use clippy_config::Conf; use clippy_utils::diagnostics::span_lint_and_help; use clippy_utils::source::{IntoSpan, SpanRangeExt}; use clippy_utils::ty::is_type_diagnostic_item; use clippy_utils::visitors::for_each_expr_without_closures; use clippy_utils::{get_async_fn_body, is_async_fn, LimitStack}; use core::ops::ControlFlow; use rustc_ast::ast::Attribute; use rustc_hir::intravisit::FnKind; use rustc_hir::{Body, Expr, ExprKind, FnDecl}; use rustc_lint::{LateContext, LateLintPass, LintContext}; use rustc_session::impl_lint_pass; use rustc_span::def_id::LocalDefId; use rustc_span::{sym, Span}; declare_clippy_lint! { /// ### What it does /// Checks for methods with high cognitive complexity. /// /// ### Why is this bad? /// Methods of high cognitive complexity tend to be hard to /// both read and maintain. Also LLVM will tend to optimize small methods better. /// /// ### Known problems /// Sometimes it's hard to find a way to reduce the /// complexity. /// /// ### Example /// You'll see it when you get the warning. #[clippy::version = "1.35.0"] pub COGNITIVE_COMPLEXITY, nursery, "functions that should be split up into multiple functions" } pub struct CognitiveComplexity { limit: LimitStack, } impl CognitiveComplexity { pub fn new(conf: &'static Conf) -> Self { Self { limit: LimitStack::new(conf.cognitive_complexity_threshold), } } } impl_lint_pass!(CognitiveComplexity => [COGNITIVE_COMPLEXITY]); impl CognitiveComplexity { fn check<'tcx>( &mut self, cx: &LateContext<'tcx>, kind: FnKind<'tcx>, decl: &'tcx FnDecl<'_>, expr: &'tcx Expr<'_>, body_span: Span, ) { if body_span.from_expansion() { return; } let mut cc = 1u64; let mut returns = 0u64; let _: Option = for_each_expr_without_closures(expr, |e| { match e.kind { ExprKind::If(_, _, _) => { cc += 1; }, ExprKind::Match(_, arms, _) => { if arms.len() > 1 { cc += 1; } cc += arms.iter().filter(|arm| arm.guard.is_some()).count() as u64; }, ExprKind::Ret(_) => returns += 1, _ => {}, } ControlFlow::Continue(()) }); let ret_ty = cx.typeck_results().node_type(expr.hir_id); let ret_adjust = if is_type_diagnostic_item(cx, ret_ty, sym::Result) { returns } else { #[expect(clippy::integer_division)] (returns / 2) }; // prevent degenerate cases where unreachable code contains `return` statements if cc >= ret_adjust { cc -= ret_adjust; } if cc > self.limit.limit() { let fn_span = match kind { FnKind::ItemFn(ident, _, _) | FnKind::Method(ident, _) => ident.span, FnKind::Closure => { let header_span = body_span.with_hi(decl.output.span().lo()); #[expect(clippy::range_plus_one)] if let Some(range) = header_span.map_range(cx, |src, range| { let mut idxs = src.get(range.clone())?.match_indices('|'); Some(range.start + idxs.next()?.0..range.start + idxs.next()?.0 + 1) }) { range.with_ctxt(header_span.ctxt()) } else { return; } }, }; span_lint_and_help( cx, COGNITIVE_COMPLEXITY, fn_span, format!( "the function has a cognitive complexity of ({cc}/{})", self.limit.limit() ), None, "you could split it up into multiple smaller functions", ); } } } impl<'tcx> LateLintPass<'tcx> for CognitiveComplexity { fn check_fn( &mut self, cx: &LateContext<'tcx>, kind: FnKind<'tcx>, decl: &'tcx FnDecl<'_>, body: &'tcx Body<'_>, span: Span, def_id: LocalDefId, ) { if !cx.tcx.has_attr(def_id, sym::test) { let expr = if is_async_fn(kind) { match get_async_fn_body(cx.tcx, body) { Some(b) => b, None => { return; }, } } else { body.value }; self.check(cx, kind, decl, expr, span); } } fn check_attributes(&mut self, cx: &LateContext<'tcx>, attrs: &'tcx [Attribute]) { self.limit.push_attrs(cx.sess(), attrs, "cognitive_complexity"); } fn check_attributes_post(&mut self, cx: &LateContext<'tcx>, attrs: &'tcx [Attribute]) { self.limit.pop_attrs(cx.sess(), attrs, "cognitive_complexity"); } }