// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /*! This file actually contains two passes related to regions. The first pass builds up the `scope_map`, which describes the parent links in the region hierarchy. The second pass infers which types must be region parameterized. Most of the documentation on regions can be found in `middle/typeck/infer/region_inference.rs` */ use driver::session::Session; use middle::ty::{FreeRegion}; use middle::ty; use util::nodemap::NodeMap; use std::cell::RefCell; use std::collections::{HashMap, HashSet}; use std::gc::Gc; use syntax::codemap::Span; use syntax::{ast, visit}; use syntax::visit::{Visitor, FnKind}; use syntax::ast::{Block, Item, FnDecl, NodeId, Arm, Pat, Stmt, Expr, Local}; use syntax::ast_util::{stmt_id}; /** The region maps encode information about region relationships. - `scope_map` maps from a scope id to the enclosing scope id; this is usually corresponding to the lexical nesting, though in the case of closures the parent scope is the innermost conditional expression or repeating block - `var_map` maps from a variable or binding id to the block in which that variable is declared. - `free_region_map` maps from a free region `a` to a list of free regions `bs` such that `a <= b for all b in bs` - the free region map is populated during type check as we check each function. See the function `relate_free_regions` for more information. - `rvalue_scopes` includes entries for those expressions whose cleanup scope is larger than the default. The map goes from the expression id to the cleanup scope id. For rvalues not present in this table, the appropriate cleanup scope is the innermost enclosing statement, conditional expression, or repeating block (see `terminating_scopes`). - `terminating_scopes` is a set containing the ids of each statement, or conditional/repeating expression. These scopes are calling "terminating scopes" because, when attempting to find the scope of a temporary, by default we search up the enclosing scopes until we encounter the terminating scope. A conditional/repeating expression is one which is not guaranteed to execute exactly once upon entering the parent scope. This could be because the expression only executes conditionally, such as the expression `b` in `a && b`, or because the expression may execute many times, such as a loop body. The reason that we distinguish such expressions is that, upon exiting the parent scope, we cannot statically know how many times the expression executed, and thus if the expression creates temporaries we cannot know statically how many such temporaries we would have to cleanup. Therefore we ensure that the temporaries never outlast the conditional/repeating expression, preventing the need for dynamic checks and/or arbitrary amounts of stack space. */ pub struct RegionMaps { scope_map: RefCell>, var_map: RefCell>, free_region_map: RefCell >>, rvalue_scopes: RefCell>, terminating_scopes: RefCell>, } #[deriving(Clone)] pub struct Context { var_parent: Option, // Innermost enclosing expression parent: Option, } struct RegionResolutionVisitor<'a> { sess: &'a Session, // Generated maps: region_maps: &'a RegionMaps, } impl RegionMaps { pub fn relate_free_regions(&self, sub: FreeRegion, sup: FreeRegion) { match self.free_region_map.borrow_mut().find_mut(&sub) { Some(sups) => { if !sups.iter().any(|x| x == &sup) { sups.push(sup); } return; } None => {} } debug!("relate_free_regions(sub={:?}, sup={:?})", sub, sup); self.free_region_map.borrow_mut().insert(sub, vec!(sup)); } pub fn record_encl_scope(&self, sub: ast::NodeId, sup: ast::NodeId) { debug!("record_encl_scope(sub={}, sup={})", sub, sup); assert!(sub != sup); self.scope_map.borrow_mut().insert(sub, sup); } pub fn record_var_scope(&self, var: ast::NodeId, lifetime: ast::NodeId) { debug!("record_var_scope(sub={}, sup={})", var, lifetime); assert!(var != lifetime); self.var_map.borrow_mut().insert(var, lifetime); } pub fn record_rvalue_scope(&self, var: ast::NodeId, lifetime: ast::NodeId) { debug!("record_rvalue_scope(sub={}, sup={})", var, lifetime); assert!(var != lifetime); self.rvalue_scopes.borrow_mut().insert(var, lifetime); } pub fn mark_as_terminating_scope(&self, scope_id: ast::NodeId) { /*! * Records that a scope is a TERMINATING SCOPE. Whenever we * create automatic temporaries -- e.g. by an * expression like `a().f` -- they will be freed within * the innermost terminating scope. */ debug!("record_terminating_scope(scope_id={})", scope_id); self.terminating_scopes.borrow_mut().insert(scope_id); } pub fn opt_encl_scope(&self, id: ast::NodeId) -> Option { //! Returns the narrowest scope that encloses `id`, if any. self.scope_map.borrow().find(&id).map(|x| *x) } #[allow(dead_code)] // used in middle::cfg pub fn encl_scope(&self, id: ast::NodeId) -> ast::NodeId { //! Returns the narrowest scope that encloses `id`, if any. match self.scope_map.borrow().find(&id) { Some(&r) => r, None => { fail!("no enclosing scope for id {}", id); } } } pub fn var_scope(&self, var_id: ast::NodeId) -> ast::NodeId { /*! * Returns the lifetime of the local variable `var_id` */ match self.var_map.borrow().find(&var_id) { Some(&r) => r, None => { fail!("no enclosing scope for id {}", var_id); } } } pub fn temporary_scope(&self, expr_id: ast::NodeId) -> Option { //! Returns the scope when temp created by expr_id will be cleaned up // check for a designated rvalue scope match self.rvalue_scopes.borrow().find(&expr_id) { Some(&s) => { debug!("temporary_scope({}) = {} [custom]", expr_id, s); return Some(s); } None => { } } // else, locate the innermost terminating scope // if there's one. Static items, for instance, won't // have an enclosing scope, hence no scope will be // returned. let mut id = match self.opt_encl_scope(expr_id) { Some(i) => i, None => { return None; } }; while !self.terminating_scopes.borrow().contains(&id) { match self.opt_encl_scope(id) { Some(p) => { id = p; } None => { debug!("temporary_scope({}) = None", expr_id); return None; } } } debug!("temporary_scope({}) = {} [enclosing]", expr_id, id); return Some(id); } pub fn var_region(&self, id: ast::NodeId) -> ty::Region { //! Returns the lifetime of the variable `id`. ty::ReScope(self.var_scope(id)) } pub fn scopes_intersect(&self, scope1: ast::NodeId, scope2: ast::NodeId) -> bool { self.is_subscope_of(scope1, scope2) || self.is_subscope_of(scope2, scope1) } pub fn is_subscope_of(&self, subscope: ast::NodeId, superscope: ast::NodeId) -> bool { /*! * Returns true if `subscope` is equal to or is lexically * nested inside `superscope` and false otherwise. */ let mut s = subscope; while superscope != s { match self.scope_map.borrow().find(&s) { None => { debug!("is_subscope_of({}, {}, s={})=false", subscope, superscope, s); return false; } Some(&scope) => s = scope } } debug!("is_subscope_of({}, {})=true", subscope, superscope); return true; } pub fn sub_free_region(&self, sub: FreeRegion, sup: FreeRegion) -> bool { /*! * Determines whether two free regions have a subregion relationship * by walking the graph encoded in `free_region_map`. Note that * it is possible that `sub != sup` and `sub <= sup` and `sup <= sub` * (that is, the user can give two different names to the same lifetime). */ if sub == sup { return true; } // Do a little breadth-first-search here. The `queue` list // doubles as a way to detect if we've seen a particular FR // before. Note that we expect this graph to be an *extremely // shallow* tree. let mut queue = vec!(sub); let mut i = 0; while i < queue.len() { match self.free_region_map.borrow().find(queue.get(i)) { Some(parents) => { for parent in parents.iter() { if *parent == sup { return true; } if !queue.iter().any(|x| x == parent) { queue.push(*parent); } } } None => {} } i += 1; } return false; } pub fn is_subregion_of(&self, sub_region: ty::Region, super_region: ty::Region) -> bool { /*! * Determines whether one region is a subregion of another. This is * intended to run *after inference* and sadly the logic is somewhat * duplicated with the code in infer.rs. */ debug!("is_subregion_of(sub_region={:?}, super_region={:?})", sub_region, super_region); sub_region == super_region || { match (sub_region, super_region) { (_, ty::ReStatic) => { true } (ty::ReScope(sub_scope), ty::ReScope(super_scope)) => { self.is_subscope_of(sub_scope, super_scope) } (ty::ReScope(sub_scope), ty::ReFree(ref fr)) => { self.is_subscope_of(sub_scope, fr.scope_id) } (ty::ReFree(sub_fr), ty::ReFree(super_fr)) => { self.sub_free_region(sub_fr, super_fr) } (ty::ReEarlyBound(param_id_a, param_space_a, index_a, _), ty::ReEarlyBound(param_id_b, param_space_b, index_b, _)) => { // This case is used only to make sure that explicitly- // specified `Self` types match the real self type in // implementations. param_id_a == param_id_b && param_space_a == param_space_b && index_a == index_b } _ => { false } } } } pub fn nearest_common_ancestor(&self, scope_a: ast::NodeId, scope_b: ast::NodeId) -> Option { /*! * Finds the nearest common ancestor (if any) of two scopes. That * is, finds the smallest scope which is greater than or equal to * both `scope_a` and `scope_b`. */ if scope_a == scope_b { return Some(scope_a); } let a_ancestors = ancestors_of(self, scope_a); let b_ancestors = ancestors_of(self, scope_b); let mut a_index = a_ancestors.len() - 1u; let mut b_index = b_ancestors.len() - 1u; // Here, ~[ab]_ancestors is a vector going from narrow to broad. // The end of each vector will be the item where the scope is // defined; if there are any common ancestors, then the tails of // the vector will be the same. So basically we want to walk // backwards from the tail of each vector and find the first point // where they diverge. If one vector is a suffix of the other, // then the corresponding scope is a superscope of the other. if *a_ancestors.get(a_index) != *b_ancestors.get(b_index) { return None; } loop { // Loop invariant: a_ancestors[a_index] == b_ancestors[b_index] // for all indices between a_index and the end of the array if a_index == 0u { return Some(scope_a); } if b_index == 0u { return Some(scope_b); } a_index -= 1u; b_index -= 1u; if *a_ancestors.get(a_index) != *b_ancestors.get(b_index) { return Some(*a_ancestors.get(a_index + 1u)); } } fn ancestors_of(this: &RegionMaps, scope: ast::NodeId) -> Vec { // debug!("ancestors_of(scope={})", scope); let mut result = vec!(scope); let mut scope = scope; loop { match this.scope_map.borrow().find(&scope) { None => return result, Some(&superscope) => { result.push(superscope); scope = superscope; } } // debug!("ancestors_of_loop(scope={})", scope); } } } } /// Records the current parent (if any) as the parent of `child_id`. fn record_superlifetime(visitor: &mut RegionResolutionVisitor, cx: Context, child_id: ast::NodeId, _sp: Span) { for &parent_id in cx.parent.iter() { visitor.region_maps.record_encl_scope(child_id, parent_id); } } /// Records the lifetime of a local variable as `cx.var_parent` fn record_var_lifetime(visitor: &mut RegionResolutionVisitor, cx: Context, var_id: ast::NodeId, _sp: Span) { match cx.var_parent { Some(parent_id) => { visitor.region_maps.record_var_scope(var_id, parent_id); } None => { // this can happen in extern fn declarations like // // extern fn isalnum(c: c_int) -> c_int } } } fn resolve_block(visitor: &mut RegionResolutionVisitor, blk: &ast::Block, cx: Context) { debug!("resolve_block(blk.id={})", blk.id); // Record the parent of this block. record_superlifetime(visitor, cx, blk.id, blk.span); // We treat the tail expression in the block (if any) somewhat // differently from the statements. The issue has to do with // temporary lifetimes. If the user writes: // // { // ... (&foo()) ... // } // let subcx = Context {var_parent: Some(blk.id), parent: Some(blk.id)}; visit::walk_block(visitor, blk, subcx); } fn resolve_arm(visitor: &mut RegionResolutionVisitor, arm: &ast::Arm, cx: Context) { visitor.region_maps.mark_as_terminating_scope(arm.body.id); match arm.guard { Some(expr) => { visitor.region_maps.mark_as_terminating_scope(expr.id); } None => { } } visit::walk_arm(visitor, arm, cx); } fn resolve_pat(visitor: &mut RegionResolutionVisitor, pat: &ast::Pat, cx: Context) { record_superlifetime(visitor, cx, pat.id, pat.span); // If this is a binding (or maybe a binding, I'm too lazy to check // the def map) then record the lifetime of that binding. match pat.node { ast::PatIdent(..) => { record_var_lifetime(visitor, cx, pat.id, pat.span); } _ => { } } visit::walk_pat(visitor, pat, cx); } fn resolve_stmt(visitor: &mut RegionResolutionVisitor, stmt: &ast::Stmt, cx: Context) { let stmt_id = stmt_id(stmt); debug!("resolve_stmt(stmt.id={})", stmt_id); visitor.region_maps.mark_as_terminating_scope(stmt_id); record_superlifetime(visitor, cx, stmt_id, stmt.span); let subcx = Context {parent: Some(stmt_id), ..cx}; visit::walk_stmt(visitor, stmt, subcx); } fn resolve_expr(visitor: &mut RegionResolutionVisitor, expr: &ast::Expr, cx: Context) { debug!("resolve_expr(expr.id={})", expr.id); record_superlifetime(visitor, cx, expr.id, expr.span); let mut new_cx = cx; new_cx.parent = Some(expr.id); match expr.node { // Conditional or repeating scopes are always terminating // scopes, meaning that temporaries cannot outlive them. // This ensures fixed size stacks. ast::ExprBinary(ast::BiAnd, _, r) | ast::ExprBinary(ast::BiOr, _, r) => { // For shortcircuiting operators, mark the RHS as a terminating // scope since it only executes conditionally. visitor.region_maps.mark_as_terminating_scope(r.id); } ast::ExprIf(_, then, Some(otherwise)) => { visitor.region_maps.mark_as_terminating_scope(then.id); visitor.region_maps.mark_as_terminating_scope(otherwise.id); } ast::ExprIf(expr, then, None) => { visitor.region_maps.mark_as_terminating_scope(expr.id); visitor.region_maps.mark_as_terminating_scope(then.id); } ast::ExprLoop(body, _) => { visitor.region_maps.mark_as_terminating_scope(body.id); } ast::ExprWhile(expr, body) => { visitor.region_maps.mark_as_terminating_scope(expr.id); visitor.region_maps.mark_as_terminating_scope(body.id); } ast::ExprMatch(..) => { new_cx.var_parent = Some(expr.id); } ast::ExprAssignOp(..) | ast::ExprIndex(..) | ast::ExprUnary(..) | ast::ExprCall(..) | ast::ExprMethodCall(..) => { // FIXME(#6268) Nested method calls // // The lifetimes for a call or method call look as follows: // // call.id // - arg0.id // - ... // - argN.id // - call.callee_id // // The idea is that call.callee_id represents *the time when // the invoked function is actually running* and call.id // represents *the time to prepare the arguments and make the // call*. See the section "Borrows in Calls" borrowck/doc.rs // for an extended explanation of why this distinction is // important. // // record_superlifetime(new_cx, expr.callee_id); } _ => {} }; visit::walk_expr(visitor, expr, new_cx); } fn resolve_local(visitor: &mut RegionResolutionVisitor, local: &ast::Local, cx: Context) { debug!("resolve_local(local.id={},local.init={})", local.id,local.init.is_some()); let blk_id = match cx.var_parent { Some(id) => id, None => { visitor.sess.span_bug( local.span, "local without enclosing block"); } }; // For convenience in trans, associate with the local-id the var // scope that will be used for any bindings declared in this // pattern. visitor.region_maps.record_var_scope(local.id, blk_id); // As an exception to the normal rules governing temporary // lifetimes, initializers in a let have a temporary lifetime // of the enclosing block. This means that e.g. a program // like the following is legal: // // let ref x = HashMap::new(); // // Because the hash map will be freed in the enclosing block. // // We express the rules more formally based on 3 grammars (defined // fully in the helpers below that implement them): // // 1. `E&`, which matches expressions like `&` that // own a pointer into the stack. // // 2. `P&`, which matches patterns like `ref x` or `(ref x, ref // y)` that produce ref bindings into the value they are // matched against or something (at least partially) owned by // the value they are matched against. (By partially owned, // I mean that creating a binding into a ref-counted or managed value // would still count.) // // 3. `ET`, which matches both rvalues like `foo()` as well as lvalues // based on rvalues like `foo().x[2].y`. // // A subexpression `` that appears in a let initializer // `let pat [: ty] = expr` has an extended temporary lifetime if // any of the following conditions are met: // // A. `pat` matches `P&` and `expr` matches `ET` // (covers cases where `pat` creates ref bindings into an rvalue // produced by `expr`) // B. `ty` is a borrowed pointer and `expr` matches `ET` // (covers cases where coercion creates a borrow) // C. `expr` matches `E&` // (covers cases `expr` borrows an rvalue that is then assigned // to memory (at least partially) owned by the binding) // // Here are some examples hopefully giving an intuition where each // rule comes into play and why: // // Rule A. `let (ref x, ref y) = (foo().x, 44)`. The rvalue `(22, 44)` // would have an extended lifetime, but not `foo()`. // // Rule B. `let x: &[...] = [foo().x]`. The rvalue `[foo().x]` // would have an extended lifetime, but not `foo()`. // // Rule C. `let x = &foo().x`. The rvalue ``foo()` would have extended // lifetime. // // In some cases, multiple rules may apply (though not to the same // rvalue). For example: // // let ref x = [&a(), &b()]; // // Here, the expression `[...]` has an extended lifetime due to rule // A, but the inner rvalues `a()` and `b()` have an extended lifetime // due to rule C. // // FIXME(#6308) -- Note that `[]` patterns work more smoothly post-DST. match local.init { Some(ref expr) => { record_rvalue_scope_if_borrow_expr(visitor, &**expr, blk_id); if is_binding_pat(&*local.pat) || is_borrowed_ty(&*local.ty) { record_rvalue_scope(visitor, &**expr, blk_id); } } None => { } } visit::walk_local(visitor, local, cx); fn is_binding_pat(pat: &ast::Pat) -> bool { /*! * True if `pat` match the `P&` nonterminal: * * P& = ref X * | StructName { ..., P&, ... } * | VariantName(..., P&, ...) * | [ ..., P&, ... ] * | ( ..., P&, ... ) * | box P& */ match pat.node { ast::PatIdent(ast::BindByRef(_), _, _) => true, ast::PatStruct(_, ref field_pats, _) => { field_pats.iter().any(|fp| is_binding_pat(&*fp.pat)) } ast::PatVec(ref pats1, ref pats2, ref pats3) => { pats1.iter().any(|p| is_binding_pat(&**p)) || pats2.iter().any(|p| is_binding_pat(&**p)) || pats3.iter().any(|p| is_binding_pat(&**p)) } ast::PatEnum(_, Some(ref subpats)) | ast::PatTup(ref subpats) => { subpats.iter().any(|p| is_binding_pat(&**p)) } ast::PatBox(ref subpat) => { is_binding_pat(&**subpat) } _ => false, } } fn is_borrowed_ty(ty: &ast::Ty) -> bool { /*! * True if `ty` is a borrowed pointer type * like `&int` or `&[...]`. */ match ty.node { ast::TyRptr(..) => true, _ => false } } fn record_rvalue_scope_if_borrow_expr(visitor: &mut RegionResolutionVisitor, expr: &ast::Expr, blk_id: ast::NodeId) { /*! * If `expr` matches the `E&` grammar, then records an extended * rvalue scope as appropriate: * * E& = & ET * | StructName { ..., f: E&, ... } * | [ ..., E&, ... ] * | ( ..., E&, ... ) * | {...; E&} * | box E& * | E& as ... * | ( E& ) */ match expr.node { ast::ExprAddrOf(_, ref subexpr) => { record_rvalue_scope_if_borrow_expr(visitor, &**subexpr, blk_id); record_rvalue_scope(visitor, &**subexpr, blk_id); } ast::ExprStruct(_, ref fields, _) => { for field in fields.iter() { record_rvalue_scope_if_borrow_expr( visitor, &*field.expr, blk_id); } } ast::ExprVstore(ref subexpr, _) => { visitor.region_maps.record_rvalue_scope(subexpr.id, blk_id); record_rvalue_scope_if_borrow_expr(visitor, &**subexpr, blk_id); } ast::ExprVec(ref subexprs) | ast::ExprTup(ref subexprs) => { for subexpr in subexprs.iter() { record_rvalue_scope_if_borrow_expr( visitor, &**subexpr, blk_id); } } ast::ExprUnary(ast::UnUniq, ref subexpr) => { record_rvalue_scope_if_borrow_expr(visitor, &**subexpr, blk_id); } ast::ExprCast(ref subexpr, _) | ast::ExprParen(ref subexpr) => { record_rvalue_scope_if_borrow_expr(visitor, &**subexpr, blk_id) } ast::ExprBlock(ref block) => { match block.expr { Some(ref subexpr) => { record_rvalue_scope_if_borrow_expr( visitor, &**subexpr, blk_id); } None => { } } } _ => { } } } fn record_rvalue_scope<'a>(visitor: &mut RegionResolutionVisitor, expr: &'a ast::Expr, blk_id: ast::NodeId) { /*! * Applied to an expression `expr` if `expr` -- or something * owned or partially owned by `expr` -- is going to be * indirectly referenced by a variable in a let statement. In * that case, the "temporary lifetime" or `expr` is extended * to be the block enclosing the `let` statement. * * More formally, if `expr` matches the grammar `ET`, record * the rvalue scope of the matching `` as `blk_id`: * * ET = *ET * | ET[...] * | ET.f * | (ET) * | * * Note: ET is intended to match "rvalues or * lvalues based on rvalues". */ let mut expr = expr; loop { // Note: give all the expressions matching `ET` with the // extended temporary lifetime, not just the innermost rvalue, // because in trans if we must compile e.g. `*rvalue()` // into a temporary, we request the temporary scope of the // outer expression. visitor.region_maps.record_rvalue_scope(expr.id, blk_id); match expr.node { ast::ExprAddrOf(_, ref subexpr) | ast::ExprUnary(ast::UnDeref, ref subexpr) | ast::ExprField(ref subexpr, _, _) | ast::ExprIndex(ref subexpr, _) | ast::ExprParen(ref subexpr) => { let subexpr: &'a Gc = subexpr; // FIXME(#11586) expr = &**subexpr; } _ => { return; } } } } } fn resolve_item(visitor: &mut RegionResolutionVisitor, item: &ast::Item, cx: Context) { // Items create a new outer block scope as far as we're concerned. let new_cx = Context {var_parent: None, parent: None, ..cx}; visit::walk_item(visitor, item, new_cx); } fn resolve_fn(visitor: &mut RegionResolutionVisitor, fk: &FnKind, decl: &ast::FnDecl, body: &ast::Block, sp: Span, id: ast::NodeId, cx: Context) { debug!("region::resolve_fn(id={}, \ span={:?}, \ body.id={}, \ cx.parent={})", id, visitor.sess.codemap().span_to_string(sp), body.id, cx.parent); visitor.region_maps.mark_as_terminating_scope(body.id); // The arguments and `self` are parented to the body of the fn. let decl_cx = Context {parent: Some(body.id), var_parent: Some(body.id)}; visit::walk_fn_decl(visitor, decl, decl_cx); // The body of the fn itself is either a root scope (top-level fn) // or it continues with the inherited scope (closures). let body_cx = match *fk { visit::FkItemFn(..) | visit::FkMethod(..) => { Context {parent: None, var_parent: None, ..cx} } visit::FkFnBlock(..) => { // FIXME(#3696) -- at present we are place the closure body // within the region hierarchy exactly where it appears lexically. // This is wrong because the closure may live longer // than the enclosing expression. We should probably fix this, // but the correct fix is a bit subtle, and I am also not sure // that the present approach is unsound -- it may not permit // any illegal programs. See issue for more details. cx } }; visitor.visit_block(body, body_cx); } impl<'a> Visitor for RegionResolutionVisitor<'a> { fn visit_block(&mut self, b: &Block, cx: Context) { resolve_block(self, b, cx); } fn visit_item(&mut self, i: &Item, cx: Context) { resolve_item(self, i, cx); } fn visit_fn(&mut self, fk: &FnKind, fd: &FnDecl, b: &Block, s: Span, n: NodeId, cx: Context) { resolve_fn(self, fk, fd, b, s, n, cx); } fn visit_arm(&mut self, a: &Arm, cx: Context) { resolve_arm(self, a, cx); } fn visit_pat(&mut self, p: &Pat, cx: Context) { resolve_pat(self, p, cx); } fn visit_stmt(&mut self, s: &Stmt, cx: Context) { resolve_stmt(self, s, cx); } fn visit_expr(&mut self, ex: &Expr, cx: Context) { resolve_expr(self, ex, cx); } fn visit_local(&mut self, l: &Local, cx: Context) { resolve_local(self, l, cx); } } pub fn resolve_crate(sess: &Session, krate: &ast::Crate) -> RegionMaps { let maps = RegionMaps { scope_map: RefCell::new(NodeMap::new()), var_map: RefCell::new(NodeMap::new()), free_region_map: RefCell::new(HashMap::new()), rvalue_scopes: RefCell::new(NodeMap::new()), terminating_scopes: RefCell::new(HashSet::new()), }; { let mut visitor = RegionResolutionVisitor { sess: sess, region_maps: &maps }; let cx = Context { parent: None, var_parent: None }; visit::walk_crate(&mut visitor, krate, cx); } return maps; } pub fn resolve_inlined_item(sess: &Session, region_maps: &RegionMaps, item: &ast::InlinedItem) { let cx = Context {parent: None, var_parent: None}; let mut visitor = RegionResolutionVisitor { sess: sess, region_maps: region_maps, }; visit::walk_inlined_item(&mut visitor, item, cx); }