/* A key,value store that works on anything. This works using a binary search tree. In the first version, it's a very naive algorithm, but it will probably be updated to be a red-black tree or something else. */ import option::{some, none}; import option = option::t; export treemap; export init; export insert; export find; export traverse; tag tree_node<@K, @V> { empty; node(@K, @V, treemap, treemap); } type treemap<@K, @V> = @mutable tree_node; fn init<@K, @V>() -> treemap { @mutable empty } fn insert<@K, @V>(m: treemap, k: K, v: V) { alt m { @empty. { *m = node(@k, @v, @mutable empty, @mutable empty); } @node(@kk, _, _, _) { // We have to name left and right individually, because // otherwise the alias checker complains. if k < kk { alt m { @node(_, _, left, _) { insert(left, k, v); } } } else { alt m { @node(_, _, _, right) { insert(right, k, v); } } } } } } fn find<@K, @V>(m: treemap, k: K) -> option { alt *m { empty. { none } node(@kk, @v, _, _) { if k == kk { some(v) } else if k < kk { // Again, ugliness to unpack left and right individually. alt *m { node(_, _, left, _) { find(left, k) } } } else { alt *m { node(_, _, _, right) { find(right, k) } } } } } } // Performs an in-order traversal fn traverse<@K, @V>(m: treemap, f: fn(K, V)) { alt *m { empty. { } node(k, v, _, _) { let k1 = k, v1 = v; alt *m { node(_, _, left, _) { traverse(left, f); } } f(*k1, *v1); alt *m { node(_, _, _, right) { traverse(right, f); } } } } }