ""] == split_str(".XXX.YYY.", ".") */ fn split_str(s: str, sep: str) -> [str] { let result = []; iter_between_matches(s, sep) {|from, to| unsafe { result += [unsafe::slice_bytes(s, from, to)]; } } result } fn split_str_nonempty(s: str, sep: str) -> [str] { let result = []; iter_between_matches(s, sep) {|from, to| if to > from { unsafe { result += [unsafe::slice_bytes(s, from, to)]; } } } result } /* Function: lines Splits a string into a vector of the substrings separated by LF ('\n') */ fn lines(s: str) -> [str] { split_char(s, '\n') } /* Function: lines_any Splits a string into a vector of the substrings separated by LF ('\n') and/or CR LF ('\r\n') */ fn lines_any(s: str) -> [str] { vec::map(lines(s), {|s| let l = len(s), cp = s; if l > 0u && s[l - 1u] == '\r' as u8 { unsafe { unsafe::set_len(cp, l - 1u); } } cp }) } /* Function: words Splits a string into a vector of the substrings separated by whitespace */ fn words(s: str) -> [str] { split_nonempty(s, {|c| char::is_whitespace(c)}) } /* Function: to_lower Convert a string to lowercase */ fn to_lower(s: str) -> str { map(s, char::to_lower) } /* Function: to_upper Convert a string to uppercase */ fn to_upper(s: str) -> str { map(s, char::to_upper) } /* Function: replace Replace all occurances of one string with another Parameters: s - The string containing substrings to replace from - The string to replace to - The replacement string Returns: The original string with all occurances of `from` replaced with `to` */ fn replace(s: str, from: str, to: str) -> str unsafe { let result = "", first = true; iter_between_matches(s, from) {|start, end| if first { first = false; } else { result += to; } unsafe { result += unsafe::slice_bytes(s, start, end); } } result } /* Section: Comparing strings */ /* Function: eq Bytewise string equality */ pure fn eq(&&a: str, &&b: str) -> bool { a == b } /* Function: le Bytewise less than or equal */ pure fn le(&&a: str, &&b: str) -> bool { a <= b } /* Function: hash String hash function */ fn hash(&&s: str) -> uint { // djb hash. // FIXME: replace with murmur. let u: uint = 5381u; for c: u8 in s { u *= 33u; u += c as uint; } ret u; } /* Section: Iterating through strings */ /* Function: all Return true if a predicate matches all characters or if the string contains no characters */ fn all(s: str, it: fn(char) -> bool) -> bool { all_between(s, 0u, len(s), it) } /* Function: any Return true if a predicate matches any character (and false if it matches none or there are no characters) */ fn any(ss: str, pred: fn(char) -> bool) -> bool { !all(ss, {|cc| !pred(cc)}) } /* Function: map Apply a function to each character */ fn map(ss: str, ff: fn(char) -> char) -> str { let result = ""; reserve(result, len(ss)); chars_iter(ss) {|cc| str::push_char(result, ff(cc));} result } /* Function: bytes_iter Iterate over the bytes in a string */ fn bytes_iter(ss: str, it: fn(u8)) { let pos = 0u; let len = len(ss); while (pos < len) { it(ss[pos]); pos += 1u; } } /* Function: chars_iter Iterate over the characters in a string */ fn chars_iter(s: str, it: fn(char)) { let pos = 0u, len = len(s); while (pos < len) { let {ch, next} = char_range_at(s, pos); pos = next; it(ch); } } /* Function: split_char_iter Apply a function to each substring after splitting by character */ fn split_char_iter(ss: str, cc: char, ff: fn(&&str)) { vec::iter(split_char(ss, cc), ff) } /* Function: splitn_char_iter Apply a function to each substring after splitting by character, up to `count` times */ fn splitn_char_iter(ss: str, sep: char, count: uint, ff: fn(&&str)) unsafe { vec::iter(splitn_char(ss, sep, count), ff) } /* Function: words_iter Apply a function to each word */ fn words_iter(ss: str, ff: fn(&&str)) { vec::iter(words(ss), ff) } /* Function: lines_iter Apply a function to each lines (by '\n') */ fn lines_iter(ss: str, ff: fn(&&str)) { vec::iter(lines(ss), ff) } /* Section: Searching */ // Function: find_char // // Returns the byte index of the first matching char // (as option some/none) fn find_char(s: str, c: char) -> option { find_char_between(s, c, 0u, len(s)) } // Function: find_char_from // // Returns the byte index of the first matching char // (as option some/none), starting from `start` fn find_char_from(s: str, c: char, from: uint) -> option { find_char_between(s, c, from, len(s)) } // Function: find_char_between // // Returns the byte index of the first matching char // (as option some/none), between `start` and `end` fn find_char_between(s: str, c: char, start: uint, end: uint) -> option { if c < 128u as char { assert start <= end; assert end <= len(s); let i = start, b = c as u8; while i < end { if s[i] == b { ret some(i); } i += 1u; } ret none; } else { find_between(s, start, end, {|x| x == c}) } } // Function: rfind_char // // Returns the byte index of the last matching char // (as option some/none) fn rfind_char(s: str, c: char) -> option { rfind_char_between(s, c, len(s), 0u) } // Function: rfind_char_from // // Returns the byte index of the last matching char // (as option some/none), starting from `start` fn rfind_char_from(s: str, c: char, start: uint) -> option { rfind_char_between(s, c, start, 0u) } // Function: rfind_char_between // // Returns the byte index of the last matching char (as option // some/none), between from `start` and `end` (start must be greater // than or equal to end) fn rfind_char_between(s: str, c: char, start: uint, end: uint) -> option { if c < 128u as char { assert start >= end; assert start <= len(s); let i = start, b = c as u8; while i > end { i -= 1u; if s[i] == b { ret some(i); } } ret none; } else { rfind_between(s, start, end, {|x| x == c}) } } // Function: find // // Returns, as an option, the first character that passes the given // predicate fn find(s: str, f: fn(char) -> bool) -> option { find_between(s, 0u, len(s), f) } // Function: find_from // // Returns, as an option, the first character that passes the given // predicate, starting at byte offset `start` fn find_from(s: str, start: uint, f: fn(char) -> bool) -> option { find_between(s, start, len(s), f) } // Function: find_between // // Returns, as an option, the first character that passes the given // predicate, between byte offsets `start` and `end` fn find_between(s: str, start: uint, end: uint, f: fn(char) -> bool) -> option { assert start <= end; assert end <= len(s); assert is_char_boundary(s, start); let i = start; while i < end { let {ch, next} = char_range_at(s, i); if f(ch) { ret some(i); } i = next; } ret none; } // Function: rfind // // Returns, as an option, the last character in the string that passes // the given predicate fn rfind(s: str, f: fn(char) -> bool) -> option { rfind_between(s, len(s), 0u, f) } // Function: rfind_from // // Returns, as an option, the last character that passes the given // predicate, up until byte offset `start` fn rfind_from(s: str, start: uint, f: fn(char) -> bool) -> option { rfind_between(s, start, 0u, f) } // Function: rfind_between // // Returns, as an option, the last character that passes the given // predicate, between byte offsets `start` and `end` (`start` must be // greater than or equal to `end`) fn rfind_between(s: str, start: uint, end: uint, f: fn(char) -> bool) -> option { assert start >= end; assert start <= len(s); assert is_char_boundary(s, start); let i = start; while i > end { let {ch, prev} = char_range_at_reverse(s, i); if f(ch) { ret some(prev); } i = prev; } ret none; } // Utility used by various searching functions fn match_at(haystack: str, needle: str, at: uint) -> bool { let i = at; for c in needle { if haystack[i] != c { ret false; } i += 1u; } ret true; } //Function: find_str // // Find the byte position of the first instance of one string // within another, or return option::none fn find_str(haystack: str, needle: str) -> option { find_str_between(haystack, needle, 0u, len(haystack)) } //Function: find_str_from // // Find the byte position of the first instance of one string // within another, or return option::none fn find_str_from(haystack: str, needle: str, start: uint) -> option { find_str_between(haystack, needle, start, len(haystack)) } //Function: find_str_between // // Find the byte position of the first instance of one string // within another, or return option::none fn find_str_between(haystack: str, needle: str, start: uint, end:uint) -> option { // FIXME: Boyer-Moore should be significantly faster assert end <= len(haystack); let needle_len = len(needle); if needle_len == 0u { ret some(start); } if needle_len > end { ret none; } let i = start, e = end - needle_len; while i <= e { if match_at(haystack, needle, i) { ret some(i); } i += 1u; } ret none; } /* Function: contains Returns true if one string contains another Parameters: haystack - The string to look in needle - The string to look for */ fn contains(haystack: str, needle: str) -> bool { option::is_some(find_str(haystack, needle)) } /* Function: starts_with Returns true if one string starts with another Parameters: haystack - The string to look in needle - The string to look for */ fn starts_with(haystack: str, needle: str) -> bool unsafe { let haystack_len = len(haystack), needle_len = len(needle); if needle_len == 0u { true } else if needle_len > haystack_len { false } else { match_at(haystack, needle, 0u) } } /* Function: ends_with Returns true if one string ends with another haystack - The string to look in needle - The string to look for */ fn ends_with(haystack: str, needle: str) -> bool { let haystack_len = len(haystack), needle_len = len(needle); if needle_len == 0u { true } else if needle_len > haystack_len { false } else { match_at(haystack, needle, haystack_len - needle_len) } } /* Section: String properties */ /* Function: is_ascii Determines if a string contains only ASCII characters */ fn is_ascii(s: str) -> bool { let i: uint = len(s); while i > 0u { i -= 1u; if !u8::is_ascii(s[i]) { ret false; } } ret true; } /* Predicate: is_empty Returns true if the string has length 0 */ pure fn is_empty(s: str) -> bool { for c: u8 in s { ret false; } ret true; } /* Predicate: is_not_empty Returns true if the string has length greater than 0 */ pure fn is_not_empty(s: str) -> bool { !is_empty(s) } /* Function: is_whitespace Returns true if the string contains only whitespace */ fn is_whitespace(s: str) -> bool { ret all(s, char::is_whitespace); } // Function: len // // Returns the string length/size in bytes // not counting the null terminator pure fn len(s: str) -> uint unsafe { let repr: *vec::unsafe::vec_repr = ::unsafe::reinterpret_cast(s); (*repr).fill - 1u } // Function: char_len // // Returns the number of characters that a string holds fn char_len(s: str) -> uint { count_chars(s, 0u, len(s)) } /* Section: Misc */ /* Function: is_utf8 Determines if a vector of bytes contains valid UTF-8 */ fn is_utf8(v: [u8]) -> bool { let i = 0u; let total = vec::len::(v); while i < total { let chsize = utf8_char_width(v[i]); if chsize == 0u { ret false; } if i + chsize > total { ret false; } i += 1u; while chsize > 1u { if v[i] & 192u8 != tag_cont_u8 { ret false; } i += 1u; chsize -= 1u; } } ret true; } /* Function: count_chars As char_len but for a slice of a string Parameters: s - A valid string start - The position inside `s` where to start counting in bytes. end - The position where to stop counting Returns: The number of Unicode characters in `s` between the given indices. */ fn count_chars(s: str, start: uint, end: uint) -> uint { assert is_char_boundary(s, start); assert is_char_boundary(s, end); let i = start, len = 0u; while i < end { let {next, _} = char_range_at(s, i); len += 1u; i = next; } ret len; } // Function count_bytes // // Counts the number of bytes taken by the `n` in `s` starting from // `start`. fn count_bytes(s: str, start: uint, n: uint) -> uint { assert is_char_boundary(s, start); let end = start, cnt = n, l = len(s); while cnt > 0u { assert end < l; let {next, _} = char_range_at(s, end); cnt -= 1u; end = next; } end - start } /* Function: utf8_char_width Given a first byte, determine how many bytes are in this UTF-8 character */ pure fn utf8_char_width(b: u8) -> uint { let byte: uint = b as uint; if byte < 128u { ret 1u; } // Not a valid start byte if byte < 192u { ret 0u; } if byte < 224u { ret 2u; } if byte < 240u { ret 3u; } if byte < 248u { ret 4u; } if byte < 252u { ret 5u; } ret 6u; } /* Function is_char_boundary Returns false if the index points into the middle of a multi-byte character sequence. */ pure fn is_char_boundary(s: str, index: uint) -> bool { if index == len(s) { ret true; } let b = s[index]; ret b < 128u8 || b >= 192u8; } /* Function: char_range_at Pluck a character out of a string and return the index of the next character. This function can be used to iterate over the unicode characters of a string. Example: > let s = "中华Việt Nam"; > let i = 0u; > while i < str::len(s) { > let {ch, next} = str::char_range_at(s, i); > std::io::println(#fmt("%u: %c",i,ch)); > i = next; > } Example output: 0: 中 3: 华 6: V 7: i 8: ệ 11: t 12: 13: N 14: a 15: m Parameters: s - The string i - The byte offset of the char to extract Returns: A record {ch: char, next: uint} containing the char value and the byte index of the next unicode character. Failure: If `i` is greater than or equal to the length of the string. If `i` is not the index of the beginning of a valid UTF-8 character. */ fn char_range_at(s: str, i: uint) -> {ch: char, next: uint} { let b0 = s[i]; let w = utf8_char_width(b0); assert (w != 0u); if w == 1u { ret {ch: b0 as char, next: i + 1u}; } let val = 0u; let end = i + w; let i = i + 1u; while i < end { let byte = s[i]; assert (byte & 192u8 == tag_cont_u8); val <<= 6u; val += (byte & 63u8) as uint; i += 1u; } // Clunky way to get the right bits from the first byte. Uses two shifts, // the first to clip off the marker bits at the left of the byte, and then // a second (as uint) to get it to the right position. val += ((b0 << ((w + 1u) as u8)) as uint) << ((w - 1u) * 6u - w - 1u); ret {ch: val as char, next: i}; } /* Function: char_at Pluck a character out of a string */ fn char_at(s: str, i: uint) -> char { ret char_range_at(s, i).ch; } // Function: char_range_at_reverse // // Given a byte position and a str, return the previous char and its position // This function can be used to iterate over a unicode string in reverse. fn char_range_at_reverse(ss: str, start: uint) -> {ch: char, prev: uint} { let prev = start; // while there is a previous byte == 10...... while prev > 0u && ss[prev - 1u] & 192u8 == tag_cont_u8 { prev -= 1u; } // now refer to the initial byte of previous char prev -= 1u; let ch = char_at(ss, prev); ret {ch:ch, prev:prev}; } /* Function: all_between Loop through a substring, char by char Parameters: s - A string to traverse. It may be empty. start - The byte offset at which to start in the string. end - The end of the range to traverse it - A block to execute with each consecutive character of `s`. Return `true` to continue, `false` to stop. Returns: `true` If execution proceeded correctly, `false` if it was interrupted, that is if `it` returned `false` at any point. Safety note: - This function does not check whether the substring is valid. - This function fails if `byte_offset` or `byte_len` do not represent valid positions inside `s` */ fn all_between(s: str, start: uint, end: uint, it: fn(char) -> bool) -> bool { assert is_char_boundary(s, start); let i = start; while i < end { let {ch, next} = char_range_at(s, i); if !it(ch) { ret false; } i = next; } ret true; } fn any_between(s: str, start: uint, end: uint, it: fn(char) -> bool) -> bool { !all_between(s, start, end, {|c| !it(c)}) } // UTF-8 tags and ranges const tag_cont_u8: u8 = 128u8; const tag_cont: uint = 128u; const max_one_b: uint = 128u; const tag_two_b: uint = 192u; const max_two_b: uint = 2048u; const tag_three_b: uint = 224u; const max_three_b: uint = 65536u; const tag_four_b: uint = 240u; const max_four_b: uint = 2097152u; const tag_five_b: uint = 248u; const max_five_b: uint = 67108864u; const tag_six_b: uint = 252u; /* Function: as_bytes Work with the byte buffer of a string. Allows for unsafe manipulation of strings, which is useful for native interop. Example: > let i = str::as_bytes("Hello World") { |bytes| vec::len(bytes) }; */ fn as_bytes(s: str, f: fn([u8]) -> T) -> T unsafe { let v: [u8] = ::unsafe::reinterpret_cast(s); let r = f(v); ::unsafe::leak(v); r } /* Function: as_buf Work with the byte buffer of a string. Allows for unsafe manipulation of strings, which is useful for native interop. Example: > let s = str::as_buf("PATH", { |path_buf| libc::getenv(path_buf) }); */ fn as_buf(s: str, f: fn(sbuf) -> T) -> T unsafe { as_bytes(s) { |v| vec::as_buf(v, f) } } /* Type: sbuf An unsafe buffer of bytes. Corresponds to a C char pointer. */ type sbuf = *u8; // Function: reserve // // Allocate more memory for a string, up to `nn` + 1 bytes fn reserve(&ss: str, nn: uint) { rustrt::str_reserve_shared(ss, nn); } // Module: unsafe // // These functions may create invalid UTF-8 strings and eat your baby. mod unsafe { export // FIXME: stop exporting several of these from_bytes, from_byte, slice_bytes, push_byte, push_bytes, pop_byte, shift_byte, set_len; // Function: unsafe::from_bytes // // Converts a vector of bytes to a string. Does not verify that the // vector contains valid UTF-8. unsafe fn from_bytes(v: [const u8]) -> str unsafe { let vcopy: [u8] = v + [0u8]; let scopy: str = ::unsafe::reinterpret_cast(vcopy); ::unsafe::leak(vcopy); ret scopy; } // Function: unsafe::from_byte // // Converts a byte to a string. Does not verify that the byte is // valid UTF-8. unsafe fn from_byte(u: u8) -> str { unsafe::from_bytes([u]) } /* Function: slice_bytes Takes a bytewise (not UTF-8) slice from a string. Returns the substring from [`begin`..`end`). Failure: - If begin is greater than end. - If end is greater than the length of the string. */ unsafe fn slice_bytes(s: str, begin: uint, end: uint) -> str unsafe { assert (begin <= end); assert (end <= len(s)); let v = as_bytes(s) { |v| vec::slice(v, begin, end) }; v += [0u8]; let s: str = ::unsafe::reinterpret_cast(v); ::unsafe::leak(v); ret s; } // Function: push_byte // // Appends a byte to a string. (Not UTF-8 safe). unsafe fn push_byte(&s: str, b: u8) { rustrt::rust_str_push(s, b); } // Function: push_bytes // // Appends a vector of bytes to a string. (Not UTF-8 safe). unsafe fn push_bytes(&s: str, bytes: [u8]) { for byte in bytes { rustrt::rust_str_push(s, byte); } } // Function: pop_byte // // Removes the last byte from a string and returns it. (Not UTF-8 safe). unsafe fn pop_byte(&s: str) -> u8 unsafe { let len = len(s); assert (len > 0u); let b = s[len - 1u]; set_len(s, len - 1u); ret b; } // Function: shift_byte // // Removes the first byte from a string and returns it. (Not UTF-8 safe). unsafe fn shift_byte(&s: str) -> u8 unsafe { let len = len(s); assert (len > 0u); let b = s[0]; s = unsafe::slice_bytes(s, 1u, len); ret b; } unsafe fn set_len(&v: str, new_len: uint) { let repr: *vec::unsafe::vec_repr = ::unsafe::reinterpret_cast(v); (*repr).fill = new_len + 1u; let null = ptr::mut_offset(ptr::mut_addr_of((*repr).data), new_len); *null = 0u8; } } #[cfg(test)] mod tests { #[test] fn test_eq() { assert (eq("", "")); assert (eq("foo", "foo")); assert (!eq("foo", "bar")); } #[test] fn test_le() { assert (le("", "")); assert (le("", "foo")); assert (le("foo", "foo")); assert (!eq("foo", "bar")); } #[test] fn test_len() { assert (len("") == 0u); assert (len("hello world") == 11u); assert (len("\x63") == 1u); assert (len("\xa2") == 2u); assert (len("\u03c0") == 2u); assert (len("\u2620") == 3u); assert (len("\U0001d11e") == 4u); assert (char_len("") == 0u); assert (char_len("hello world") == 11u); assert (char_len("\x63") == 1u); assert (char_len("\xa2") == 1u); assert (char_len("\u03c0") == 1u); assert (char_len("\u2620") == 1u); assert (char_len("\U0001d11e") == 1u); assert (char_len("ประเทศไทย中华Việt Nam") == 19u); } #[test] fn test_rfind_char() { assert rfind_char("hello", 'l') == some(3u); assert rfind_char("hello", 'o') == some(4u); assert rfind_char("hello", 'h') == some(0u); assert rfind_char("hello", 'z') == none; assert rfind_char("ประเทศไทย中华Việt Nam", '华') == some(30u); } #[test] fn test_pop_char() { let data = "ประเทศไทย中华"; let cc = pop_char(data); assert "ประเทศไทย中" == data; assert '华' == cc; } #[test] fn test_pop_char_2() { let data2 = "华"; let cc2 = pop_char(data2); assert "" == data2; assert '华' == cc2; } #[test] #[should_fail] #[ignore(cfg(target_os = "win32"))] fn test_pop_char_fail() { let data = ""; let _cc3 = pop_char(data); } #[test] fn test_split_char() { fn t(s: str, c: char, u: [str]) { log(debug, "split_byte: " + s); let v = split_char(s, c); #debug("split_byte to: %?", v); assert vec::all2(v, u, { |a,b| a == b }); } t("abc.hello.there", '.', ["abc", "hello", "there"]); t(".hello.there", '.', ["", "hello", "there"]); t("...hello.there.", '.', ["", "", "", "hello", "there", ""]); assert ["", "", "", "hello", "there", ""] == split_char("...hello.there.", '.'); assert [""] == split_char("", 'z'); assert ["",""] == split_char("z", 'z'); assert ["ok"] == split_char("ok", 'z'); } #[test] fn test_split_char_2() { let data = "ประเทศไทย中华Việt Nam"; assert ["ประเทศไทย中华", "iệt Nam"] == split_char(data, 'V'); assert ["ประเ", "ศไ", "ย中华Việt Nam"] == split_char(data, 'ท'); } #[test] fn test_splitn_char() { fn t(s: str, c: char, n: uint, u: [str]) { log(debug, "splitn_byte: " + s); let v = splitn_char(s, c, n); #debug("split_byte to: %?", v); #debug("comparing vs. %?", u); assert vec::all2(v, u, { |a,b| a == b }); } t("abc.hello.there", '.', 0u, ["abc.hello.there"]); t("abc.hello.there", '.', 1u, ["abc", "hello.there"]); t("abc.hello.there", '.', 2u, ["abc", "hello", "there"]); t("abc.hello.there", '.', 3u, ["abc", "hello", "there"]); t(".hello.there", '.', 0u, [".hello.there"]); t(".hello.there", '.', 1u, ["", "hello.there"]); t("...hello.there.", '.', 3u, ["", "", "", "hello.there."]); t("...hello.there.", '.', 5u, ["", "", "", "hello", "there", ""]); assert [""] == splitn_char("", 'z', 5u); assert ["",""] == splitn_char("z", 'z', 5u); assert ["ok"] == splitn_char("ok", 'z', 5u); assert ["z"] == splitn_char("z", 'z', 0u); assert ["w.x.y"] == splitn_char("w.x.y", '.', 0u); assert ["w","x.y"] == splitn_char("w.x.y", '.', 1u); } #[test] fn test_splitn_char_2 () { let data = "ประเทศไทย中华Việt Nam"; assert ["ประเทศไทย中", "Việt Nam"] == splitn_char(data, '华', 1u); assert ["", "", "XXX", "YYYzWWWz"] == splitn_char("zzXXXzYYYzWWWz", 'z', 3u); assert ["",""] == splitn_char("z", 'z', 5u); assert [""] == splitn_char("", 'z', 5u); assert ["ok"] == splitn_char("ok", 'z', 5u); } #[test] fn test_splitn_char_3() { let data = "ประเทศไทย中华Việt Nam"; assert ["ประเทศไทย中华", "iệt Nam"] == splitn_char(data, 'V', 1u); assert ["ประเ", "ศไทย中华Việt Nam"] == splitn_char(data, 'ท', 1u); } #[test] fn test_split_str() { fn t(s: str, sep: str, i: int, k: str) { let v = split_str(s, sep); assert eq(v[i], k); } t("--1233345--", "12345", 0, "--1233345--"); t("abc::hello::there", "::", 0, "abc"); t("abc::hello::there", "::", 1, "hello"); t("abc::hello::there", "::", 2, "there"); t("::hello::there", "::", 0, ""); t("hello::there::", "::", 2, ""); t("::hello::there::", "::", 3, ""); let data = "ประเทศไทย中华Việt Nam"; assert ["ประเทศไทย", "Việt Nam"] == split_str (data, "中华"); assert ["", "XXX", "YYY", ""] == split_str("zzXXXzzYYYzz", "zz"); assert ["zz", "zYYYz"] == split_str("zzXXXzYYYz", "XXX"); assert ["", "XXX", "YYY", ""] == split_str(".XXX.YYY.", "."); assert [""] == split_str("", "."); assert ["",""] == split_str("zz", "zz"); assert ["ok"] == split_str("ok", "z"); assert ["","z"] == split_str("zzz", "zz"); assert ["","","z"] == split_str("zzzzz", "zz"); } #[test] fn test_split() { let data = "ประเทศไทย中华Việt Nam"; assert ["ประเทศไทย中", "Việt Nam"] == split (data, {|cc| cc == '华'}); assert ["", "", "XXX", "YYY", ""] == split("zzXXXzYYYz", char::is_lowercase); assert ["zz", "", "", "z", "", "", "z"] == split("zzXXXzYYYz", char::is_uppercase); assert ["",""] == split("z", {|cc| cc == 'z'}); assert [""] == split("", {|cc| cc == 'z'}); assert ["ok"] == split("ok", {|cc| cc == 'z'}); } #[test] fn test_lines() { let lf = "\nMary had a little lamb\nLittle lamb\n"; let crlf = "\r\nMary had a little lamb\r\nLittle lamb\r\n"; assert ["", "Mary had a little lamb", "Little lamb", ""] == lines(lf); assert ["", "Mary had a little lamb", "Little lamb", ""] == lines_any(lf); assert ["\r", "Mary had a little lamb\r", "Little lamb\r", ""] == lines(crlf); assert ["", "Mary had a little lamb", "Little lamb", ""] == lines_any(crlf); assert [""] == lines (""); assert [""] == lines_any(""); assert ["",""] == lines ("\n"); assert ["",""] == lines_any("\n"); assert ["banana"] == lines ("banana"); assert ["banana"] == lines_any("banana"); } #[test] fn test_words () { let data = "\nMary had a little lamb\nLittle lamb\n"; assert ["Mary","had","a","little","lamb","Little","lamb"] == words(data); assert ["ok"] == words("ok"); assert [] == words(""); } #[test] fn test_find_str() { // byte positions assert find_str("banana", "apple pie") == none; assert find_str("", "") == some(0u); let data = "ประเทศไทย中华Việt Nam"; assert find_str(data, "") == some(0u); assert find_str(data, "ประเ") == some( 0u); assert find_str(data, "ะเ") == some( 6u); assert find_str(data, "中华") == some(27u); assert find_str(data, "ไท华") == none; } #[test] fn test_find_str_between() { // byte positions assert find_str_between("", "", 0u, 0u) == some(0u); let data = "abcabc"; assert find_str_between(data, "ab", 0u, 6u) == some(0u); assert find_str_between(data, "ab", 2u, 6u) == some(3u); assert find_str_between(data, "ab", 2u, 4u) == none; let data = "ประเทศไทย中华Việt Nam"; data += data; assert find_str_between(data, "", 0u, 43u) == some(0u); assert find_str_between(data, "", 6u, 43u) == some(6u); assert find_str_between(data, "ประ", 0u, 43u) == some( 0u); assert find_str_between(data, "ทศไ", 0u, 43u) == some(12u); assert find_str_between(data, "ย中", 0u, 43u) == some(24u); assert find_str_between(data, "iệt", 0u, 43u) == some(34u); assert find_str_between(data, "Nam", 0u, 43u) == some(40u); assert find_str_between(data, "ประ", 43u, 86u) == some(43u); assert find_str_between(data, "ทศไ", 43u, 86u) == some(55u); assert find_str_between(data, "ย中", 43u, 86u) == some(67u); assert find_str_between(data, "iệt", 43u, 86u) == some(77u); assert find_str_between(data, "Nam", 43u, 86u) == some(83u); } #[test] fn test_substr() { fn t(a: str, b: str, start: int) { assert (eq(substr(a, start as uint, len(b)), b)); } t("hello", "llo", 2); t("hello", "el", 1); assert "ะเทศไท" == substr("ประเทศไทย中华Việt Nam", 6u, 6u); } #[test] fn test_concat() { fn t(v: [str], s: str) { assert (eq(concat(v), s)); } t(["you", "know", "I'm", "no", "good"], "youknowI'mnogood"); let v: [str] = []; t(v, ""); t(["hi"], "hi"); } #[test] fn test_connect() { fn t(v: [str], sep: str, s: str) { assert (eq(connect(v, sep), s)); } t(["you", "know", "I'm", "no", "good"], " ", "you know I'm no good"); let v: [str] = []; t(v, " ", ""); t(["hi"], " ", "hi"); } #[test] fn test_to_upper() { // char::to_upper, and hence str::to_upper // are culturally insensitive: I'm not sure they // really work for anything but English ASCII, but YMMV let unicode = "\u65e5\u672c"; let input = "abcDEF" + unicode + "xyz:.;"; let expected = "ABCDEF" + unicode + "XYZ:.;"; let actual = to_upper(input); assert (eq(expected, actual)); } #[test] fn test_to_lower() { assert "" == map("", char::to_lower); assert "ymca" == map("YMCA", char::to_lower); } #[test] fn test_unsafe_slice() unsafe { assert (eq("ab", unsafe::slice_bytes("abc", 0u, 2u))); assert (eq("bc", unsafe::slice_bytes("abc", 1u, 3u))); assert (eq("", unsafe::slice_bytes("abc", 1u, 1u))); fn a_million_letter_a() -> str { let i = 0; let rs = ""; while i < 100000 { rs += "aaaaaaaaaa"; i += 1; } ret rs; } fn half_a_million_letter_a() -> str { let i = 0; let rs = ""; while i < 100000 { rs += "aaaaa"; i += 1; } ret rs; } assert (eq(half_a_million_letter_a(), unsafe::slice_bytes(a_million_letter_a(), 0u, 500000u))); } #[test] fn test_starts_with() { assert (starts_with("", "")); assert (starts_with("abc", "")); assert (starts_with("abc", "a")); assert (!starts_with("a", "abc")); assert (!starts_with("", "abc")); } #[test] fn test_ends_with() { assert (ends_with("", "")); assert (ends_with("abc", "")); assert (ends_with("abc", "c")); assert (!ends_with("a", "abc")); assert (!ends_with("", "abc")); } #[test] fn test_is_empty() { assert (is_empty("")); assert (!is_empty("a")); } #[test] fn test_is_not_empty() { assert (is_not_empty("a")); assert (!is_not_empty("")); } #[test] fn test_replace() { let a = "a"; assert replace("", a, "b") == ""; assert replace("a", a, "b") == "b"; assert replace("ab", a, "b") == "bb"; let test = "test"; assert replace(" test test ", test, "toast") == " toast toast "; assert replace(" test test ", test, "") == " "; } #[test] fn test_replace_2a() { let data = "ประเทศไทย中华"; let repl = "دولة الكويت"; let a = "ประเ"; let A = "دولة الكويتทศไทย中华"; assert (replace(data, a, repl) == A); } #[test] fn test_replace_2b() { let data = "ประเทศไทย中华"; let repl = "دولة الكويت"; let b = "ะเ"; let B = "ปรدولة الكويتทศไทย中华"; assert (replace(data, b, repl) == B); } #[test] fn test_replace_2c() { let data = "ประเทศไทย中华"; let repl = "دولة الكويت"; let c = "中华"; let C = "ประเทศไทยدولة الكويت"; assert (replace(data, c, repl) == C); } #[test] fn test_replace_2d() { let data = "ประเทศไทย中华"; let repl = "دولة الكويت"; let d = "ไท华"; assert (replace(data, d, repl) == data); } #[test] fn test_slice() { assert (eq("ab", slice("abc", 0u, 2u))); assert (eq("bc", slice("abc", 1u, 3u))); assert (eq("", slice("abc", 1u, 1u))); assert (eq("\u65e5", slice("\u65e5\u672c", 0u, 3u))); let data = "ประเทศไทย中华"; assert "ป" == slice(data, 0u, 3u); assert "ร" == slice(data, 3u, 6u); assert "" == slice(data, 3u, 3u); assert "华" == slice(data, 30u, 33u); fn a_million_letter_X() -> str { let i = 0; let rs = ""; while i < 100000 { rs += "华华华华华华华华华华"; i += 1; } ret rs; } fn half_a_million_letter_X() -> str { let i = 0; let rs = ""; while i < 100000 { rs += "华华华华华"; i += 1; } ret rs; } assert eq(half_a_million_letter_X(), slice(a_million_letter_X(), 0u, 3u * 500000u)); } #[test] fn test_slice_2() { let ss = "中华Việt Nam"; assert "华" == slice(ss, 3u, 6u); assert "Việt Nam" == slice(ss, 6u, 16u); assert "ab" == slice("abc", 0u, 2u); assert "bc" == slice("abc", 1u, 3u); assert "" == slice("abc", 1u, 1u); assert "中" == slice(ss, 0u, 3u); assert "华V" == slice(ss, 3u, 7u); assert "" == slice(ss, 3u, 3u); /*0: 中 3: 华 6: V 7: i 8: ệ 11: t 12: 13: N 14: a 15: m */ } #[test] #[should_fail] #[ignore(cfg(target_os = "win32"))] fn test_slice_fail() { slice("中华Việt Nam", 0u, 2u); } #[test] fn test_trim_left() { assert (trim_left("") == ""); assert (trim_left("a") == "a"); assert (trim_left(" ") == ""); assert (trim_left(" blah") == "blah"); assert (trim_left(" \u3000 wut") == "wut"); assert (trim_left("hey ") == "hey "); } #[test] fn test_trim_right() { assert (trim_right("") == ""); assert (trim_right("a") == "a"); assert (trim_right(" ") == ""); assert (trim_right("blah ") == "blah"); assert (trim_right("wut \u3000 ") == "wut"); assert (trim_right(" hey") == " hey"); } #[test] fn test_trim() { assert (trim("") == ""); assert (trim("a") == "a"); assert (trim(" ") == ""); assert (trim(" blah ") == "blah"); assert (trim("\nwut \u3000 ") == "wut"); assert (trim(" hey dude ") == "hey dude"); } #[test] fn test_is_whitespace() { assert (is_whitespace("")); assert (is_whitespace(" ")); assert (is_whitespace("\u2009")); // Thin space assert (is_whitespace(" \n\t ")); assert (!is_whitespace(" _ ")); } #[test] fn test_is_ascii() { assert (is_ascii("")); assert (is_ascii("a")); assert (!is_ascii("\u2009")); } #[test] fn test_shift_byte() unsafe { let s = "ABC"; let b = unsafe::shift_byte(s); assert (s == "BC"); assert (b == 65u8); } #[test] fn test_pop_byte() unsafe { let s = "ABC"; let b = unsafe::pop_byte(s); assert (s == "AB"); assert (b == 67u8); } #[test] fn test_unsafe_from_bytes() unsafe { let a = [65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 65u8]; let b = unsafe::from_bytes(a); assert (b == "AAAAAAA"); } #[test] fn test_from_bytes() { let ss = "ศไทย中华Việt Nam"; let bb = [0xe0_u8, 0xb8_u8, 0xa8_u8, 0xe0_u8, 0xb9_u8, 0x84_u8, 0xe0_u8, 0xb8_u8, 0x97_u8, 0xe0_u8, 0xb8_u8, 0xa2_u8, 0xe4_u8, 0xb8_u8, 0xad_u8, 0xe5_u8, 0x8d_u8, 0x8e_u8, 0x56_u8, 0x69_u8, 0xe1_u8, 0xbb_u8, 0x87_u8, 0x74_u8, 0x20_u8, 0x4e_u8, 0x61_u8, 0x6d_u8]; assert ss == from_bytes(bb); } #[test] #[should_fail] #[ignore(cfg(target_os = "win32"))] fn test_from_bytes_fail() { let bb = [0xff_u8, 0xb8_u8, 0xa8_u8, 0xe0_u8, 0xb9_u8, 0x84_u8, 0xe0_u8, 0xb8_u8, 0x97_u8, 0xe0_u8, 0xb8_u8, 0xa2_u8, 0xe4_u8, 0xb8_u8, 0xad_u8, 0xe5_u8, 0x8d_u8, 0x8e_u8, 0x56_u8, 0x69_u8, 0xe1_u8, 0xbb_u8, 0x87_u8, 0x74_u8, 0x20_u8, 0x4e_u8, 0x61_u8, 0x6d_u8]; let _x = from_bytes(bb); } #[test] fn test_from_cstr() unsafe { let a = [65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 0u8]; let b = vec::to_ptr(a); let c = from_cstr(b); assert (c == "AAAAAAA"); } #[test] fn test_from_cstr_len() unsafe { let a = [65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 0u8]; let b = vec::to_ptr(a); let c = from_cstr_len(b, 3u); assert (c == "AAA"); } #[test] fn test_as_buf() unsafe { let a = "Abcdefg"; let b = as_buf(a, {|buf| assert (*buf == 65u8); 100 }); assert (b == 100); } #[test] fn test_as_buf_small() unsafe { let a = "A"; let b = as_buf(a, {|buf| assert (*buf == 65u8); 100 }); assert (b == 100); } #[test] fn test_as_buf2() unsafe { let s = "hello"; let sb = as_buf(s, {|b| b }); let s_cstr = from_cstr(sb); assert (eq(s_cstr, s)); } #[test] fn vec_str_conversions() { let s1: str = "All mimsy were the borogoves"; let v: [u8] = bytes(s1); let s2: str = from_bytes(v); let i: uint = 0u; let n1: uint = len(s1); let n2: uint = vec::len::(v); assert (n1 == n2); while i < n1 { let a: u8 = s1[i]; let b: u8 = s2[i]; log(debug, a); log(debug, b); assert (a == b); i += 1u; } } #[test] fn test_contains() { assert contains("abcde", "bcd"); assert contains("abcde", "abcd"); assert contains("abcde", "bcde"); assert contains("abcde", ""); assert contains("", ""); assert !contains("abcde", "def"); assert !contains("", "a"); let data = "ประเทศไทย中华Việt Nam"; assert contains(data, "ประเ"); assert contains(data, "ะเ"); assert contains(data, "中华"); assert !contains(data, "ไท华"); } #[test] fn test_chars_iter() { let i = 0; chars_iter("x\u03c0y") {|ch| alt check i { 0 { assert ch == 'x'; } 1 { assert ch == '\u03c0'; } 2 { assert ch == 'y'; } } i += 1; } chars_iter("") {|_ch| fail; } // should not fail } #[test] fn test_bytes_iter() { let i = 0; bytes_iter("xyz") {|bb| alt check i { 0 { assert bb == 'x' as u8; } 1 { assert bb == 'y' as u8; } 2 { assert bb == 'z' as u8; } } i += 1; } bytes_iter("") {|bb| assert bb == 0u8; } } #[test] fn test_split_char_iter() { let data = "\nMary had a little lamb\nLittle lamb\n"; let ii = 0; split_char_iter(data, ' ') {|xx| alt ii { 0 { assert "\nMary" == xx; } 1 { assert "had" == xx; } 2 { assert "a" == xx; } 3 { assert "little" == xx; } _ { () } } ii += 1; } } #[test] fn test_splitn_char_iter() { let data = "\nMary had a little lamb\nLittle lamb\n"; let ii = 0; splitn_char_iter(data, ' ', 2u) {|xx| alt ii { 0 { assert "\nMary" == xx; } 1 { assert "had" == xx; } 2 { assert "a little lamb\nLittle lamb\n" == xx; } _ { () } } ii += 1; } } #[test] fn test_words_iter() { let data = "\nMary had a little lamb\nLittle lamb\n"; let ii = 0; words_iter(data) {|ww| alt ii { 0 { assert "Mary" == ww; } 1 { assert "had" == ww; } 2 { assert "a" == ww; } 3 { assert "little" == ww; } _ { () } } ii += 1; } words_iter("") {|_x| fail; } // should not fail } #[test] fn test_lines_iter () { let lf = "\nMary had a little lamb\nLittle lamb\n"; let ii = 0; lines_iter(lf) {|x| alt ii { 0 { assert "" == x; } 1 { assert "Mary had a little lamb" == x; } 2 { assert "Little lamb" == x; } 3 { assert "" == x; } _ { () } } ii += 1; } } #[test] fn test_map() { assert "" == map("", char::to_upper); assert "YMCA" == map("ymca", char::to_upper); } #[test] fn test_all() { assert true == all("", char::is_uppercase); assert false == all("ymca", char::is_uppercase); assert true == all("YMCA", char::is_uppercase); assert false == all("yMCA", char::is_uppercase); assert false == all("YMCy", char::is_uppercase); } #[test] fn test_any() { assert false == any("", char::is_uppercase); assert false == any("ymca", char::is_uppercase); assert true == any("YMCA", char::is_uppercase); assert true == any("yMCA", char::is_uppercase); assert true == any("Ymcy", char::is_uppercase); } #[test] fn test_chars() { let ss = "ศไทย中华Việt Nam"; assert ['ศ','ไ','ท','ย','中','华','V','i','ệ','t',' ','N','a','m'] == chars(ss); } }