// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #[allow(missing_doc)]; use std::cmp; use std::ops; use std::uint; use std::vec; struct SmallBitv { /// only the lowest nbits of this value are used. the rest is undefined. bits: uint } /// a mask that has a 1 for each defined bit in a small_bitv, assuming n bits #[inline] fn small_mask(nbits: uint) -> uint { (1 << nbits) - 1 } impl SmallBitv { pub fn new(bits: uint) -> SmallBitv { SmallBitv {bits: bits} } #[inline] pub fn bits_op(&mut self, right_bits: uint, nbits: uint, f: &fn(uint, uint) -> uint) -> bool { let mask = small_mask(nbits); let old_b: uint = self.bits; let new_b = f(old_b, right_bits); self.bits = new_b; mask & old_b != mask & new_b } #[inline] pub fn union(&mut self, s: &SmallBitv, nbits: uint) -> bool { self.bits_op(s.bits, nbits, |u1, u2| u1 | u2) } #[inline] pub fn intersect(&mut self, s: &SmallBitv, nbits: uint) -> bool { self.bits_op(s.bits, nbits, |u1, u2| u1 & u2) } #[inline] pub fn become(&mut self, s: &SmallBitv, nbits: uint) -> bool { self.bits_op(s.bits, nbits, |_u1, u2| u2) } #[inline] pub fn difference(&mut self, s: &SmallBitv, nbits: uint) -> bool { self.bits_op(s.bits, nbits, |u1, u2| u1 & !u2) } #[inline] pub fn get(&self, i: uint) -> bool { (self.bits & (1 << i)) != 0 } #[inline] pub fn set(&mut self, i: uint, x: bool) { if x { self.bits |= 1< bool { let mask = small_mask(nbits); mask & self.bits == mask & b.bits } #[inline] pub fn clear(&mut self) { self.bits = 0; } #[inline] pub fn set_all(&mut self) { self.bits = !0; } #[inline] pub fn is_true(&self, nbits: uint) -> bool { small_mask(nbits) & !self.bits == 0 } #[inline] pub fn is_false(&self, nbits: uint) -> bool { small_mask(nbits) & self.bits == 0 } #[inline] pub fn invert(&mut self) { self.bits = !self.bits; } } struct BigBitv { storage: ~[uint] } /** * a mask that has a 1 for each defined bit in the nth element of a big_bitv, * assuming n bits. */ #[inline] fn big_mask(nbits: uint, elem: uint) -> uint { let rmd = nbits % uint::bits; let nelems = nbits/uint::bits + if rmd == 0 {0} else {1}; if elem < nelems - 1 || rmd == 0 { !0 } else { (1 << rmd) - 1 } } impl BigBitv { pub fn new(storage: ~[uint]) -> BigBitv { BigBitv {storage: storage} } #[inline] pub fn process(&mut self, b: &BigBitv, nbits: uint, op: &fn(uint, uint) -> uint) -> bool { let len = b.storage.len(); assert_eq!(self.storage.len(), len); let mut changed = false; for uint::range(0, len) |i| { let mask = big_mask(nbits, i); let w0 = self.storage[i] & mask; let w1 = b.storage[i] & mask; let w = op(w0, w1) & mask; if w0 != w { changed = true; self.storage[i] = w; } } changed } #[inline] pub fn each_storage(&mut self, op: &fn(v: &mut uint) -> bool) -> bool { uint::range(0, self.storage.len(), |i| op(&mut self.storage[i])) } #[inline] pub fn invert(&mut self) { for self.each_storage |w| { *w = !*w } } #[inline] pub fn union(&mut self, b: &BigBitv, nbits: uint) -> bool { self.process(b, nbits, |w1, w2| w1 | w2) } #[inline] pub fn intersect(&mut self, b: &BigBitv, nbits: uint) -> bool { self.process(b, nbits, |w1, w2| w1 & w2) } #[inline] pub fn become(&mut self, b: &BigBitv, nbits: uint) -> bool { self.process(b, nbits, |_, w| w) } #[inline] pub fn difference(&mut self, b: &BigBitv, nbits: uint) -> bool { self.process(b, nbits, |w1, w2| w1 & !w2) } #[inline] pub fn get(&self, i: uint) -> bool { let w = i / uint::bits; let b = i % uint::bits; let x = 1 & self.storage[w] >> b; x == 1 } #[inline] pub fn set(&mut self, i: uint, x: bool) { let w = i / uint::bits; let b = i % uint::bits; let flag = 1 << b; self.storage[w] = if x { self.storage[w] | flag } else { self.storage[w] & !flag }; } #[inline] pub fn equals(&self, b: &BigBitv, nbits: uint) -> bool { let len = b.storage.len(); for uint::iterate(0, len) |i| { let mask = big_mask(nbits, i); if mask & self.storage[i] != mask & b.storage[i] { return false; } } return true; } } enum BitvVariant { Big(~BigBitv), Small(~SmallBitv) } enum Op {Union, Intersect, Assign, Difference} /// The bitvector type pub struct Bitv { /// Internal representation of the bit vector (small or large) rep: BitvVariant, /// The number of valid bits in the internal representation nbits: uint } fn die() -> ! { fail!("Tried to do operation on bit vectors with different sizes"); } impl Bitv { #[inline] fn do_op(&mut self, op: Op, other: &Bitv) -> bool { if self.nbits != other.nbits { die(); } match self.rep { Small(ref mut s) => match other.rep { Small(ref s1) => match op { Union => s.union(*s1, self.nbits), Intersect => s.intersect(*s1, self.nbits), Assign => s.become(*s1, self.nbits), Difference => s.difference(*s1, self.nbits) }, Big(_) => die() }, Big(ref mut s) => match other.rep { Small(_) => die(), Big(ref s1) => match op { Union => s.union(*s1, self.nbits), Intersect => s.intersect(*s1, self.nbits), Assign => s.become(*s1, self.nbits), Difference => s.difference(*s1, self.nbits) } } } } } impl Bitv { pub fn new(nbits: uint, init: bool) -> Bitv { let rep = if nbits <= uint::bits { Small(~SmallBitv::new(if init {!0} else {0})) } else { let nelems = nbits/uint::bits + if nbits % uint::bits == 0 {0} else {1}; let elem = if init {!0} else {0}; let s = vec::from_elem(nelems, elem); Big(~BigBitv::new(s)) }; Bitv {rep: rep, nbits: nbits} } /** * Calculates the union of two bitvectors * * Sets `self` to the union of `self` and `v1`. Both bitvectors must be * the same length. Returns 'true' if `self` changed. */ #[inline] pub fn union(&mut self, v1: &Bitv) -> bool { self.do_op(Union, v1) } /** * Calculates the intersection of two bitvectors * * Sets `self` to the intersection of `self` and `v1`. Both bitvectors * must be the same length. Returns 'true' if `self` changed. */ #[inline] pub fn intersect(&mut self, v1: &Bitv) -> bool { self.do_op(Intersect, v1) } /** * Assigns the value of `v1` to `self` * * Both bitvectors must be the same length. Returns `true` if `self` was * changed */ #[inline] pub fn assign(&mut self, v: &Bitv) -> bool { self.do_op(Assign, v) } /// Retrieve the value at index `i` #[inline] pub fn get(&self, i: uint) -> bool { assert!((i < self.nbits)); match self.rep { Big(ref b) => b.get(i), Small(ref s) => s.get(i) } } /** * Set the value of a bit at a given index * * `i` must be less than the length of the bitvector. */ #[inline] pub fn set(&mut self, i: uint, x: bool) { assert!((i < self.nbits)); match self.rep { Big(ref mut b) => b.set(i, x), Small(ref mut s) => s.set(i, x) } } /** * Compares two bitvectors * * Both bitvectors must be the same length. Returns `true` if both * bitvectors contain identical elements. */ #[inline] pub fn equal(&self, v1: &Bitv) -> bool { if self.nbits != v1.nbits { return false; } match self.rep { Small(ref b) => match v1.rep { Small(ref b1) => b.equals(*b1, self.nbits), _ => false }, Big(ref s) => match v1.rep { Big(ref s1) => s.equals(*s1, self.nbits), Small(_) => return false } } } /// Set all bits to 0 #[inline] pub fn clear(&mut self) { match self.rep { Small(ref mut b) => b.clear(), Big(ref mut s) => for s.each_storage() |w| { *w = 0u } } } /// Set all bits to 1 #[inline] pub fn set_all(&mut self) { match self.rep { Small(ref mut b) => b.set_all(), Big(ref mut s) => for s.each_storage() |w| { *w = !0u } } } /// Invert all bits #[inline] pub fn invert(&mut self) { match self.rep { Small(ref mut b) => b.invert(), Big(ref mut s) => for s.each_storage() |w| { *w = !*w } } } /** * Calculate the difference between two bitvectors * * Sets each element of `v0` to the value of that element minus the * element of `v1` at the same index. Both bitvectors must be the same * length. * * Returns `true` if `v0` was changed. */ #[inline] pub fn difference(&mut self, v: &Bitv) -> bool { self.do_op(Difference, v) } /// Returns true if all bits are 1 #[inline] pub fn is_true(&self) -> bool { match self.rep { Small(ref b) => b.is_true(self.nbits), _ => { for self.each() |i| { if !i { return false; } } true } } } #[inline] pub fn each(&self, f: &fn(bool) -> bool) -> bool { let mut i = 0; while i < self.nbits { if !f(self.get(i)) { return false; } i += 1; } return true; } /// Returns true if all bits are 0 pub fn is_false(&self) -> bool { match self.rep { Small(ref b) => b.is_false(self.nbits), Big(_) => { for self.each() |i| { if i { return false; } } true } } } pub fn init_to_vec(&self, i: uint) -> uint { return if self.get(i) { 1 } else { 0 }; } /** * Converts `self` to a vector of uint with the same length. * * Each uint in the resulting vector has either value 0u or 1u. */ pub fn to_vec(&self) -> ~[uint] { vec::from_fn(self.nbits, |x| self.init_to_vec(x)) } /** * Organise the bits into bytes, such that the first bit in the * bitv becomes the high-order bit of the first byte. If the * size of the bitv is not a multiple of 8 then trailing bits * will be filled-in with false/0 */ pub fn to_bytes(&self) -> ~[u8] { fn bit (bitv: &Bitv, byte: uint, bit: uint) -> u8 { let offset = byte * 8 + bit; if offset >= bitv.nbits { 0 } else { bitv[offset] as u8 << (7 - bit) } } let len = self.nbits/8 + if self.nbits % 8 == 0 { 0 } else { 1 }; vec::from_fn(len, |i| bit(self, i, 0) | bit(self, i, 1) | bit(self, i, 2) | bit(self, i, 3) | bit(self, i, 4) | bit(self, i, 5) | bit(self, i, 6) | bit(self, i, 7) ) } /** * Transform self into a [bool] by turning each bit into a bool */ pub fn to_bools(&self) -> ~[bool] { vec::from_fn(self.nbits, |i| self[i]) } /** * Converts `self` to a string. * * The resulting string has the same length as `self`, and each * character is either '0' or '1'. */ pub fn to_str(&self) -> ~str { let mut rs = ~""; for self.each() |i| { if i { rs.push_char('1'); } else { rs.push_char('0'); } }; rs } /** * Compare a bitvector to a vector of uint * * The uint vector is expected to only contain the values 0u and 1u. Both * the bitvector and vector must have the same length */ pub fn eq_vec(&self, v: ~[uint]) -> bool { assert_eq!(self.nbits, v.len()); let mut i = 0; while i < self.nbits { let w0 = self.get(i); let w1 = v[i]; if !w0 && w1 != 0u || w0 && w1 == 0u { return false; } i = i + 1; } true } pub fn ones(&self, f: &fn(uint) -> bool) -> bool { uint::range(0, self.nbits, |i| !self.get(i) || f(i)) } } impl Clone for Bitv { /// Makes a copy of a bitvector #[inline] fn clone(&self) -> Bitv { match self.rep { Small(ref b) => { Bitv{nbits: self.nbits, rep: Small(~SmallBitv{bits: b.bits})} } Big(ref b) => { let mut st = vec::from_elem(self.nbits / uint::bits + 1, 0); let len = st.len(); for uint::range(0, len) |i| { st[i] = b.storage[i]; }; Bitv{nbits: self.nbits, rep: Big(~BigBitv{storage: st})} } } } } /** * Transform a byte-vector into a bitv. Each byte becomes 8 bits, * with the most significant bits of each byte coming first. Each * bit becomes true if equal to 1 or false if equal to 0. */ pub fn from_bytes(bytes: &[u8]) -> Bitv { from_fn(bytes.len() * 8, |i| { let b = bytes[i / 8] as uint; let offset = i % 8; b >> (7 - offset) & 1 == 1 }) } /** * Transform a [bool] into a bitv by converting each bool into a bit. */ pub fn from_bools(bools: &[bool]) -> Bitv { from_fn(bools.len(), |i| bools[i]) } /** * Create a bitv of the specified length where the value at each * index is f(index). */ pub fn from_fn(len: uint, f: &fn(index: uint) -> bool) -> Bitv { let mut bitv = Bitv::new(len, false); for uint::range(0, len) |i| { bitv.set(i, f(i)); } bitv } impl ops::Index for Bitv { fn index(&self, i: &uint) -> bool { self.get(*i) } } #[inline] fn iterate_bits(base: uint, bits: uint, f: &fn(uint) -> bool) -> bool { if bits == 0 { return true; } for uint::range(0, uint::bits) |i| { if bits & (1 << i) != 0 { if !f(base + i) { return false; } } } return true; } /// An implementation of a set using a bit vector as an underlying /// representation for holding numerical elements. /// /// It should also be noted that the amount of storage necessary for holding a /// set of objects is proportional to the maximum of the objects when viewed /// as a uint. pub struct BitvSet { priv size: uint, // In theory this is a Bitv instead of always a BigBitv, but knowing that // there's an array of storage makes our lives a whole lot easier when // performing union/intersection/etc operations priv bitv: BigBitv } impl BitvSet { /// Creates a new bit vector set with initially no contents pub fn new() -> BitvSet { BitvSet{ size: 0, bitv: BigBitv::new(~[0]) } } /// Creates a new bit vector set from the given bit vector pub fn from_bitv(bitv: Bitv) -> BitvSet { let mut size = 0; for bitv.ones |_| { size += 1; } let Bitv{rep, _} = bitv; match rep { Big(~b) => BitvSet{ size: size, bitv: b }, Small(~SmallBitv{bits}) => BitvSet{ size: size, bitv: BigBitv{ storage: ~[bits] } }, } } /// Returns the capacity in bits for this bit vector. Inserting any /// element less than this amount will not trigger a resizing. pub fn capacity(&self) -> uint { self.bitv.storage.len() * uint::bits } /// Consumes this set to return the underlying bit vector pub fn unwrap(self) -> Bitv { let cap = self.capacity(); let BitvSet{bitv, _} = self; return Bitv{ nbits:cap, rep: Big(~bitv) }; } #[inline] fn other_op(&mut self, other: &BitvSet, f: &fn(uint, uint) -> uint) { fn nbits(mut w: uint) -> uint { let mut bits = 0; for uint::bits.times { if w == 0 { break; } bits += w & 1; w >>= 1; } return bits; } if self.capacity() < other.capacity() { self.bitv.storage.grow(other.capacity() / uint::bits, &0); } for other.bitv.storage.iter().enumerate().advance |(i, &w)| { let old = self.bitv.storage[i]; let new = f(old, w); self.bitv.storage[i] = new; self.size += nbits(new) - nbits(old); } } /// Union in-place with the specified other bit vector pub fn union_with(&mut self, other: &BitvSet) { self.other_op(other, |w1, w2| w1 | w2); } /// Intersect in-place with the specified other bit vector pub fn intersect_with(&mut self, other: &BitvSet) { self.other_op(other, |w1, w2| w1 & w2); } /// Difference in-place with the specified other bit vector pub fn difference_with(&mut self, other: &BitvSet) { self.other_op(other, |w1, w2| w1 & !w2); } /// Symmetric difference in-place with the specified other bit vector pub fn symmetric_difference_with(&mut self, other: &BitvSet) { self.other_op(other, |w1, w2| w1 ^ w2); } pub fn each(&self, blk: &fn(v: &uint) -> bool) -> bool { for self.bitv.storage.iter().enumerate().advance |(i, &w)| { if !iterate_bits(i * uint::bits, w, |b| blk(&b)) { return false; } } return true; } } impl cmp::Eq for BitvSet { fn eq(&self, other: &BitvSet) -> bool { if self.size != other.size { return false; } for self.each_common(other) |_, w1, w2| { if w1 != w2 { return false; } } for self.each_outlier(other) |_, _, w| { if w != 0 { return false; } } return true; } fn ne(&self, other: &BitvSet) -> bool { !self.eq(other) } } impl Container for BitvSet { fn len(&self) -> uint { self.size } fn is_empty(&self) -> bool { self.size == 0 } } impl Mutable for BitvSet { fn clear(&mut self) { for self.bitv.each_storage |w| { *w = 0; } self.size = 0; } } impl Set for BitvSet { fn contains(&self, value: &uint) -> bool { *value < self.bitv.storage.len() * uint::bits && self.bitv.get(*value) } fn insert(&mut self, value: uint) -> bool { if self.contains(&value) { return false; } let nbits = self.capacity(); if value >= nbits { let newsize = uint::max(value, nbits * 2) / uint::bits + 1; assert!(newsize > self.bitv.storage.len()); self.bitv.storage.grow(newsize, &0); } self.size += 1; self.bitv.set(value, true); return true; } fn remove(&mut self, value: &uint) -> bool { if !self.contains(value) { return false; } self.size -= 1; self.bitv.set(*value, false); // Attempt to truncate our storage let mut i = self.bitv.storage.len(); while i > 1 && self.bitv.storage[i - 1] == 0 { i -= 1; } self.bitv.storage.truncate(i); return true; } fn is_disjoint(&self, other: &BitvSet) -> bool { for self.intersection(other) |_| { return false; } return true; } fn is_subset(&self, other: &BitvSet) -> bool { for self.each_common(other) |_, w1, w2| { if w1 & w2 != w1 { return false; } } /* If anything is not ours, then everything is not ours so we're definitely a subset in that case. Otherwise if there's any stray ones that 'other' doesn't have, we're not a subset. */ for self.each_outlier(other) |mine, _, w| { if !mine { return true; } else if w != 0 { return false; } } return true; } fn is_superset(&self, other: &BitvSet) -> bool { other.is_subset(self) } fn difference(&self, other: &BitvSet, f: &fn(&uint) -> bool) -> bool { for self.each_common(other) |i, w1, w2| { if !iterate_bits(i, w1 & !w2, |b| f(&b)) { return false; } } /* everything we have that they don't also shows up */ self.each_outlier(other, |mine, i, w| !mine || iterate_bits(i, w, |b| f(&b)) ) } fn symmetric_difference(&self, other: &BitvSet, f: &fn(&uint) -> bool) -> bool { for self.each_common(other) |i, w1, w2| { if !iterate_bits(i, w1 ^ w2, |b| f(&b)) { return false; } } self.each_outlier(other, |_, i, w| iterate_bits(i, w, |b| f(&b))) } fn intersection(&self, other: &BitvSet, f: &fn(&uint) -> bool) -> bool { self.each_common(other, |i, w1, w2| iterate_bits(i, w1 & w2, |b| f(&b))) } fn union(&self, other: &BitvSet, f: &fn(&uint) -> bool) -> bool { for self.each_common(other) |i, w1, w2| { if !iterate_bits(i, w1 | w2, |b| f(&b)) { return false; } } self.each_outlier(other, |_, i, w| iterate_bits(i, w, |b| f(&b))) } } impl BitvSet { /// Visits each of the words that the two bit vectors (self and other) /// both have in common. The three yielded arguments are (bit location, /// w1, w2) where the bit location is the number of bits offset so far, /// and w1/w2 are the words coming from the two vectors self, other. fn each_common(&self, other: &BitvSet, f: &fn(uint, uint, uint) -> bool) -> bool { let min = uint::min(self.bitv.storage.len(), other.bitv.storage.len()); self.bitv.storage.slice(0, min).iter().enumerate().advance(|(i, &w)| { f(i * uint::bits, w, other.bitv.storage[i]) }) } /// Visits each word in self or other that extends beyond the other. This /// will only iterate through one of the vectors, and it only iterates /// over the portion that doesn't overlap with the other one. /// /// The yielded arguments are a bool, the bit offset, and a word. The bool /// is true if the word comes from 'self', and false if it comes from /// 'other'. fn each_outlier(&self, other: &BitvSet, f: &fn(bool, uint, uint) -> bool) -> bool { let len1 = self.bitv.storage.len(); let len2 = other.bitv.storage.len(); let min = uint::min(len1, len2); /* only one of these loops will execute and that's the point */ for self.bitv.storage.slice(min, len1).iter().enumerate().advance |(i, &w)| { if !f(true, (i + min) * uint::bits, w) { return false; } } for other.bitv.storage.slice(min, len2).iter().enumerate().advance |(i, &w)| { if !f(false, (i + min) * uint::bits, w) { return false; } } return true; } } #[cfg(test)] mod tests { use extra::test::BenchHarness; use bitv::*; use bitv; use std::uint; use std::vec; use std::rand; use std::rand::Rng; static bench_bits : uint = 1 << 14; #[test] fn test_to_str() { let zerolen = Bitv::new(0u, false); assert_eq!(zerolen.to_str(), ~""); let eightbits = Bitv::new(8u, false); assert_eq!(eightbits.to_str(), ~"00000000"); } #[test] fn test_0_elements() { let act = Bitv::new(0u, false); let exp = vec::from_elem::(0u, 0u); assert!(act.eq_vec(exp)); } #[test] fn test_1_element() { let mut act = Bitv::new(1u, false); assert!(act.eq_vec(~[0u])); act = Bitv::new(1u, true); assert!(act.eq_vec(~[1u])); } #[test] fn test_2_elements() { let mut b = bitv::Bitv::new(2, false); b.set(0, true); b.set(1, false); assert_eq!(b.to_str(), ~"10"); } #[test] fn test_10_elements() { let mut act; // all 0 act = Bitv::new(10u, false); assert!((act.eq_vec(~[0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u]))); // all 1 act = Bitv::new(10u, true); assert!((act.eq_vec(~[1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u]))); // mixed act = Bitv::new(10u, false); act.set(0u, true); act.set(1u, true); act.set(2u, true); act.set(3u, true); act.set(4u, true); assert!((act.eq_vec(~[1u, 1u, 1u, 1u, 1u, 0u, 0u, 0u, 0u, 0u]))); // mixed act = Bitv::new(10u, false); act.set(5u, true); act.set(6u, true); act.set(7u, true); act.set(8u, true); act.set(9u, true); assert!((act.eq_vec(~[0u, 0u, 0u, 0u, 0u, 1u, 1u, 1u, 1u, 1u]))); // mixed act = Bitv::new(10u, false); act.set(0u, true); act.set(3u, true); act.set(6u, true); act.set(9u, true); assert!((act.eq_vec(~[1u, 0u, 0u, 1u, 0u, 0u, 1u, 0u, 0u, 1u]))); } #[test] fn test_31_elements() { let mut act; // all 0 act = Bitv::new(31u, false); assert!(act.eq_vec( ~[0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u])); // all 1 act = Bitv::new(31u, true); assert!(act.eq_vec( ~[1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u])); // mixed act = Bitv::new(31u, false); act.set(0u, true); act.set(1u, true); act.set(2u, true); act.set(3u, true); act.set(4u, true); act.set(5u, true); act.set(6u, true); act.set(7u, true); assert!(act.eq_vec( ~[1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u])); // mixed act = Bitv::new(31u, false); act.set(16u, true); act.set(17u, true); act.set(18u, true); act.set(19u, true); act.set(20u, true); act.set(21u, true); act.set(22u, true); act.set(23u, true); assert!(act.eq_vec( ~[0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 0u, 0u, 0u, 0u, 0u, 0u, 0u])); // mixed act = Bitv::new(31u, false); act.set(24u, true); act.set(25u, true); act.set(26u, true); act.set(27u, true); act.set(28u, true); act.set(29u, true); act.set(30u, true); assert!(act.eq_vec( ~[0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 1u, 1u, 1u, 1u, 1u, 1u, 1u])); // mixed act = Bitv::new(31u, false); act.set(3u, true); act.set(17u, true); act.set(30u, true); assert!(act.eq_vec( ~[0u, 0u, 0u, 1u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 1u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 1u])); } #[test] fn test_32_elements() { let mut act; // all 0 act = Bitv::new(32u, false); assert!(act.eq_vec( ~[0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u])); // all 1 act = Bitv::new(32u, true); assert!(act.eq_vec( ~[1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u])); // mixed act = Bitv::new(32u, false); act.set(0u, true); act.set(1u, true); act.set(2u, true); act.set(3u, true); act.set(4u, true); act.set(5u, true); act.set(6u, true); act.set(7u, true); assert!(act.eq_vec( ~[1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u])); // mixed act = Bitv::new(32u, false); act.set(16u, true); act.set(17u, true); act.set(18u, true); act.set(19u, true); act.set(20u, true); act.set(21u, true); act.set(22u, true); act.set(23u, true); assert!(act.eq_vec( ~[0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u])); // mixed act = Bitv::new(32u, false); act.set(24u, true); act.set(25u, true); act.set(26u, true); act.set(27u, true); act.set(28u, true); act.set(29u, true); act.set(30u, true); act.set(31u, true); assert!(act.eq_vec( ~[0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u])); // mixed act = Bitv::new(32u, false); act.set(3u, true); act.set(17u, true); act.set(30u, true); act.set(31u, true); assert!(act.eq_vec( ~[0u, 0u, 0u, 1u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 1u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 1u, 1u])); } #[test] fn test_33_elements() { let mut act; // all 0 act = Bitv::new(33u, false); assert!(act.eq_vec( ~[0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u])); // all 1 act = Bitv::new(33u, true); assert!(act.eq_vec( ~[1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u])); // mixed act = Bitv::new(33u, false); act.set(0u, true); act.set(1u, true); act.set(2u, true); act.set(3u, true); act.set(4u, true); act.set(5u, true); act.set(6u, true); act.set(7u, true); assert!(act.eq_vec( ~[1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u])); // mixed act = Bitv::new(33u, false); act.set(16u, true); act.set(17u, true); act.set(18u, true); act.set(19u, true); act.set(20u, true); act.set(21u, true); act.set(22u, true); act.set(23u, true); assert!(act.eq_vec( ~[0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u])); // mixed act = Bitv::new(33u, false); act.set(24u, true); act.set(25u, true); act.set(26u, true); act.set(27u, true); act.set(28u, true); act.set(29u, true); act.set(30u, true); act.set(31u, true); assert!(act.eq_vec( ~[0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 1u, 0u])); // mixed act = Bitv::new(33u, false); act.set(3u, true); act.set(17u, true); act.set(30u, true); act.set(31u, true); act.set(32u, true); assert!(act.eq_vec( ~[0u, 0u, 0u, 1u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 1u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 1u, 1u, 1u])); } #[test] fn test_equal_differing_sizes() { let v0 = Bitv::new(10u, false); let v1 = Bitv::new(11u, false); assert!(!v0.equal(&v1)); } #[test] fn test_equal_greatly_differing_sizes() { let v0 = Bitv::new(10u, false); let v1 = Bitv::new(110u, false); assert!(!v0.equal(&v1)); } #[test] fn test_equal_sneaky_small() { let mut a = bitv::Bitv::new(1, false); a.set(0, true); let mut b = bitv::Bitv::new(1, true); b.set(0, true); assert!(a.equal(&b)); } #[test] fn test_equal_sneaky_big() { let mut a = bitv::Bitv::new(100, false); for uint::range(0, 100) |i| { a.set(i, true); } let mut b = bitv::Bitv::new(100, true); for uint::range(0, 100) |i| { b.set(i, true); } assert!(a.equal(&b)); } #[test] fn test_from_bytes() { let bitv = from_bytes([0b10110110, 0b00000000, 0b11111111]); let str = ~"10110110" + "00000000" + "11111111"; assert_eq!(bitv.to_str(), str); } #[test] fn test_to_bytes() { let mut bv = Bitv::new(3, true); bv.set(1, false); assert_eq!(bv.to_bytes(), ~[0b10100000]); let mut bv = Bitv::new(9, false); bv.set(2, true); bv.set(8, true); assert_eq!(bv.to_bytes(), ~[0b00100000, 0b10000000]); } #[test] fn test_from_bools() { assert!(from_bools([true, false, true, true]).to_str() == ~"1011"); } #[test] fn test_to_bools() { let bools = ~[false, false, true, false, false, true, true, false]; assert_eq!(from_bytes([0b00100110]).to_bools(), bools); } #[test] fn test_small_difference() { let mut b1 = Bitv::new(3, false); let mut b2 = Bitv::new(3, false); b1.set(0, true); b1.set(1, true); b2.set(1, true); b2.set(2, true); assert!(b1.difference(&b2)); assert!(b1[0]); assert!(!b1[1]); assert!(!b1[2]); } #[test] fn test_big_difference() { let mut b1 = Bitv::new(100, false); let mut b2 = Bitv::new(100, false); b1.set(0, true); b1.set(40, true); b2.set(40, true); b2.set(80, true); assert!(b1.difference(&b2)); assert!(b1[0]); assert!(!b1[40]); assert!(!b1[80]); } #[test] fn test_small_clear() { let mut b = Bitv::new(14, true); b.clear(); for b.ones |i| { fail!("found 1 at %?", i); } } #[test] fn test_big_clear() { let mut b = Bitv::new(140, true); b.clear(); for b.ones |i| { fail!("found 1 at %?", i); } } #[test] fn test_bitv_set_basic() { let mut b = BitvSet::new(); assert!(b.insert(3)); assert!(!b.insert(3)); assert!(b.contains(&3)); assert!(b.insert(400)); assert!(!b.insert(400)); assert!(b.contains(&400)); assert_eq!(b.len(), 2); } #[test] fn test_bitv_set_intersection() { let mut a = BitvSet::new(); let mut b = BitvSet::new(); assert!(a.insert(11)); assert!(a.insert(1)); assert!(a.insert(3)); assert!(a.insert(77)); assert!(a.insert(103)); assert!(a.insert(5)); assert!(b.insert(2)); assert!(b.insert(11)); assert!(b.insert(77)); assert!(b.insert(5)); assert!(b.insert(3)); let mut i = 0; let expected = [3, 5, 11, 77]; for a.intersection(&b) |x| { assert_eq!(*x, expected[i]); i += 1 } assert_eq!(i, expected.len()); } #[test] fn test_bitv_set_difference() { let mut a = BitvSet::new(); let mut b = BitvSet::new(); assert!(a.insert(1)); assert!(a.insert(3)); assert!(a.insert(5)); assert!(a.insert(200)); assert!(a.insert(500)); assert!(b.insert(3)); assert!(b.insert(200)); let mut i = 0; let expected = [1, 5, 500]; for a.difference(&b) |x| { assert_eq!(*x, expected[i]); i += 1 } assert_eq!(i, expected.len()); } #[test] fn test_bitv_set_symmetric_difference() { let mut a = BitvSet::new(); let mut b = BitvSet::new(); assert!(a.insert(1)); assert!(a.insert(3)); assert!(a.insert(5)); assert!(a.insert(9)); assert!(a.insert(11)); assert!(b.insert(3)); assert!(b.insert(9)); assert!(b.insert(14)); assert!(b.insert(220)); let mut i = 0; let expected = [1, 5, 11, 14, 220]; for a.symmetric_difference(&b) |x| { assert_eq!(*x, expected[i]); i += 1 } assert_eq!(i, expected.len()); } #[test] fn test_bitv_set_union() { let mut a = BitvSet::new(); let mut b = BitvSet::new(); assert!(a.insert(1)); assert!(a.insert(3)); assert!(a.insert(5)); assert!(a.insert(9)); assert!(a.insert(11)); assert!(a.insert(160)); assert!(a.insert(19)); assert!(a.insert(24)); assert!(b.insert(1)); assert!(b.insert(5)); assert!(b.insert(9)); assert!(b.insert(13)); assert!(b.insert(19)); let mut i = 0; let expected = [1, 3, 5, 9, 11, 13, 19, 24, 160]; for a.union(&b) |x| { assert_eq!(*x, expected[i]); i += 1 } assert_eq!(i, expected.len()); } #[test] fn test_bitv_remove() { let mut a = BitvSet::new(); assert!(a.insert(1)); assert!(a.remove(&1)); assert!(a.insert(100)); assert!(a.remove(&100)); assert!(a.insert(1000)); assert!(a.remove(&1000)); assert_eq!(a.capacity(), uint::bits); } fn rng() -> rand::IsaacRng { let seed = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]; rand::IsaacRng::new_seeded(seed) } #[bench] fn bench_uint_small(b: &mut BenchHarness) { let mut r = rng(); let mut bitv = 0 as uint; do b.iter { bitv |= (1 << ((r.next() as uint) % uint::bits)); } } #[bench] fn bench_small_bitv_small(b: &mut BenchHarness) { let mut r = rng(); let mut bitv = SmallBitv::new(uint::bits); do b.iter { bitv.set((r.next() as uint) % uint::bits, true); } } #[bench] fn bench_big_bitv_small(b: &mut BenchHarness) { let mut r = rng(); let mut bitv = BigBitv::new(~[0]); do b.iter { bitv.set((r.next() as uint) % uint::bits, true); } } #[bench] fn bench_big_bitv_big(b: &mut BenchHarness) { let mut r = rng(); let mut storage = ~[]; storage.grow(bench_bits / uint::bits, &0); let mut bitv = BigBitv::new(storage); do b.iter { bitv.set((r.next() as uint) % bench_bits, true); } } #[bench] fn bench_bitv_big(b: &mut BenchHarness) { let mut r = rng(); let mut bitv = Bitv::new(bench_bits, false); do b.iter { bitv.set((r.next() as uint) % bench_bits, true); } } #[bench] fn bench_bitv_small(b: &mut BenchHarness) { let mut r = rng(); let mut bitv = Bitv::new(uint::bits, false); do b.iter { bitv.set((r.next() as uint) % uint::bits, true); } } #[bench] fn bench_bitv_set_small(b: &mut BenchHarness) { let mut r = rng(); let mut bitv = BitvSet::new(); do b.iter { bitv.insert((r.next() as uint) % uint::bits); } } #[bench] fn bench_bitv_set_big(b: &mut BenchHarness) { let mut r = rng(); let mut bitv = BitvSet::new(); do b.iter { bitv.insert((r.next() as uint) % bench_bits); } } #[bench] fn bench_bitv_big_union(b: &mut BenchHarness) { let mut b1 = Bitv::new(bench_bits, false); let b2 = Bitv::new(bench_bits, false); do b.iter { b1.union(&b2); } } }