// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // This implements the dead-code warning pass. It follows middle::reachable // closely. The idea is that all reachable symbols are live, codes called // from live codes are live, and everything else is dead. use middle::def; use lint; use middle::privacy; use middle::ty; use middle::typeck; use util::nodemap::NodeSet; use std::collections::HashSet; use syntax::ast; use syntax::ast_map; use syntax::ast_util::{local_def, is_local, PostExpansionMethod}; use syntax::attr::AttrMetaMethods; use syntax::attr; use syntax::codemap; use syntax::visit::Visitor; use syntax::visit; // Any local node that may call something in its body block should be // explored. For example, if it's a live NodeItem that is a // function, then we should explore its block to check for codes that // may need to be marked as live. fn should_explore(tcx: &ty::ctxt, def_id: ast::DefId) -> bool { if !is_local(def_id) { return false; } match tcx.map.find(def_id.node) { Some(ast_map::NodeItem(..)) | Some(ast_map::NodeImplItem(..)) | Some(ast_map::NodeForeignItem(..)) | Some(ast_map::NodeTraitItem(..)) => true, _ => false } } struct MarkSymbolVisitor<'a> { worklist: Vec, tcx: &'a ty::ctxt, live_symbols: Box>, } #[deriving(Clone)] struct MarkSymbolVisitorContext { struct_has_extern_repr: bool } impl<'a> MarkSymbolVisitor<'a> { fn new(tcx: &'a ty::ctxt, worklist: Vec) -> MarkSymbolVisitor<'a> { MarkSymbolVisitor { worklist: worklist, tcx: tcx, live_symbols: box HashSet::new(), } } fn check_def_id(&mut self, def_id: ast::DefId) { if should_explore(self.tcx, def_id) { self.worklist.push(def_id.node); } self.live_symbols.insert(def_id.node); } fn lookup_and_handle_definition(&mut self, id: &ast::NodeId) { let def = match self.tcx.def_map.borrow().find(id) { Some(&def) => def, None => return }; let def_id = match def { def::DefVariant(enum_id, _, _) => Some(enum_id), def::DefPrimTy(_) => None, _ => Some(def.def_id()) }; match def_id { Some(def_id) => self.check_def_id(def_id), None => (), } } fn lookup_and_handle_method(&mut self, id: ast::NodeId, span: codemap::Span) { let method_call = typeck::MethodCall::expr(id); match self.tcx.method_map.borrow().find(&method_call) { Some(method) => { match method.origin { typeck::MethodStatic(def_id) => { match ty::provided_source(self.tcx, def_id) { Some(p_did) => self.check_def_id(p_did), None => self.check_def_id(def_id) } } typeck::MethodStaticUnboxedClosure(_) => {} typeck::MethodParam(typeck::MethodParam { trait_id: trait_id, method_num: index, .. }) | typeck::MethodObject(typeck::MethodObject { trait_id: trait_id, method_num: index, .. }) => { let trait_item = ty::trait_item(self.tcx, trait_id, index); match trait_item { ty::MethodTraitItem(method) => { self.check_def_id(method.def_id); } } } } } None => { self.tcx.sess.span_bug(span, "method call expression not \ in method map?!") } } } fn handle_field_access(&mut self, lhs: &ast::Expr, name: &ast::Ident) { match ty::get(ty::expr_ty_adjusted(self.tcx, lhs)).sty { ty::ty_struct(id, _) => { let fields = ty::lookup_struct_fields(self.tcx, id); let field_id = fields.iter() .find(|field| field.name == name.name).unwrap().id; self.live_symbols.insert(field_id.node); }, _ => () } } fn handle_field_pattern_match(&mut self, lhs: &ast::Pat, pats: &[ast::FieldPat]) { let id = match self.tcx.def_map.borrow().get(&lhs.id) { &def::DefVariant(_, id, _) => id, _ => { match ty::ty_to_def_id(ty::node_id_to_type(self.tcx, lhs.id)) { None => { self.tcx.sess.span_bug(lhs.span, "struct pattern wasn't of a \ type with a def ID?!") } Some(def_id) => def_id, } } }; let fields = ty::lookup_struct_fields(self.tcx, id); for pat in pats.iter() { let field_id = fields.iter() .find(|field| field.name == pat.ident.name).unwrap().id; self.live_symbols.insert(field_id.node); } } fn mark_live_symbols(&mut self) { let mut scanned = HashSet::new(); while self.worklist.len() > 0 { let id = self.worklist.pop().unwrap(); if scanned.contains(&id) { continue } scanned.insert(id); match self.tcx.map.find(id) { Some(ref node) => { self.live_symbols.insert(id); self.visit_node(node); } None => (), } } } fn visit_node(&mut self, node: &ast_map::Node) { let ctxt = MarkSymbolVisitorContext { struct_has_extern_repr: false }; match *node { ast_map::NodeItem(item) => { match item.node { ast::ItemStruct(..) => { let has_extern_repr = item.attrs.iter().fold(false, |acc, attr| { acc || attr::find_repr_attrs(self.tcx.sess.diagnostic(), attr) .iter().any(|&x| x == attr::ReprExtern) }); visit::walk_item(self, &*item, MarkSymbolVisitorContext { struct_has_extern_repr: has_extern_repr, ..(ctxt) }); } ast::ItemFn(..) | ast::ItemEnum(..) | ast::ItemTy(..) | ast::ItemStatic(..) => { visit::walk_item(self, &*item, ctxt); } _ => () } } ast_map::NodeTraitItem(trait_method) => { visit::walk_trait_item(self, &*trait_method, ctxt); } ast_map::NodeImplItem(impl_item) => { match *impl_item { ast::MethodImplItem(method) => { visit::walk_block(self, &*method.pe_body(), ctxt); } } } ast_map::NodeForeignItem(foreign_item) => { visit::walk_foreign_item(self, &*foreign_item, ctxt); } _ => () } } } impl<'a> Visitor for MarkSymbolVisitor<'a> { fn visit_struct_def(&mut self, def: &ast::StructDef, _: ast::Ident, _: &ast::Generics, _: ast::NodeId, ctxt: MarkSymbolVisitorContext) { let live_fields = def.fields.iter().filter(|f| { ctxt.struct_has_extern_repr || match f.node.kind { ast::NamedField(_, ast::Public) => true, _ => false } }); self.live_symbols.extend(live_fields.map(|f| f.node.id)); visit::walk_struct_def(self, def, ctxt); } fn visit_expr(&mut self, expr: &ast::Expr, ctxt: MarkSymbolVisitorContext) { match expr.node { ast::ExprMethodCall(..) => { self.lookup_and_handle_method(expr.id, expr.span); } ast::ExprField(ref lhs, ref ident, _) => { self.handle_field_access(&**lhs, &ident.node); } _ => () } visit::walk_expr(self, expr, ctxt); } fn visit_pat(&mut self, pat: &ast::Pat, ctxt: MarkSymbolVisitorContext) { match pat.node { ast::PatStruct(_, ref fields, _) => { self.handle_field_pattern_match(pat, fields.as_slice()); } ast::PatIdent(_, _, _) => { // it might be the only use of a static: self.lookup_and_handle_definition(&pat.id) } _ => () } visit::walk_pat(self, pat, ctxt); } fn visit_path(&mut self, path: &ast::Path, id: ast::NodeId, ctxt: MarkSymbolVisitorContext) { self.lookup_and_handle_definition(&id); visit::walk_path(self, path, ctxt); } fn visit_item(&mut self, _: &ast::Item, _: MarkSymbolVisitorContext) { // Do not recurse into items. These items will be added to the // worklist and recursed into manually if necessary. } } fn has_allow_dead_code_or_lang_attr(attrs: &[ast::Attribute]) -> bool { if attr::contains_name(attrs.as_slice(), "lang") { return true; } let dead_code = lint::builtin::DEAD_CODE.name_lower(); for attr in lint::gather_attrs(attrs).move_iter() { match attr { Ok((ref name, lint::Allow, _)) if name.get() == dead_code.as_slice() => return true, _ => (), } } false } // This visitor seeds items that // 1) We want to explicitly consider as live: // * Item annotated with #[allow(dead_code)] // - This is done so that if we want to suppress warnings for a // group of dead functions, we only have to annotate the "root". // For example, if both `f` and `g` are dead and `f` calls `g`, // then annotating `f` with `#[allow(dead_code)]` will suppress // warning for both `f` and `g`. // * Item annotated with #[lang=".."] // - This is because lang items are always callable from elsewhere. // or // 2) We are not sure to be live or not // * Implementation of a trait method struct LifeSeeder { worklist: Vec , } impl Visitor<()> for LifeSeeder { fn visit_item(&mut self, item: &ast::Item, _: ()) { if has_allow_dead_code_or_lang_attr(item.attrs.as_slice()) { self.worklist.push(item.id); } match item.node { ast::ItemImpl(_, Some(ref _trait_ref), _, ref impl_items) => { for impl_item in impl_items.iter() { match *impl_item { ast::MethodImplItem(method) => { self.worklist.push(method.id); } } } } _ => () } visit::walk_item(self, item, ()); } fn visit_fn(&mut self, fk: &visit::FnKind, _: &ast::FnDecl, block: &ast::Block, _: codemap::Span, id: ast::NodeId, _: ()) { // Check for method here because methods are not ast::Item match *fk { visit::FkMethod(_, _, method) => { if has_allow_dead_code_or_lang_attr(method.attrs.as_slice()) { self.worklist.push(id); } } _ => () } visit::walk_block(self, block, ()); } } fn create_and_seed_worklist(tcx: &ty::ctxt, exported_items: &privacy::ExportedItems, reachable_symbols: &NodeSet, krate: &ast::Crate) -> Vec { let mut worklist = Vec::new(); // Preferably, we would only need to seed the worklist with reachable // symbols. However, since the set of reachable symbols differs // depending on whether a crate is built as bin or lib, and we want // the warning to be consistent, we also seed the worklist with // exported symbols. for id in exported_items.iter() { worklist.push(*id); } for id in reachable_symbols.iter() { worklist.push(*id); } // Seed entry point match *tcx.sess.entry_fn.borrow() { Some((id, _)) => worklist.push(id), None => () } // Seed implemented trait methods let mut life_seeder = LifeSeeder { worklist: worklist }; visit::walk_crate(&mut life_seeder, krate, ()); return life_seeder.worklist; } fn find_live(tcx: &ty::ctxt, exported_items: &privacy::ExportedItems, reachable_symbols: &NodeSet, krate: &ast::Crate) -> Box> { let worklist = create_and_seed_worklist(tcx, exported_items, reachable_symbols, krate); let mut symbol_visitor = MarkSymbolVisitor::new(tcx, worklist); symbol_visitor.mark_live_symbols(); symbol_visitor.live_symbols } fn should_warn(item: &ast::Item) -> bool { match item.node { ast::ItemStatic(..) | ast::ItemFn(..) | ast::ItemEnum(..) | ast::ItemStruct(..) => true, _ => false } } fn get_struct_ctor_id(item: &ast::Item) -> Option { match item.node { ast::ItemStruct(struct_def, _) => struct_def.ctor_id, _ => None } } struct DeadVisitor<'a> { tcx: &'a ty::ctxt, live_symbols: Box>, } impl<'a> DeadVisitor<'a> { fn should_warn_about_field(&mut self, node: &ast::StructField_) -> bool { let is_named = node.ident().is_some(); let field_type = ty::node_id_to_type(self.tcx, node.id); let is_marker_field = match ty::ty_to_def_id(field_type) { Some(def_id) => self.tcx.lang_items.items().any(|(_, item)| *item == Some(def_id)), _ => false }; is_named && !self.symbol_is_live(node.id, None) && !is_marker_field && !has_allow_dead_code_or_lang_attr(node.attrs.as_slice()) } // id := node id of an item's definition. // ctor_id := `Some` if the item is a struct_ctor (tuple struct), // `None` otherwise. // If the item is a struct_ctor, then either its `id` or // `ctor_id` (unwrapped) is in the live_symbols set. More specifically, // DefMap maps the ExprPath of a struct_ctor to the node referred by // `ctor_id`. On the other hand, in a statement like // `type = ;` where refers to a struct_ctor, // DefMap maps to `id` instead. fn symbol_is_live(&mut self, id: ast::NodeId, ctor_id: Option) -> bool { if self.live_symbols.contains(&id) || ctor_id.map_or(false, |ctor| self.live_symbols.contains(&ctor)) { return true; } // If it's a type whose methods are live, then it's live, too. // This is done to handle the case where, for example, the static // method of a private type is used, but the type itself is never // called directly. let impl_items = self.tcx.impl_items.borrow(); match self.tcx.inherent_impls.borrow().find(&local_def(id)) { None => (), Some(impl_list) => { for impl_did in impl_list.borrow().iter() { for item_did in impl_items.get(impl_did).iter() { if self.live_symbols.contains(&item_did.def_id() .node) { return true; } } } } } false } fn warn_dead_code(&mut self, id: ast::NodeId, span: codemap::Span, ident: ast::Ident) { let name = ident.as_str(); if !name.starts_with("_") { self.tcx .sess .add_lint(lint::builtin::DEAD_CODE, id, span, format!("code is never used: `{}`", name)); } } } impl<'a> Visitor<()> for DeadVisitor<'a> { fn visit_item(&mut self, item: &ast::Item, _: ()) { let ctor_id = get_struct_ctor_id(item); if !self.symbol_is_live(item.id, ctor_id) && should_warn(item) { self.warn_dead_code(item.id, item.span, item.ident); } visit::walk_item(self, item, ()); } fn visit_foreign_item(&mut self, fi: &ast::ForeignItem, _: ()) { if !self.symbol_is_live(fi.id, None) { self.warn_dead_code(fi.id, fi.span, fi.ident); } visit::walk_foreign_item(self, fi, ()); } fn visit_fn(&mut self, fk: &visit::FnKind, _: &ast::FnDecl, block: &ast::Block, span: codemap::Span, id: ast::NodeId, _: ()) { // Have to warn method here because methods are not ast::Item match *fk { visit::FkMethod(..) => { let ident = visit::name_of_fn(fk); if !self.symbol_is_live(id, None) { self.warn_dead_code(id, span, ident); } } _ => () } visit::walk_block(self, block, ()); } fn visit_struct_field(&mut self, field: &ast::StructField, _: ()) { if self.should_warn_about_field(&field.node) { self.warn_dead_code(field.node.id, field.span, field.node.ident().unwrap()); } visit::walk_struct_field(self, field, ()); } // Overwrite so that we don't warn the trait method itself. fn visit_trait_item(&mut self, trait_method: &ast::TraitItem, _: ()) { match *trait_method { ast::ProvidedMethod(ref method) => { visit::walk_block(self, &*method.pe_body(), ()) } ast::RequiredMethod(_) => () } } } pub fn check_crate(tcx: &ty::ctxt, exported_items: &privacy::ExportedItems, reachable_symbols: &NodeSet, krate: &ast::Crate) { let live_symbols = find_live(tcx, exported_items, reachable_symbols, krate); let mut visitor = DeadVisitor { tcx: tcx, live_symbols: live_symbols }; visit::walk_crate(&mut visitor, krate, ()); }