// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use llvm::ValueRef; use rustc::middle::ty::{self, Ty}; use middle::ty::cast::{CastTy, IntTy}; use rustc::mir::repr as mir; use trans::asm; use trans::base; use trans::build; use trans::common::{self, Block, Result}; use trans::debuginfo::DebugLoc; use trans::declare; use trans::expr; use trans::adt; use trans::machine; use trans::type_::Type; use trans::type_of; use trans::tvec; use trans::Disr; use super::MirContext; use super::operand::{OperandRef, OperandValue}; use super::lvalue::LvalueRef; impl<'bcx, 'tcx> MirContext<'bcx, 'tcx> { pub fn trans_rvalue(&mut self, bcx: Block<'bcx, 'tcx>, dest: LvalueRef<'tcx>, rvalue: &mir::Rvalue<'tcx>) -> Block<'bcx, 'tcx> { debug!("trans_rvalue(dest.llval={}, rvalue={:?})", bcx.val_to_string(dest.llval), rvalue); match *rvalue { mir::Rvalue::Use(ref operand) => { self.trans_operand_into(bcx, dest.llval, operand); bcx } mir::Rvalue::Cast(mir::CastKind::Unsize, ref operand, cast_ty) => { if common::type_is_fat_ptr(bcx.tcx(), cast_ty) { // into-coerce of a thin pointer to a fat pointer - just // use the operand path. let (bcx, temp) = self.trans_rvalue_operand(bcx, rvalue); self.store_operand(bcx, dest.llval, temp); return bcx; } // Unsize of a nontrivial struct. I would prefer for // this to be eliminated by MIR translation, but // `CoerceUnsized` can be passed by a where-clause, // so the (generic) MIR may not be able to expand it. let operand = self.trans_operand(bcx, operand); match operand.val { OperandValue::FatPtr(..) => unreachable!(), OperandValue::Immediate(llval) => { // unsize from an immediate structure. We don't // really need a temporary alloca here, but // avoiding it would require us to have // `coerce_unsized_into` use extractvalue to // index into the struct, and this case isn't // important enough for it. debug!("trans_rvalue: creating ugly alloca"); let lltemp = base::alloc_ty(bcx, operand.ty, "__unsize_temp"); base::store_ty(bcx, llval, lltemp, operand.ty); base::coerce_unsized_into(bcx, lltemp, operand.ty, dest.llval, cast_ty); } OperandValue::Ref(llref) => { base::coerce_unsized_into(bcx, llref, operand.ty, dest.llval, cast_ty); } } bcx } mir::Rvalue::Repeat(ref elem, ref count) => { let elem = self.trans_operand(bcx, elem); let size = self.trans_constval(bcx, &count.value, count.ty).immediate(); let base = expr::get_dataptr(bcx, dest.llval); tvec::iter_vec_raw(bcx, base, elem.ty, size, |bcx, llslot, _| { self.store_operand(bcx, llslot, elem); bcx }) } mir::Rvalue::Aggregate(ref kind, ref operands) => { match *kind { mir::AggregateKind::Adt(adt_def, index, _) => { let repr = adt::represent_type(bcx.ccx(), dest.ty.to_ty(bcx.tcx())); let disr = Disr::from(adt_def.variants[index].disr_val); adt::trans_set_discr(bcx, &*repr, dest.llval, Disr::from(disr)); for (i, operand) in operands.iter().enumerate() { let op = self.trans_operand(bcx, operand); // Do not generate stores and GEPis for zero-sized fields. if !common::type_is_zero_size(bcx.ccx(), op.ty) { let val = adt::MaybeSizedValue::sized(dest.llval); let lldest_i = adt::trans_field_ptr(bcx, &*repr, val, disr, i); self.store_operand(bcx, lldest_i, op); } } }, _ => { for (i, operand) in operands.iter().enumerate() { let op = self.trans_operand(bcx, operand); // Do not generate stores and GEPis for zero-sized fields. if !common::type_is_zero_size(bcx.ccx(), op.ty) { // Note: perhaps this should be StructGep, but // note that in some cases the values here will // not be structs but arrays. let dest = build::GEPi(bcx, dest.llval, &[0, i]); self.store_operand(bcx, dest, op); } } } } bcx } mir::Rvalue::Slice { ref input, from_start, from_end } => { let ccx = bcx.ccx(); let input = self.trans_lvalue(bcx, input); let (llbase, lllen) = tvec::get_base_and_len(bcx, input.llval, input.ty.to_ty(bcx.tcx())); let llbase1 = build::GEPi(bcx, llbase, &[from_start]); let adj = common::C_uint(ccx, from_start + from_end); let lllen1 = build::Sub(bcx, lllen, adj, DebugLoc::None); let lladdrdest = expr::get_dataptr(bcx, dest.llval); build::Store(bcx, llbase1, lladdrdest); let llmetadest = expr::get_meta(bcx, dest.llval); build::Store(bcx, lllen1, llmetadest); bcx } mir::Rvalue::InlineAsm(ref inline_asm) => { asm::trans_inline_asm(bcx, inline_asm) } _ => { assert!(rvalue_creates_operand(rvalue)); let (bcx, temp) = self.trans_rvalue_operand(bcx, rvalue); self.store_operand(bcx, dest.llval, temp); bcx } } } pub fn trans_rvalue_operand(&mut self, bcx: Block<'bcx, 'tcx>, rvalue: &mir::Rvalue<'tcx>) -> (Block<'bcx, 'tcx>, OperandRef<'tcx>) { assert!(rvalue_creates_operand(rvalue), "cannot trans {:?} to operand", rvalue); match *rvalue { mir::Rvalue::Use(ref operand) => { let operand = self.trans_operand(bcx, operand); (bcx, operand) } mir::Rvalue::Cast(ref kind, ref operand, cast_ty) => { let operand = self.trans_operand(bcx, operand); debug!("cast operand is {}", operand.repr(bcx)); let cast_ty = bcx.monomorphize(&cast_ty); let val = match *kind { mir::CastKind::ReifyFnPointer | mir::CastKind::UnsafeFnPointer => { // these are no-ops at the LLVM level operand.val } mir::CastKind::Unsize => { // unsize targets other than to a fat pointer currently // can't be operands. assert!(common::type_is_fat_ptr(bcx.tcx(), cast_ty)); match operand.val { OperandValue::FatPtr(..) => { // unsize from a fat pointer - this is a // "trait-object-to-supertrait" coercion, for // example, // &'a fmt::Debug+Send => &'a fmt::Debug, // and is a no-op at the LLVM level operand.val } OperandValue::Immediate(lldata) => { // "standard" unsize let (lldata, llextra) = base::unsize_thin_ptr(bcx, lldata, operand.ty, cast_ty); OperandValue::FatPtr(lldata, llextra) } OperandValue::Ref(_) => { bcx.sess().bug( &format!("by-ref operand {} in trans_rvalue_operand", operand.repr(bcx))); } } } mir::CastKind::Misc if common::type_is_immediate(bcx.ccx(), operand.ty) => { debug_assert!(common::type_is_immediate(bcx.ccx(), cast_ty)); let r_t_in = CastTy::from_ty(operand.ty).expect("bad input type for cast"); let r_t_out = CastTy::from_ty(cast_ty).expect("bad output type for cast"); let ll_t_in = type_of::arg_type_of(bcx.ccx(), operand.ty); let ll_t_out = type_of::arg_type_of(bcx.ccx(), cast_ty); let (llval, ll_t_in, signed) = if let CastTy::Int(IntTy::CEnum) = r_t_in { let repr = adt::represent_type(bcx.ccx(), operand.ty); let llval = operand.immediate(); let discr = adt::trans_get_discr(bcx, &*repr, llval, None); (discr, common::val_ty(discr), adt::is_discr_signed(&*repr)) } else { (operand.immediate(), ll_t_in, operand.ty.is_signed()) }; let newval = match (r_t_in, r_t_out) { (CastTy::Int(_), CastTy::Int(_)) => { let srcsz = ll_t_in.int_width(); let dstsz = ll_t_out.int_width(); if srcsz == dstsz { build::BitCast(bcx, llval, ll_t_out) } else if srcsz > dstsz { build::Trunc(bcx, llval, ll_t_out) } else if signed { build::SExt(bcx, llval, ll_t_out) } else { build::ZExt(bcx, llval, ll_t_out) } } (CastTy::Float, CastTy::Float) => { let srcsz = ll_t_in.float_width(); let dstsz = ll_t_out.float_width(); if dstsz > srcsz { build::FPExt(bcx, llval, ll_t_out) } else if srcsz > dstsz { build::FPTrunc(bcx, llval, ll_t_out) } else { llval } } (CastTy::Ptr(_), CastTy::Ptr(_)) | (CastTy::FnPtr, CastTy::Ptr(_)) | (CastTy::RPtr(_), CastTy::Ptr(_)) => build::PointerCast(bcx, llval, ll_t_out), (CastTy::Ptr(_), CastTy::Int(_)) | (CastTy::FnPtr, CastTy::Int(_)) => build::PtrToInt(bcx, llval, ll_t_out), (CastTy::Int(_), CastTy::Ptr(_)) => build::IntToPtr(bcx, llval, ll_t_out), (CastTy::Int(_), CastTy::Float) if signed => build::SIToFP(bcx, llval, ll_t_out), (CastTy::Int(_), CastTy::Float) => build::UIToFP(bcx, llval, ll_t_out), (CastTy::Float, CastTy::Int(IntTy::I)) => build::FPToSI(bcx, llval, ll_t_out), (CastTy::Float, CastTy::Int(_)) => build::FPToUI(bcx, llval, ll_t_out), _ => bcx.ccx().sess().bug( &format!("unsupported cast: {:?} to {:?}", operand.ty, cast_ty) ) }; OperandValue::Immediate(newval) } mir::CastKind::Misc => { // Casts from a fat-ptr. let ll_cast_ty = type_of::arg_type_of(bcx.ccx(), cast_ty); let ll_from_ty = type_of::arg_type_of(bcx.ccx(), operand.ty); if let OperandValue::FatPtr(data_ptr, meta_ptr) = operand.val { if common::type_is_fat_ptr(bcx.tcx(), cast_ty) { let ll_cft = ll_cast_ty.field_types(); let ll_fft = ll_from_ty.field_types(); let data_cast = build::PointerCast(bcx, data_ptr, ll_cft[0]); assert_eq!(ll_cft[1].kind(), ll_fft[1].kind()); OperandValue::FatPtr(data_cast, meta_ptr) } else { // cast to thin-ptr // Cast of fat-ptr to thin-ptr is an extraction of data-ptr and // pointer-cast of that pointer to desired pointer type. let llval = build::PointerCast(bcx, data_ptr, ll_cast_ty); OperandValue::Immediate(llval) } } else { panic!("Unexpected non-FatPtr operand") } } }; (bcx, OperandRef { val: val, ty: cast_ty }) } mir::Rvalue::Ref(_, bk, ref lvalue) => { let tr_lvalue = self.trans_lvalue(bcx, lvalue); let ty = tr_lvalue.ty.to_ty(bcx.tcx()); let ref_ty = bcx.tcx().mk_ref( bcx.tcx().mk_region(ty::ReStatic), ty::TypeAndMut { ty: ty, mutbl: bk.to_mutbl_lossy() } ); // Note: lvalues are indirect, so storing the `llval` into the // destination effectively creates a reference. if common::type_is_sized(bcx.tcx(), ty) { (bcx, OperandRef { val: OperandValue::Immediate(tr_lvalue.llval), ty: ref_ty, }) } else { (bcx, OperandRef { val: OperandValue::FatPtr(tr_lvalue.llval, tr_lvalue.llextra), ty: ref_ty, }) } } mir::Rvalue::Len(ref lvalue) => { let tr_lvalue = self.trans_lvalue(bcx, lvalue); (bcx, OperandRef { val: OperandValue::Immediate(self.lvalue_len(bcx, tr_lvalue)), ty: bcx.tcx().types.usize, }) } mir::Rvalue::BinaryOp(op, ref lhs, ref rhs) => { let lhs = self.trans_operand(bcx, lhs); let rhs = self.trans_operand(bcx, rhs); let llresult = if common::type_is_fat_ptr(bcx.tcx(), lhs.ty) { match (lhs.val, rhs.val) { (OperandValue::FatPtr(lhs_addr, lhs_extra), OperandValue::FatPtr(rhs_addr, rhs_extra)) => { base::compare_fat_ptrs(bcx, lhs_addr, lhs_extra, rhs_addr, rhs_extra, lhs.ty, op.to_hir_binop(), DebugLoc::None) } _ => unreachable!() } } else { self.trans_scalar_binop(bcx, op, lhs.immediate(), rhs.immediate(), lhs.ty, DebugLoc::None) }; (bcx, OperandRef { val: OperandValue::Immediate(llresult), ty: self.mir.binop_ty(bcx.tcx(), op, lhs.ty, rhs.ty), }) } mir::Rvalue::UnaryOp(op, ref operand) => { let operand = self.trans_operand(bcx, operand); let lloperand = operand.immediate(); let is_float = operand.ty.is_fp(); let debug_loc = DebugLoc::None; let llval = match op { mir::UnOp::Not => build::Not(bcx, lloperand, debug_loc), mir::UnOp::Neg => if is_float { build::FNeg(bcx, lloperand, debug_loc) } else { build::Neg(bcx, lloperand, debug_loc) } }; (bcx, OperandRef { val: OperandValue::Immediate(llval), ty: operand.ty, }) } mir::Rvalue::Box(content_ty) => { let content_ty: Ty<'tcx> = bcx.monomorphize(&content_ty); let llty = type_of::type_of(bcx.ccx(), content_ty); let llsize = machine::llsize_of(bcx.ccx(), llty); let align = type_of::align_of(bcx.ccx(), content_ty); let llalign = common::C_uint(bcx.ccx(), align); let llty_ptr = llty.ptr_to(); let box_ty = bcx.tcx().mk_box(content_ty); let Result { bcx, val: llval } = base::malloc_raw_dyn(bcx, llty_ptr, box_ty, llsize, llalign, DebugLoc::None); (bcx, OperandRef { val: OperandValue::Immediate(llval), ty: box_ty, }) } mir::Rvalue::Repeat(..) | mir::Rvalue::Aggregate(..) | mir::Rvalue::Slice { .. } | mir::Rvalue::InlineAsm(..) => { bcx.tcx().sess.bug(&format!("cannot generate operand from rvalue {:?}", rvalue)); } } } pub fn trans_scalar_binop(&mut self, bcx: Block<'bcx, 'tcx>, op: mir::BinOp, lhs: ValueRef, rhs: ValueRef, input_ty: Ty<'tcx>, debug_loc: DebugLoc) -> ValueRef { let is_float = input_ty.is_fp(); let is_signed = input_ty.is_signed(); match op { mir::BinOp::Add => if is_float { build::FAdd(bcx, lhs, rhs, debug_loc) } else { build::Add(bcx, lhs, rhs, debug_loc) }, mir::BinOp::Sub => if is_float { build::FSub(bcx, lhs, rhs, debug_loc) } else { build::Sub(bcx, lhs, rhs, debug_loc) }, mir::BinOp::Mul => if is_float { build::FMul(bcx, lhs, rhs, debug_loc) } else { build::Mul(bcx, lhs, rhs, debug_loc) }, mir::BinOp::Div => if is_float { build::FDiv(bcx, lhs, rhs, debug_loc) } else if is_signed { build::SDiv(bcx, lhs, rhs, debug_loc) } else { build::UDiv(bcx, lhs, rhs, debug_loc) }, mir::BinOp::Rem => if is_float { // LLVM currently always lowers the `frem` instructions appropriate // library calls typically found in libm. Notably f64 gets wired up // to `fmod` and f32 gets wired up to `fmodf`. Inconveniently for // us, 32-bit MSVC does not actually have a `fmodf` symbol, it's // instead just an inline function in a header that goes up to a // f64, uses `fmod`, and then comes back down to a f32. // // Although LLVM knows that `fmodf` doesn't exist on MSVC, it will // still unconditionally lower frem instructions over 32-bit floats // to a call to `fmodf`. To work around this we special case MSVC // 32-bit float rem instructions and instead do the call out to // `fmod` ourselves. // // Note that this is currently duplicated with src/libcore/ops.rs // which does the same thing, and it would be nice to perhaps unify // these two implementations one day! Also note that we call `fmod` // for both 32 and 64-bit floats because if we emit any FRem // instruction at all then LLVM is capable of optimizing it into a // 32-bit FRem (which we're trying to avoid). let tcx = bcx.tcx(); let use_fmod = tcx.sess.target.target.options.is_like_msvc && tcx.sess.target.target.arch == "x86"; if use_fmod { let f64t = Type::f64(bcx.ccx()); let fty = Type::func(&[f64t, f64t], &f64t); let llfn = declare::declare_cfn(bcx.ccx(), "fmod", fty, tcx.types.f64); if input_ty == tcx.types.f32 { let lllhs = build::FPExt(bcx, lhs, f64t); let llrhs = build::FPExt(bcx, rhs, f64t); let llres = build::Call(bcx, llfn, &[lllhs, llrhs], None, debug_loc); build::FPTrunc(bcx, llres, Type::f32(bcx.ccx())) } else { build::Call(bcx, llfn, &[lhs, rhs], None, debug_loc) } } else { build::FRem(bcx, lhs, rhs, debug_loc) } } else if is_signed { build::SRem(bcx, lhs, rhs, debug_loc) } else { build::URem(bcx, lhs, rhs, debug_loc) }, mir::BinOp::BitOr => build::Or(bcx, lhs, rhs, debug_loc), mir::BinOp::BitAnd => build::And(bcx, lhs, rhs, debug_loc), mir::BinOp::BitXor => build::Xor(bcx, lhs, rhs, debug_loc), mir::BinOp::Shl => common::build_unchecked_lshift(bcx, lhs, rhs, debug_loc), mir::BinOp::Shr => common::build_unchecked_rshift(bcx, input_ty, lhs, rhs, debug_loc), mir::BinOp::Eq | mir::BinOp::Lt | mir::BinOp::Gt | mir::BinOp::Ne | mir::BinOp::Le | mir::BinOp::Ge => { base::compare_scalar_types(bcx, lhs, rhs, input_ty, op.to_hir_binop(), debug_loc) } } } } pub fn rvalue_creates_operand<'tcx>(rvalue: &mir::Rvalue<'tcx>) -> bool { match *rvalue { mir::Rvalue::Use(..) | // (*) mir::Rvalue::Ref(..) | mir::Rvalue::Len(..) | mir::Rvalue::Cast(..) | // (*) mir::Rvalue::BinaryOp(..) | mir::Rvalue::UnaryOp(..) | mir::Rvalue::Box(..) => true, mir::Rvalue::Repeat(..) | mir::Rvalue::Aggregate(..) | mir::Rvalue::Slice { .. } | mir::Rvalue::InlineAsm(..) => false, } // (*) this is only true if the type is suitable }