// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /** * The concurrency primitives you know and love. * * Maybe once we have a "core exports x only to std" mechanism, these can be * in std. */ use std::borrow; use std::comm; use std::comm::SendDeferred; use std::task; use std::unstable::sync::{Exclusive, UnsafeAtomicRcBox}; use std::unstable::atomics; use std::util; /**************************************************************************** * Internals ****************************************************************************/ // Each waiting task receives on one of these. #[doc(hidden)] type WaitEnd = comm::PortOne<()>; #[doc(hidden)] type SignalEnd = comm::ChanOne<()>; // A doubly-ended queue of waiting tasks. #[doc(hidden)] struct WaitQueue { head: comm::Port, tail: comm::Chan } impl WaitQueue { fn new() -> WaitQueue { let (block_head, block_tail) = comm::stream(); WaitQueue { head: block_head, tail: block_tail } } // Signals one live task from the queue. fn signal(&self) -> bool { // The peek is mandatory to make sure recv doesn't block. if self.head.peek() { // Pop and send a wakeup signal. If the waiter was killed, its port // will have closed. Keep trying until we get a live task. if self.head.recv().try_send_deferred(()) { true } else { self.signal() } } else { false } } fn broadcast(&self) -> uint { let mut count = 0; while self.head.peek() { if self.head.recv().try_send_deferred(()) { count += 1; } } count } } // The building-block used to make semaphores, mutexes, and rwlocks. #[doc(hidden)] struct SemInner { count: int, waiters: WaitQueue, // Can be either unit or another waitqueue. Some sems shouldn't come with // a condition variable attached, others should. blocked: Q } #[doc(hidden)] struct Sem(Exclusive>); #[doc(hidden)] impl Sem { fn new(count: int, q: Q) -> Sem { Sem(Exclusive::new(SemInner { count: count, waiters: WaitQueue::new(), blocked: q })) } pub fn acquire(&self) { unsafe { let mut waiter_nobe = None; do (**self).with |state| { state.count -= 1; if state.count < 0 { // Create waiter nobe. let (WaitEnd, SignalEnd) = comm::oneshot(); // Tell outer scope we need to block. waiter_nobe = Some(WaitEnd); // Enqueue ourself. state.waiters.tail.send_deferred(SignalEnd); } } // Uncomment if you wish to test for sem races. Not valgrind-friendly. /* do 1000.times { task::yield(); } */ // Need to wait outside the exclusive. if waiter_nobe.is_some() { let _ = comm::recv_one(waiter_nobe.unwrap()); } } } pub fn release(&self) { unsafe { do (**self).with |state| { state.count += 1; if state.count <= 0 { state.waiters.signal(); } } } } } // FIXME(#3154) move both copies of this into Sem, and unify the 2 structs #[doc(hidden)] impl Sem<()> { pub fn access(&self, blk: &fn() -> U) -> U { let mut release = None; do task::unkillable { self.acquire(); release = Some(SemRelease(self)); } blk() } } #[doc(hidden)] impl Sem<~[WaitQueue]> { fn new_and_signal(count: int, num_condvars: uint) -> Sem<~[WaitQueue]> { let mut queues = ~[]; do num_condvars.times { queues.push(WaitQueue::new()); } Sem::new(count, queues) } pub fn access_waitqueue(&self, blk: &fn() -> U) -> U { let mut release = None; do task::unkillable { self.acquire(); release = Some(SemAndSignalRelease(self)); } blk() } } // FIXME(#3588) should go inside of access() #[doc(hidden)] type SemRelease<'self> = SemReleaseGeneric<'self, ()>; #[doc(hidden)] type SemAndSignalRelease<'self> = SemReleaseGeneric<'self, ~[WaitQueue]>; #[doc(hidden)] struct SemReleaseGeneric<'self, Q> { sem: &'self Sem } #[doc(hidden)] #[unsafe_destructor] impl<'self, Q:Send> Drop for SemReleaseGeneric<'self, Q> { fn drop(&self) { self.sem.release(); } } #[doc(hidden)] fn SemRelease<'r>(sem: &'r Sem<()>) -> SemRelease<'r> { SemReleaseGeneric { sem: sem } } #[doc(hidden)] fn SemAndSignalRelease<'r>(sem: &'r Sem<~[WaitQueue]>) -> SemAndSignalRelease<'r> { SemReleaseGeneric { sem: sem } } // FIXME(#3598): Want to use an Option down below, but we need a custom enum // that's not polymorphic to get around the fact that lifetimes are invariant // inside of type parameters. enum ReacquireOrderLock<'self> { Nothing, // c.c Just(&'self Semaphore), } /// A mechanism for atomic-unlock-and-deschedule blocking and signalling. pub struct Condvar<'self> { // The 'Sem' object associated with this condvar. This is the one that's // atomically-unlocked-and-descheduled upon and reacquired during wakeup. priv sem: &'self Sem<~[WaitQueue]>, // This is (can be) an extra semaphore which is held around the reacquire // operation on the first one. This is only used in cvars associated with // rwlocks, and is needed to ensure that, when a downgrader is trying to // hand off the access lock (which would be the first field, here), a 2nd // writer waking up from a cvar wait can't race with a reader to steal it, // See the comment in write_cond for more detail. priv order: ReacquireOrderLock<'self>, } #[unsafe_destructor] impl<'self> Drop for Condvar<'self> { fn drop(&self) {} } impl<'self> Condvar<'self> { /** * Atomically drop the associated lock, and block until a signal is sent. * * # Failure * A task which is killed (i.e., by linked failure with another task) * while waiting on a condition variable will wake up, fail, and unlock * the associated lock as it unwinds. */ pub fn wait(&self) { self.wait_on(0) } /** * As wait(), but can specify which of multiple condition variables to * wait on. Only a signal_on() or broadcast_on() with the same condvar_id * will wake this thread. * * The associated lock must have been initialised with an appropriate * number of condvars. The condvar_id must be between 0 and num_condvars-1 * or else this call will fail. * * wait() is equivalent to wait_on(0). */ pub fn wait_on(&self, condvar_id: uint) { // Create waiter nobe. let (WaitEnd, SignalEnd) = comm::oneshot(); let mut WaitEnd = Some(WaitEnd); let mut SignalEnd = Some(SignalEnd); let mut reacquire = None; let mut out_of_bounds = None; unsafe { do task::unkillable { // Release lock, 'atomically' enqueuing ourselves in so doing. do (**self.sem).with |state| { if condvar_id < state.blocked.len() { // Drop the lock. state.count += 1; if state.count <= 0 { state.waiters.signal(); } // Enqueue ourself to be woken up by a signaller. let SignalEnd = SignalEnd.take_unwrap(); state.blocked[condvar_id].tail.send_deferred(SignalEnd); } else { out_of_bounds = Some(state.blocked.len()); } } // If yield checks start getting inserted anywhere, we can be // killed before or after enqueueing. Deciding whether to // unkillably reacquire the lock needs to happen atomically // wrt enqueuing. if out_of_bounds.is_none() { reacquire = Some(CondvarReacquire { sem: self.sem, order: self.order }); } } } do check_cvar_bounds(out_of_bounds, condvar_id, "cond.wait_on()") { // Unconditionally "block". (Might not actually block if a // signaller already sent -- I mean 'unconditionally' in contrast // with acquire().) let _ = comm::recv_one(WaitEnd.take_unwrap()); } // This is needed for a failing condition variable to reacquire the // mutex during unwinding. As long as the wrapper (mutex, etc) is // bounded in when it gets released, this shouldn't hang forever. struct CondvarReacquire<'self> { sem: &'self Sem<~[WaitQueue]>, order: ReacquireOrderLock<'self>, } #[unsafe_destructor] impl<'self> Drop for CondvarReacquire<'self> { fn drop(&self) { // Needs to succeed, instead of itself dying. do task::unkillable { match self.order { Just(lock) => do lock.access { self.sem.acquire(); }, Nothing => { self.sem.acquire(); }, } } } } } /// Wake up a blocked task. Returns false if there was no blocked task. pub fn signal(&self) -> bool { self.signal_on(0) } /// As signal, but with a specified condvar_id. See wait_on. pub fn signal_on(&self, condvar_id: uint) -> bool { unsafe { let mut out_of_bounds = None; let mut result = false; do (**self.sem).with |state| { if condvar_id < state.blocked.len() { result = state.blocked[condvar_id].signal(); } else { out_of_bounds = Some(state.blocked.len()); } } do check_cvar_bounds(out_of_bounds, condvar_id, "cond.signal_on()") { result } } } /// Wake up all blocked tasks. Returns the number of tasks woken. pub fn broadcast(&self) -> uint { self.broadcast_on(0) } /// As broadcast, but with a specified condvar_id. See wait_on. pub fn broadcast_on(&self, condvar_id: uint) -> uint { let mut out_of_bounds = None; let mut queue = None; unsafe { do (**self.sem).with |state| { if condvar_id < state.blocked.len() { // To avoid :broadcast_heavy, we make a new waitqueue, // swap it out with the old one, and broadcast on the // old one outside of the little-lock. queue = Some(util::replace(&mut state.blocked[condvar_id], WaitQueue::new())); } else { out_of_bounds = Some(state.blocked.len()); } } do check_cvar_bounds(out_of_bounds, condvar_id, "cond.signal_on()") { let queue = queue.take_unwrap(); queue.broadcast() } } } } // Checks whether a condvar ID was out of bounds, and fails if so, or does // something else next on success. #[inline] #[doc(hidden)] fn check_cvar_bounds(out_of_bounds: Option, id: uint, act: &str, blk: &fn() -> U) -> U { match out_of_bounds { Some(0) => fail!("%s with illegal ID %u - this lock has no condvars!", act, id), Some(length) => fail!("%s with illegal ID %u - ID must be less than %u", act, id, length), None => blk() } } #[doc(hidden)] impl Sem<~[WaitQueue]> { // The only other places that condvars get built are rwlock.write_cond() // and rwlock_write_mode. pub fn access_cond(&self, blk: &fn(c: &Condvar) -> U) -> U { do self.access_waitqueue { blk(&Condvar { sem: self, order: Nothing }) } } } /**************************************************************************** * Semaphores ****************************************************************************/ /// A counting, blocking, bounded-waiting semaphore. struct Semaphore { priv sem: Sem<()> } impl Clone for Semaphore { /// Create a new handle to the semaphore. fn clone(&self) -> Semaphore { Semaphore { sem: Sem((*self.sem).clone()) } } } impl Semaphore { /// Create a new semaphore with the specified count. pub fn new(count: int) -> Semaphore { Semaphore { sem: Sem::new(count, ()) } } /** * Acquire a resource represented by the semaphore. Blocks if necessary * until resource(s) become available. */ pub fn acquire(&self) { (&self.sem).acquire() } /** * Release a held resource represented by the semaphore. Wakes a blocked * contending task, if any exist. Won't block the caller. */ pub fn release(&self) { (&self.sem).release() } /// Run a function with ownership of one of the semaphore's resources. pub fn access(&self, blk: &fn() -> U) -> U { (&self.sem).access(blk) } } /**************************************************************************** * Mutexes ****************************************************************************/ /** * A blocking, bounded-waiting, mutual exclusion lock with an associated * FIFO condition variable. * * # Failure * A task which fails while holding a mutex will unlock the mutex as it * unwinds. */ pub struct Mutex { priv sem: Sem<~[WaitQueue]> } impl Clone for Mutex { /// Create a new handle to the mutex. fn clone(&self) -> Mutex { Mutex { sem: Sem((*self.sem).clone()) } } } impl Mutex { /// Create a new mutex, with one associated condvar. pub fn new() -> Mutex { Mutex::new_with_condvars(1) } /** * Create a new mutex, with a specified number of associated condvars. This * will allow calling wait_on/signal_on/broadcast_on with condvar IDs between * 0 and num_condvars-1. (If num_condvars is 0, lock_cond will be allowed but * any operations on the condvar will fail.) */ pub fn new_with_condvars(num_condvars: uint) -> Mutex { Mutex { sem: Sem::new_and_signal(1, num_condvars) } } /// Run a function with ownership of the mutex. pub fn lock(&self, blk: &fn() -> U) -> U { (&self.sem).access_waitqueue(blk) } /// Run a function with ownership of the mutex and a handle to a condvar. pub fn lock_cond(&self, blk: &fn(c: &Condvar) -> U) -> U { (&self.sem).access_cond(blk) } } /**************************************************************************** * Reader-writer locks ****************************************************************************/ // NB: Wikipedia - Readers-writers_problem#The_third_readers-writers_problem #[doc(hidden)] struct RWLockInner { // You might ask, "Why don't you need to use an atomic for the mode flag?" // This flag affects the behaviour of readers (for plain readers, they // assert on it; for downgraders, they use it to decide which mode to // unlock for). Consider that the flag is only unset when the very last // reader exits; therefore, it can never be unset during a reader/reader // (or reader/downgrader) race. // By the way, if we didn't care about the assert in the read unlock path, // we could instead store the mode flag in write_downgrade's stack frame, // and have the downgrade tokens store a borrowed pointer to it. read_mode: bool, // The only way the count flag is ever accessed is with xadd. Since it is // a read-modify-write operation, multiple xadds on different cores will // always be consistent with respect to each other, so a monotonic/relaxed // consistency ordering suffices (i.e., no extra barriers are needed). // FIXME(#6598): The atomics module has no relaxed ordering flag, so I use // acquire/release orderings superfluously. Change these someday. read_count: atomics::AtomicUint, } /** * A blocking, no-starvation, reader-writer lock with an associated condvar. * * # Failure * A task which fails while holding an rwlock will unlock the rwlock as it * unwinds. */ pub struct RWLock { priv order_lock: Semaphore, priv access_lock: Sem<~[WaitQueue]>, priv state: UnsafeAtomicRcBox, } impl RWLock { /// Create a new rwlock, with one associated condvar. pub fn new() -> RWLock { RWLock::new_with_condvars(1) } /** * Create a new rwlock, with a specified number of associated condvars. * Similar to mutex_with_condvars. */ pub fn new_with_condvars(num_condvars: uint) -> RWLock { let state = UnsafeAtomicRcBox::new(RWLockInner { read_mode: false, read_count: atomics::AtomicUint::new(0), }); RWLock { order_lock: Semaphore::new(1), access_lock: Sem::new_and_signal(1, num_condvars), state: state, } } /// Create a new handle to the rwlock. pub fn clone(&self) -> RWLock { RWLock { order_lock: (&(self.order_lock)).clone(), access_lock: Sem((*self.access_lock).clone()), state: self.state.clone() } } /** * Run a function with the rwlock in read mode. Calls to 'read' from other * tasks may run concurrently with this one. */ pub fn read(&self, blk: &fn() -> U) -> U { let mut release = None; unsafe { do task::unkillable { do (&self.order_lock).access { let state = &mut *self.state.get(); let old_count = state.read_count.fetch_add(1, atomics::Acquire); if old_count == 0 { (&self.access_lock).acquire(); state.read_mode = true; } } release = Some(RWLockReleaseRead(self)); } } blk() } /** * Run a function with the rwlock in write mode. No calls to 'read' or * 'write' from other tasks will run concurrently with this one. */ pub fn write(&self, blk: &fn() -> U) -> U { unsafe { do task::unkillable { (&self.order_lock).acquire(); do (&self.access_lock).access_waitqueue { (&self.order_lock).release(); do task::rekillable { blk() } } } } } /** * As write(), but also with a handle to a condvar. Waiting on this * condvar will allow readers and writers alike to take the rwlock before * the waiting task is signalled. (Note: a writer that waited and then * was signalled might reacquire the lock before other waiting writers.) */ pub fn write_cond(&self, blk: &fn(c: &Condvar) -> U) -> U { // It's important to thread our order lock into the condvar, so that // when a cond.wait() wakes up, it uses it while reacquiring the // access lock. If we permitted a waking-up writer to "cut in line", // there could arise a subtle race when a downgrader attempts to hand // off the reader cloud lock to a waiting reader. This race is tested // in arc.rs (test_rw_write_cond_downgrade_read_race) and looks like: // T1 (writer) T2 (downgrader) T3 (reader) // [in cond.wait()] // [locks for writing] // [holds access_lock] // [is signalled, perhaps by // downgrader or a 4th thread] // tries to lock access(!) // lock order_lock // xadd read_count[0->1] // tries to lock access // [downgrade] // xadd read_count[1->2] // unlock access // Since T1 contended on the access lock before T3 did, it will steal // the lock handoff. Adding order_lock in the condvar reacquire path // solves this because T1 will hold order_lock while waiting on access, // which will cause T3 to have to wait until T1 finishes its write, // which can't happen until T2 finishes the downgrade-read entirely. // The astute reader will also note that making waking writers use the // order_lock is better for not starving readers. unsafe { do task::unkillable { (&self.order_lock).acquire(); do (&self.access_lock).access_cond |cond| { (&self.order_lock).release(); do task::rekillable { let opt_lock = Just(&self.order_lock); blk(&Condvar { order: opt_lock, ..*cond }) } } } } } /** * As write(), but with the ability to atomically 'downgrade' the lock; * i.e., to become a reader without letting other writers get the lock in * the meantime (such as unlocking and then re-locking as a reader would * do). The block takes a "write mode token" argument, which can be * transformed into a "read mode token" by calling downgrade(). Example: * * # Example * * ~~~ {.rust} * do lock.write_downgrade |mut write_token| { * do write_token.write_cond |condvar| { * ... exclusive access ... * } * let read_token = lock.downgrade(write_token); * do read_token.read { * ... shared access ... * } * } * ~~~ */ pub fn write_downgrade(&self, blk: &fn(v: RWLockWriteMode) -> U) -> U { // Implementation slightly different from the slicker 'write's above. // The exit path is conditional on whether the caller downgrades. let mut _release = None; do task::unkillable { (&self.order_lock).acquire(); (&self.access_lock).acquire(); (&self.order_lock).release(); } _release = Some(RWLockReleaseDowngrade(self)); blk(RWLockWriteMode { lock: self }) } /// To be called inside of the write_downgrade block. pub fn downgrade<'a>(&self, token: RWLockWriteMode<'a>) -> RWLockReadMode<'a> { if !borrow::ref_eq(self, token.lock) { fail!("Can't downgrade() with a different rwlock's write_mode!"); } unsafe { do task::unkillable { let state = &mut *self.state.get(); assert!(!state.read_mode); state.read_mode = true; // If a reader attempts to enter at this point, both the // downgrader and reader will set the mode flag. This is fine. let old_count = state.read_count.fetch_add(1, atomics::Release); // If another reader was already blocking, we need to hand-off // the "reader cloud" access lock to them. if old_count != 0 { // Guaranteed not to let another writer in, because // another reader was holding the order_lock. Hence they // must be the one to get the access_lock (because all // access_locks are acquired with order_lock held). See // the comment in write_cond for more justification. (&self.access_lock).release(); } } } RWLockReadMode { lock: token.lock } } } // FIXME(#3588) should go inside of read() #[doc(hidden)] struct RWLockReleaseRead<'self> { lock: &'self RWLock, } #[doc(hidden)] #[unsafe_destructor] impl<'self> Drop for RWLockReleaseRead<'self> { fn drop(&self) { unsafe { do task::unkillable { let state = &mut *self.lock.state.get(); assert!(state.read_mode); let old_count = state.read_count.fetch_sub(1, atomics::Release); assert!(old_count > 0); if old_count == 1 { state.read_mode = false; // Note: this release used to be outside of a locked access // to exclusive-protected state. If this code is ever // converted back to such (instead of using atomic ops), // this access MUST NOT go inside the exclusive access. (&self.lock.access_lock).release(); } } } } } #[doc(hidden)] fn RWLockReleaseRead<'r>(lock: &'r RWLock) -> RWLockReleaseRead<'r> { RWLockReleaseRead { lock: lock } } // FIXME(#3588) should go inside of downgrade() #[doc(hidden)] #[unsafe_destructor] struct RWLockReleaseDowngrade<'self> { lock: &'self RWLock, } #[doc(hidden)] #[unsafe_destructor] impl<'self> Drop for RWLockReleaseDowngrade<'self> { fn drop(&self) { unsafe { do task::unkillable { let writer_or_last_reader; // Check if we're releasing from read mode or from write mode. let state = &mut *self.lock.state.get(); if state.read_mode { // Releasing from read mode. let old_count = state.read_count.fetch_sub(1, atomics::Release); assert!(old_count > 0); // Check if other readers remain. if old_count == 1 { // Case 1: Writer downgraded & was the last reader writer_or_last_reader = true; state.read_mode = false; } else { // Case 2: Writer downgraded & was not the last reader writer_or_last_reader = false; } } else { // Case 3: Writer did not downgrade writer_or_last_reader = true; } if writer_or_last_reader { // Nobody left inside; release the "reader cloud" lock. (&self.lock.access_lock).release(); } } } } } #[doc(hidden)] fn RWLockReleaseDowngrade<'r>(lock: &'r RWLock) -> RWLockReleaseDowngrade<'r> { RWLockReleaseDowngrade { lock: lock } } /// The "write permission" token used for rwlock.write_downgrade(). pub struct RWLockWriteMode<'self> { priv lock: &'self RWLock } #[unsafe_destructor] impl<'self> Drop for RWLockWriteMode<'self> { fn drop(&self) {} } /// The "read permission" token used for rwlock.write_downgrade(). pub struct RWLockReadMode<'self> { priv lock: &'self RWLock } #[unsafe_destructor] impl<'self> Drop for RWLockReadMode<'self> { fn drop(&self) {} } impl<'self> RWLockWriteMode<'self> { /// Access the pre-downgrade rwlock in write mode. pub fn write(&self, blk: &fn() -> U) -> U { blk() } /// Access the pre-downgrade rwlock in write mode with a condvar. pub fn write_cond(&self, blk: &fn(c: &Condvar) -> U) -> U { // Need to make the condvar use the order lock when reacquiring the // access lock. See comment in RWLock::write_cond for why. blk(&Condvar { sem: &self.lock.access_lock, order: Just(&self.lock.order_lock), }) } } impl<'self> RWLockReadMode<'self> { /// Access the post-downgrade rwlock in read mode. pub fn read(&self, blk: &fn() -> U) -> U { blk() } } /**************************************************************************** * Tests ****************************************************************************/ #[cfg(test)] mod tests { use sync::*; use std::cast; use std::cell::Cell; use std::comm; use std::result; use std::task; /************************************************************************ * Semaphore tests ************************************************************************/ #[test] fn test_sem_acquire_release() { let s = ~Semaphore::new(1); s.acquire(); s.release(); s.acquire(); } #[test] fn test_sem_basic() { let s = ~Semaphore::new(1); do s.access { } } #[test] fn test_sem_as_mutex() { let s = ~Semaphore::new(1); let s2 = ~s.clone(); do task::spawn || { do s2.access { do 5.times { task::yield(); } } } do s.access { do 5.times { task::yield(); } } } #[test] fn test_sem_as_cvar() { /* Child waits and parent signals */ let (p,c) = comm::stream(); let s = ~Semaphore::new(0); let s2 = ~s.clone(); do task::spawn || { s2.acquire(); c.send(()); } do 5.times { task::yield(); } s.release(); let _ = p.recv(); /* Parent waits and child signals */ let (p,c) = comm::stream(); let s = ~Semaphore::new(0); let s2 = ~s.clone(); do task::spawn || { do 5.times { task::yield(); } s2.release(); let _ = p.recv(); } s.acquire(); c.send(()); } #[test] fn test_sem_multi_resource() { // Parent and child both get in the critical section at the same // time, and shake hands. let s = ~Semaphore::new(2); let s2 = ~s.clone(); let (p1,c1) = comm::stream(); let (p2,c2) = comm::stream(); do task::spawn || { do s2.access { let _ = p2.recv(); c1.send(()); } } do s.access { c2.send(()); let _ = p1.recv(); } } #[test] fn test_sem_runtime_friendly_blocking() { // Force the runtime to schedule two threads on the same sched_loop. // When one blocks, it should schedule the other one. do task::spawn_sched(task::SingleThreaded) { let s = ~Semaphore::new(1); let s2 = ~s.clone(); let (p,c) = comm::stream(); let child_data = Cell::new((s2, c)); do s.access { let (s2, c) = child_data.take(); do task::spawn || { c.send(()); do s2.access { } c.send(()); } let _ = p.recv(); // wait for child to come alive do 5.times { task::yield(); } // let the child contend } let _ = p.recv(); // wait for child to be done } } /************************************************************************ * Mutex tests ************************************************************************/ #[test] fn test_mutex_lock() { // Unsafely achieve shared state, and do the textbook // "load tmp = move ptr; inc tmp; store ptr <- tmp" dance. let (p,c) = comm::stream(); let m = ~Mutex::new(); let m2 = m.clone(); let mut sharedstate = ~0; { let ptr: *int = &*sharedstate; do task::spawn || { let sharedstate: &mut int = unsafe { cast::transmute(ptr) }; access_shared(sharedstate, m2, 10); c.send(()); } } { access_shared(sharedstate, m, 10); let _ = p.recv(); assert_eq!(*sharedstate, 20); } fn access_shared(sharedstate: &mut int, m: &Mutex, n: uint) { do n.times { do m.lock { let oldval = *sharedstate; task::yield(); *sharedstate = oldval + 1; } } } } #[test] fn test_mutex_cond_wait() { let m = ~Mutex::new(); // Child wakes up parent do m.lock_cond |cond| { let m2 = ~m.clone(); do task::spawn || { do m2.lock_cond |cond| { let woken = cond.signal(); assert!(woken); } } cond.wait(); } // Parent wakes up child let (port,chan) = comm::stream(); let m3 = ~m.clone(); do task::spawn || { do m3.lock_cond |cond| { chan.send(()); cond.wait(); chan.send(()); } } let _ = port.recv(); // Wait until child gets in the mutex do m.lock_cond |cond| { let woken = cond.signal(); assert!(woken); } let _ = port.recv(); // Wait until child wakes up } #[cfg(test)] fn test_mutex_cond_broadcast_helper(num_waiters: uint) { let m = ~Mutex::new(); let mut ports = ~[]; do num_waiters.times { let mi = ~m.clone(); let (port, chan) = comm::stream(); ports.push(port); do task::spawn || { do mi.lock_cond |cond| { chan.send(()); cond.wait(); chan.send(()); } } } // wait until all children get in the mutex foreach port in ports.iter() { let _ = port.recv(); } do m.lock_cond |cond| { let num_woken = cond.broadcast(); assert_eq!(num_woken, num_waiters); } // wait until all children wake up foreach port in ports.iter() { let _ = port.recv(); } } #[test] fn test_mutex_cond_broadcast() { test_mutex_cond_broadcast_helper(12); } #[test] fn test_mutex_cond_broadcast_none() { test_mutex_cond_broadcast_helper(0); } #[test] fn test_mutex_cond_no_waiter() { let m = ~Mutex::new(); let m2 = ~m.clone(); do task::try || { do m.lock_cond |_x| { } }; do m2.lock_cond |cond| { assert!(!cond.signal()); } } #[test] #[ignore(cfg(windows))] fn test_mutex_killed_simple() { // Mutex must get automatically unlocked if failed/killed within. let m = ~Mutex::new(); let m2 = ~m.clone(); let result: result::Result<(),()> = do task::try || { do m2.lock { fail!(); } }; assert!(result.is_err()); // child task must have finished by the time try returns do m.lock { } } #[test] #[ignore(cfg(windows))] fn test_mutex_killed_cond() { // Getting killed during cond wait must not corrupt the mutex while // unwinding (e.g. double unlock). let m = ~Mutex::new(); let m2 = ~m.clone(); let result: result::Result<(),()> = do task::try || { let (p,c) = comm::stream(); do task::spawn || { // linked let _ = p.recv(); // wait for sibling to get in the mutex task::yield(); fail!(); } do m2.lock_cond |cond| { c.send(()); // tell sibling go ahead cond.wait(); // block forever } }; assert!(result.is_err()); // child task must have finished by the time try returns do m.lock_cond |cond| { let woken = cond.signal(); assert!(!woken); } } #[test] #[ignore(cfg(windows))] fn test_mutex_killed_broadcast() { let m = ~Mutex::new(); let m2 = ~m.clone(); let (p,c) = comm::stream(); let result: result::Result<(),()> = do task::try || { let mut sibling_convos = ~[]; do 2.times { let (p,c) = comm::stream(); let c = Cell::new(c); sibling_convos.push(p); let mi = ~m2.clone(); // spawn sibling task do task::spawn { // linked do mi.lock_cond |cond| { let c = c.take(); c.send(()); // tell sibling to go ahead let _z = SendOnFailure(c); cond.wait(); // block forever } } } foreach p in sibling_convos.iter() { let _ = p.recv(); // wait for sibling to get in the mutex } do m2.lock { } c.send(sibling_convos); // let parent wait on all children fail!(); }; assert!(result.is_err()); // child task must have finished by the time try returns let r = p.recv(); foreach p in r.iter() { p.recv(); } // wait on all its siblings do m.lock_cond |cond| { let woken = cond.broadcast(); assert_eq!(woken, 0); } struct SendOnFailure { c: comm::Chan<()>, } impl Drop for SendOnFailure { fn drop(&self) { self.c.send(()); } } fn SendOnFailure(c: comm::Chan<()>) -> SendOnFailure { SendOnFailure { c: c } } } #[test] fn test_mutex_cond_signal_on_0() { // Tests that signal_on(0) is equivalent to signal(). let m = ~Mutex::new(); do m.lock_cond |cond| { let m2 = ~m.clone(); do task::spawn || { do m2.lock_cond |cond| { cond.signal_on(0); } } cond.wait(); } } #[test] #[ignore(cfg(windows))] fn test_mutex_different_conds() { let result = do task::try { let m = ~Mutex::new_with_condvars(2); let m2 = ~m.clone(); let (p,c) = comm::stream(); do task::spawn || { do m2.lock_cond |cond| { c.send(()); cond.wait_on(1); } } let _ = p.recv(); do m.lock_cond |cond| { if !cond.signal_on(0) { fail!(); // success; punt sibling awake. } } }; assert!(result.is_err()); } #[test] #[ignore(cfg(windows))] fn test_mutex_no_condvars() { let result = do task::try { let m = ~Mutex::new_with_condvars(0); do m.lock_cond |cond| { cond.wait(); } }; assert!(result.is_err()); let result = do task::try { let m = ~Mutex::new_with_condvars(0); do m.lock_cond |cond| { cond.signal(); } }; assert!(result.is_err()); let result = do task::try { let m = ~Mutex::new_with_condvars(0); do m.lock_cond |cond| { cond.broadcast(); } }; assert!(result.is_err()); } /************************************************************************ * Reader/writer lock tests ************************************************************************/ #[cfg(test)] pub enum RWLockMode { Read, Write, Downgrade, DowngradeRead } #[cfg(test)] fn lock_rwlock_in_mode(x: &RWLock, mode: RWLockMode, blk: &fn()) { match mode { Read => x.read(blk), Write => x.write(blk), Downgrade => do x.write_downgrade |mode| { do mode.write { blk() }; }, DowngradeRead => do x.write_downgrade |mode| { let mode = x.downgrade(mode); do mode.read { blk() }; }, } } #[cfg(test)] fn test_rwlock_exclusion(x: ~RWLock, mode1: RWLockMode, mode2: RWLockMode) { // Test mutual exclusion between readers and writers. Just like the // mutex mutual exclusion test, a ways above. let (p,c) = comm::stream(); let x2 = (*x).clone(); let mut sharedstate = ~0; { let ptr: *int = &*sharedstate; do task::spawn || { let sharedstate: &mut int = unsafe { cast::transmute(ptr) }; access_shared(sharedstate, &x2, mode1, 10); c.send(()); } } { access_shared(sharedstate, x, mode2, 10); let _ = p.recv(); assert_eq!(*sharedstate, 20); } fn access_shared(sharedstate: &mut int, x: &RWLock, mode: RWLockMode, n: uint) { do n.times { do lock_rwlock_in_mode(x, mode) { let oldval = *sharedstate; task::yield(); *sharedstate = oldval + 1; } } } } #[test] fn test_rwlock_readers_wont_modify_the_data() { test_rwlock_exclusion(~RWLock::new(), Read, Write); test_rwlock_exclusion(~RWLock::new(), Write, Read); test_rwlock_exclusion(~RWLock::new(), Read, Downgrade); test_rwlock_exclusion(~RWLock::new(), Downgrade, Read); } #[test] fn test_rwlock_writers_and_writers() { test_rwlock_exclusion(~RWLock::new(), Write, Write); test_rwlock_exclusion(~RWLock::new(), Write, Downgrade); test_rwlock_exclusion(~RWLock::new(), Downgrade, Write); test_rwlock_exclusion(~RWLock::new(), Downgrade, Downgrade); } #[cfg(test)] fn test_rwlock_handshake(x: ~RWLock, mode1: RWLockMode, mode2: RWLockMode, make_mode2_go_first: bool) { // Much like sem_multi_resource. let x2 = (*x).clone(); let (p1,c1) = comm::stream(); let (p2,c2) = comm::stream(); do task::spawn || { if !make_mode2_go_first { let _ = p2.recv(); // parent sends to us once it locks, or ... } do lock_rwlock_in_mode(&x2, mode2) { if make_mode2_go_first { c1.send(()); // ... we send to it once we lock } let _ = p2.recv(); c1.send(()); } } if make_mode2_go_first { let _ = p1.recv(); // child sends to us once it locks, or ... } do lock_rwlock_in_mode(x, mode1) { if !make_mode2_go_first { c2.send(()); // ... we send to it once we lock } c2.send(()); let _ = p1.recv(); } } #[test] fn test_rwlock_readers_and_readers() { test_rwlock_handshake(~RWLock::new(), Read, Read, false); // The downgrader needs to get in before the reader gets in, otherwise // they cannot end up reading at the same time. test_rwlock_handshake(~RWLock::new(), DowngradeRead, Read, false); test_rwlock_handshake(~RWLock::new(), Read, DowngradeRead, true); // Two downgrade_reads can never both end up reading at the same time. } #[test] fn test_rwlock_downgrade_unlock() { // Tests that downgrade can unlock the lock in both modes let x = ~RWLock::new(); do lock_rwlock_in_mode(x, Downgrade) { } test_rwlock_handshake(x, Read, Read, false); let y = ~RWLock::new(); do lock_rwlock_in_mode(y, DowngradeRead) { } test_rwlock_exclusion(y, Write, Write); } #[test] fn test_rwlock_read_recursive() { let x = ~RWLock::new(); do x.read { do x.read { } } } #[test] fn test_rwlock_cond_wait() { // As test_mutex_cond_wait above. let x = ~RWLock::new(); // Child wakes up parent do x.write_cond |cond| { let x2 = (*x).clone(); do task::spawn || { do x2.write_cond |cond| { let woken = cond.signal(); assert!(woken); } } cond.wait(); } // Parent wakes up child let (port,chan) = comm::stream(); let x3 = (*x).clone(); do task::spawn || { do x3.write_cond |cond| { chan.send(()); cond.wait(); chan.send(()); } } let _ = port.recv(); // Wait until child gets in the rwlock do x.read { } // Must be able to get in as a reader in the meantime do x.write_cond |cond| { // Or as another writer let woken = cond.signal(); assert!(woken); } let _ = port.recv(); // Wait until child wakes up do x.read { } // Just for good measure } #[cfg(test)] fn test_rwlock_cond_broadcast_helper(num_waiters: uint, dg1: bool, dg2: bool) { // Much like the mutex broadcast test. Downgrade-enabled. fn lock_cond(x: &RWLock, downgrade: bool, blk: &fn(c: &Condvar)) { if downgrade { do x.write_downgrade |mode| { do mode.write_cond |c| { blk(c) } } } else { do x.write_cond |c| { blk(c) } } } let x = ~RWLock::new(); let mut ports = ~[]; do num_waiters.times { let xi = (*x).clone(); let (port, chan) = comm::stream(); ports.push(port); do task::spawn || { do lock_cond(&xi, dg1) |cond| { chan.send(()); cond.wait(); chan.send(()); } } } // wait until all children get in the mutex foreach port in ports.iter() { let _ = port.recv(); } do lock_cond(x, dg2) |cond| { let num_woken = cond.broadcast(); assert_eq!(num_woken, num_waiters); } // wait until all children wake up foreach port in ports.iter() { let _ = port.recv(); } } #[test] fn test_rwlock_cond_broadcast() { test_rwlock_cond_broadcast_helper(0, true, true); test_rwlock_cond_broadcast_helper(0, true, false); test_rwlock_cond_broadcast_helper(0, false, true); test_rwlock_cond_broadcast_helper(0, false, false); test_rwlock_cond_broadcast_helper(12, true, true); test_rwlock_cond_broadcast_helper(12, true, false); test_rwlock_cond_broadcast_helper(12, false, true); test_rwlock_cond_broadcast_helper(12, false, false); } #[cfg(test)] #[ignore(cfg(windows))] fn rwlock_kill_helper(mode1: RWLockMode, mode2: RWLockMode) { // Mutex must get automatically unlocked if failed/killed within. let x = ~RWLock::new(); let x2 = (*x).clone(); let result: result::Result<(),()> = do task::try || { do lock_rwlock_in_mode(&x2, mode1) { fail!(); } }; assert!(result.is_err()); // child task must have finished by the time try returns do lock_rwlock_in_mode(x, mode2) { } } #[test] #[ignore(cfg(windows))] fn test_rwlock_reader_killed_writer() { rwlock_kill_helper(Read, Write); } #[test] #[ignore(cfg(windows))] fn test_rwlock_writer_killed_reader() { rwlock_kill_helper(Write,Read ); } #[test] #[ignore(cfg(windows))] fn test_rwlock_reader_killed_reader() { rwlock_kill_helper(Read, Read ); } #[test] #[ignore(cfg(windows))] fn test_rwlock_writer_killed_writer() { rwlock_kill_helper(Write,Write); } #[test] #[ignore(cfg(windows))] fn test_rwlock_kill_downgrader() { rwlock_kill_helper(Downgrade, Read); rwlock_kill_helper(Read, Downgrade); rwlock_kill_helper(Downgrade, Write); rwlock_kill_helper(Write, Downgrade); rwlock_kill_helper(DowngradeRead, Read); rwlock_kill_helper(Read, DowngradeRead); rwlock_kill_helper(DowngradeRead, Write); rwlock_kill_helper(Write, DowngradeRead); rwlock_kill_helper(DowngradeRead, Downgrade); rwlock_kill_helper(DowngradeRead, Downgrade); rwlock_kill_helper(Downgrade, DowngradeRead); rwlock_kill_helper(Downgrade, DowngradeRead); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_rwlock_downgrade_cant_swap() { // Tests that you can't downgrade with a different rwlock's token. let x = ~RWLock::new(); let y = ~RWLock::new(); do x.write_downgrade |xwrite| { let mut xopt = Some(xwrite); do y.write_downgrade |_ywrite| { y.downgrade(xopt.take_unwrap()); error!("oops, y.downgrade(x) should have failed!"); } } } }