//! Propagates constants for early reporting of statically known //! assertion failures use std::cell::Cell; use rustc::hir::def::DefKind; use rustc::mir::{ AggregateKind, Constant, Location, Place, PlaceBase, Body, Operand, Rvalue, Local, NullOp, UnOp, StatementKind, Statement, LocalKind, Static, StaticKind, TerminatorKind, Terminator, ClearCrossCrate, SourceInfo, BinOp, ProjectionElem, SourceScope, SourceScopeLocalData, LocalDecl, Promoted, }; use rustc::mir::visit::{ Visitor, PlaceContext, MutatingUseContext, MutVisitor, NonMutatingUseContext, }; use rustc::mir::interpret::{InterpError, Scalar, GlobalId, InterpResult}; use rustc::ty::{self, Instance, ParamEnv, Ty, TyCtxt}; use syntax_pos::{Span, DUMMY_SP}; use rustc::ty::subst::InternalSubsts; use rustc_data_structures::indexed_vec::IndexVec; use rustc::ty::layout::{ LayoutOf, TyLayout, LayoutError, HasTyCtxt, TargetDataLayout, HasDataLayout, Size, }; use crate::interpret::{ self, InterpCx, ScalarMaybeUndef, Immediate, OpTy, ImmTy, MemoryKind, StackPopCleanup, LocalValue, LocalState, }; use crate::const_eval::{ CompileTimeInterpreter, error_to_const_error, eval_promoted, mk_eval_cx, }; use crate::transform::{MirPass, MirSource}; pub struct ConstProp; impl MirPass for ConstProp { fn run_pass<'tcx>(&self, tcx: TyCtxt<'tcx>, source: MirSource<'tcx>, body: &mut Body<'tcx>) { // will be evaluated by miri and produce its errors there if source.promoted.is_some() { return; } use rustc::hir::map::blocks::FnLikeNode; let hir_id = tcx.hir().as_local_hir_id(source.def_id()) .expect("Non-local call to local provider is_const_fn"); let is_fn_like = FnLikeNode::from_node(tcx.hir().get(hir_id)).is_some(); let is_assoc_const = match tcx.def_kind(source.def_id()) { Some(DefKind::AssocConst) => true, _ => false, }; // Only run const prop on functions, methods, closures and associated constants if !is_fn_like && !is_assoc_const { // skip anon_const/statics/consts because they'll be evaluated by miri anyway trace!("ConstProp skipped for {:?}", source.def_id()); return } trace!("ConstProp starting for {:?}", source.def_id()); // Steal some data we need from `body`. let source_scope_local_data = std::mem::replace( &mut body.source_scope_local_data, ClearCrossCrate::Clear ); let promoted = std::mem::replace( &mut body.promoted, IndexVec::new() ); let dummy_body = &Body::new( body.basic_blocks().clone(), Default::default(), ClearCrossCrate::Clear, Default::default(), None, body.local_decls.clone(), Default::default(), body.arg_count, Default::default(), tcx.def_span(source.def_id()), Default::default(), ); // FIXME(oli-obk, eddyb) Optimize locals (or even local paths) to hold // constants, instead of just checking for const-folding succeeding. // That would require an uniform one-def no-mutation analysis // and RPO (or recursing when needing the value of a local). let mut optimization_finder = ConstPropagator::new( body, dummy_body, source_scope_local_data, promoted, tcx, source ); optimization_finder.visit_body(body); // put back the data we stole from `mir` let (source_scope_local_data, promoted) = optimization_finder.release_stolen_data(); std::mem::replace( &mut body.source_scope_local_data, source_scope_local_data ); std::mem::replace( &mut body.promoted, promoted ); trace!("ConstProp done for {:?}", source.def_id()); } } type Const<'tcx> = OpTy<'tcx>; /// Finds optimization opportunities on the MIR. struct ConstPropagator<'mir, 'tcx> { ecx: InterpCx<'mir, 'tcx, CompileTimeInterpreter<'mir, 'tcx>>, tcx: TyCtxt<'tcx>, source: MirSource<'tcx>, can_const_prop: IndexVec, param_env: ParamEnv<'tcx>, source_scope_local_data: ClearCrossCrate>, local_decls: IndexVec>, promoted: IndexVec>, } impl<'mir, 'tcx> LayoutOf for ConstPropagator<'mir, 'tcx> { type Ty = Ty<'tcx>; type TyLayout = Result, LayoutError<'tcx>>; fn layout_of(&self, ty: Ty<'tcx>) -> Self::TyLayout { self.tcx.layout_of(self.param_env.and(ty)) } } impl<'mir, 'tcx> HasDataLayout for ConstPropagator<'mir, 'tcx> { #[inline] fn data_layout(&self) -> &TargetDataLayout { &self.tcx.data_layout } } impl<'mir, 'tcx> HasTyCtxt<'tcx> for ConstPropagator<'mir, 'tcx> { #[inline] fn tcx(&self) -> TyCtxt<'tcx> { self.tcx } } impl<'mir, 'tcx> ConstPropagator<'mir, 'tcx> { fn new( body: &Body<'tcx>, dummy_body: &'mir Body<'tcx>, source_scope_local_data: ClearCrossCrate>, promoted: IndexVec>, tcx: TyCtxt<'tcx>, source: MirSource<'tcx>, ) -> ConstPropagator<'mir, 'tcx> { let def_id = source.def_id(); let param_env = tcx.param_env(def_id); let span = tcx.def_span(def_id); let mut ecx = mk_eval_cx(tcx, span, param_env); let can_const_prop = CanConstProp::check(body); ecx.push_stack_frame( Instance::new(def_id, &InternalSubsts::identity_for_item(tcx, def_id)), span, dummy_body, None, StackPopCleanup::None { cleanup: false, }, ).expect("failed to push initial stack frame"); ConstPropagator { ecx, tcx, source, param_env, can_const_prop, source_scope_local_data, //FIXME(wesleywiser) we can't steal this because `Visitor::super_visit_body()` needs it local_decls: body.local_decls.clone(), promoted, } } fn release_stolen_data( self, ) -> ( ClearCrossCrate>, IndexVec>, ) { (self.source_scope_local_data, self.promoted) } fn get_const(&self, local: Local) -> Option> { let l = &self.ecx.frame().locals[local]; // If the local is `Unitialized` or `Dead` then we haven't propagated a value into it. // // `InterpCx::access_local()` mostly takes care of this for us however, for ZSTs, // it will synthesize a value for us. In doing so, that will cause the // `get_const(l).is_empty()` assert right before we call `set_const()` in `visit_statement` // to fail. if let LocalValue::Uninitialized | LocalValue::Dead = l.value { return None; } self.ecx.access_local(self.ecx.frame(), local, None).ok() } fn set_const(&mut self, local: Local, c: Const<'tcx>) { let frame = self.ecx.frame_mut(); if let Some(layout) = frame.locals[local].layout.get() { debug_assert_eq!(c.layout, layout); } frame.locals[local] = LocalState { value: LocalValue::Live(*c), layout: Cell::new(Some(c.layout)), }; } fn remove_const(&mut self, local: Local) { self.ecx.frame_mut().locals[local] = LocalState { value: LocalValue::Uninitialized, layout: Cell::new(None), }; } fn use_ecx( &mut self, source_info: SourceInfo, f: F ) -> Option where F: FnOnce(&mut Self) -> InterpResult<'tcx, T>, { self.ecx.tcx.span = source_info.span; let lint_root = match self.source_scope_local_data { ClearCrossCrate::Set(ref ivs) => { //FIXME(#51314): remove this check if source_info.scope.index() >= ivs.len() { return None; } ivs[source_info.scope].lint_root }, ClearCrossCrate::Clear => return None, }; let r = match f(self) { Ok(val) => Some(val), Err(error) => { let diagnostic = error_to_const_error(&self.ecx, error); use rustc::mir::interpret::InterpError::*; match diagnostic.error { // don't report these, they make no sense in a const prop context | MachineError(_) | Exit(_) // at runtime these transformations might make sense // FIXME: figure out the rules and start linting | FunctionAbiMismatch(..) | FunctionArgMismatch(..) | FunctionRetMismatch(..) | FunctionArgCountMismatch // fine at runtime, might be a register address or sth | ReadBytesAsPointer // fine at runtime | ReadForeignStatic | Unimplemented(_) // don't report const evaluator limits | StackFrameLimitReached | NoMirFor(..) | InlineAsm => {}, | InvalidMemoryAccess | DanglingPointerDeref | DoubleFree | InvalidFunctionPointer | InvalidBool | InvalidDiscriminant(..) | PointerOutOfBounds { .. } | InvalidNullPointerUsage | ValidationFailure(..) | InvalidPointerMath | ReadUndefBytes(_) | DeadLocal | InvalidBoolOp(_) | DerefFunctionPointer | ExecuteMemory | Intrinsic(..) | InvalidChar(..) | AbiViolation(_) | AlignmentCheckFailed{..} | CalledClosureAsFunction | VtableForArgumentlessMethod | ModifiedConstantMemory | ModifiedStatic | AssumptionNotHeld // FIXME: should probably be removed and turned into a bug! call | TypeNotPrimitive(_) | ReallocatedWrongMemoryKind(_, _) | DeallocatedWrongMemoryKind(_, _) | ReallocateNonBasePtr | DeallocateNonBasePtr | IncorrectAllocationInformation(..) | UnterminatedCString(_) | HeapAllocZeroBytes | HeapAllocNonPowerOfTwoAlignment(_) | Unreachable | ReadFromReturnPointer | GeneratorResumedAfterReturn | GeneratorResumedAfterPanic | ReferencedConstant | InfiniteLoop => { // FIXME: report UB here }, | OutOfTls | TlsOutOfBounds | PathNotFound(_) => bug!("these should not be in rustc, but in miri's machine errors"), | Layout(_) | UnimplementedTraitSelection | TypeckError | TooGeneric // these are just noise => {}, // non deterministic | ReadPointerAsBytes // FIXME: implement => {}, | Panic { .. } | BoundsCheck{..} | Overflow(_) | OverflowNeg | DivisionByZero | RemainderByZero => { diagnostic.report_as_lint( self.ecx.tcx, "this expression will panic at runtime", lint_root, None, ); } } None }, }; self.ecx.tcx.span = DUMMY_SP; r } fn eval_constant( &mut self, c: &Constant<'tcx>, ) -> Option> { self.ecx.tcx.span = c.span; match self.ecx.eval_const_to_op(c.literal, None) { Ok(op) => { Some(op) }, Err(error) => { let err = error_to_const_error(&self.ecx, error); err.report_as_error(self.ecx.tcx, "erroneous constant used"); None }, } } fn eval_place(&mut self, place: &Place<'tcx>, source_info: SourceInfo) -> Option> { trace!("eval_place(place={:?})", place); place.iterate(|place_base, place_projection| { let mut eval = match place_base { PlaceBase::Local(loc) => self.get_const(*loc).clone()?, PlaceBase::Static(box Static {kind: StaticKind::Promoted(promoted), ..}) => { let generics = self.tcx.generics_of(self.source.def_id()); if generics.requires_monomorphization(self.tcx) { // FIXME: can't handle code with generics return None; } let substs = InternalSubsts::identity_for_item(self.tcx, self.source.def_id()); let instance = Instance::new(self.source.def_id(), substs); let cid = GlobalId { instance, promoted: Some(*promoted), }; // cannot use `const_eval` here, because that would require having the MIR // for the current function available, but we're producing said MIR right now let res = self.use_ecx(source_info, |this| { let body = &this.promoted[*promoted]; eval_promoted(this.tcx, cid, body, this.param_env) })?; trace!("evaluated promoted {:?} to {:?}", promoted, res); res.into() } _ => return None, }; for proj in place_projection { match proj.elem { ProjectionElem::Field(field, _) => { trace!("field proj on {:?}", proj.base); eval = self.use_ecx(source_info, |this| { this.ecx.operand_field(eval, field.index() as u64) })?; }, ProjectionElem::Deref => { trace!("processing deref"); eval = self.use_ecx(source_info, |this| { this.ecx.deref_operand(eval) })?.into(); } // We could get more projections by using e.g., `operand_projection`, // but we do not even have the stack frame set up properly so // an `Index` projection would throw us off-track. _ => return None, } } Some(eval) }) } fn eval_operand(&mut self, op: &Operand<'tcx>, source_info: SourceInfo) -> Option> { match *op { Operand::Constant(ref c) => self.eval_constant(c), | Operand::Move(ref place) | Operand::Copy(ref place) => self.eval_place(place, source_info), } } fn const_prop( &mut self, rvalue: &Rvalue<'tcx>, place_layout: TyLayout<'tcx>, source_info: SourceInfo, ) -> Option> { let span = source_info.span; match *rvalue { Rvalue::Use(ref op) => { self.eval_operand(op, source_info) }, Rvalue::Ref(_, _, ref place) => { let src = self.eval_place(place, source_info)?; let mplace = src.try_as_mplace().ok()?; Some(ImmTy::from_scalar(mplace.ptr.into(), place_layout).into()) }, Rvalue::Repeat(..) | Rvalue::Aggregate(..) | Rvalue::NullaryOp(NullOp::Box, _) | Rvalue::Discriminant(..) => None, Rvalue::Cast(kind, ref operand, _) => { let op = self.eval_operand(operand, source_info)?; self.use_ecx(source_info, |this| { let dest = this.ecx.allocate(place_layout, MemoryKind::Stack); this.ecx.cast(op, kind, dest.into())?; Ok(dest.into()) }) }, Rvalue::Len(ref place) => { let place = self.eval_place(&place, source_info)?; let mplace = place.try_as_mplace().ok()?; if let ty::Slice(_) = mplace.layout.ty.sty { let len = mplace.meta.unwrap().to_usize(&self.ecx).unwrap(); Some(ImmTy { imm: Immediate::Scalar( Scalar::from_uint( len, Size::from_bits( self.tcx.sess.target.usize_ty.bit_width().unwrap() as u64 ) ).into(), ), layout: self.tcx.layout_of(self.param_env.and(self.tcx.types.usize)).ok()?, }.into()) } else { trace!("not slice: {:?}", mplace.layout.ty.sty); None } }, Rvalue::NullaryOp(NullOp::SizeOf, ty) => { type_size_of(self.tcx, self.param_env, ty).and_then(|n| Some( ImmTy { imm: Immediate::Scalar( Scalar::from_uint(n, self.tcx.data_layout.pointer_size).into() ), layout: self.tcx.layout_of(self.param_env.and(self.tcx.types.usize)).ok()?, }.into() )) } Rvalue::UnaryOp(op, ref arg) => { let def_id = if self.tcx.is_closure(self.source.def_id()) { self.tcx.closure_base_def_id(self.source.def_id()) } else { self.source.def_id() }; let generics = self.tcx.generics_of(def_id); if generics.requires_monomorphization(self.tcx) { // FIXME: can't handle code with generics return None; } let arg = self.eval_operand(arg, source_info)?; let val = self.use_ecx(source_info, |this| { let prim = this.ecx.read_immediate(arg)?; match op { UnOp::Neg => { // Need to do overflow check here: For actual CTFE, MIR // generation emits code that does this before calling the op. if prim.to_bits()? == (1 << (prim.layout.size.bits() - 1)) { return err!(OverflowNeg); } } UnOp::Not => { // Cannot overflow } } // Now run the actual operation. this.ecx.unary_op(op, prim) })?; let res = ImmTy { imm: Immediate::Scalar(val.into()), layout: place_layout, }; Some(res.into()) } Rvalue::CheckedBinaryOp(op, ref left, ref right) | Rvalue::BinaryOp(op, ref left, ref right) => { trace!("rvalue binop {:?} for {:?} and {:?}", op, left, right); let right = self.eval_operand(right, source_info)?; let def_id = if self.tcx.is_closure(self.source.def_id()) { self.tcx.closure_base_def_id(self.source.def_id()) } else { self.source.def_id() }; let generics = self.tcx.generics_of(def_id); if generics.requires_monomorphization(self.tcx) { // FIXME: can't handle code with generics return None; } let r = self.use_ecx(source_info, |this| { this.ecx.read_immediate(right) })?; if op == BinOp::Shr || op == BinOp::Shl { let left_ty = left.ty(&self.local_decls, self.tcx); let left_bits = self .tcx .layout_of(self.param_env.and(left_ty)) .unwrap() .size .bits(); let right_size = right.layout.size; let r_bits = r.to_scalar().and_then(|r| r.to_bits(right_size)); if r_bits.ok().map_or(false, |b| b >= left_bits as u128) { let source_scope_local_data = match self.source_scope_local_data { ClearCrossCrate::Set(ref data) => data, ClearCrossCrate::Clear => return None, }; let dir = if op == BinOp::Shr { "right" } else { "left" }; let hir_id = source_scope_local_data[source_info.scope].lint_root; self.tcx.lint_hir( ::rustc::lint::builtin::EXCEEDING_BITSHIFTS, hir_id, span, &format!("attempt to shift {} with overflow", dir)); return None; } } let left = self.eval_operand(left, source_info)?; let l = self.use_ecx(source_info, |this| { this.ecx.read_immediate(left) })?; trace!("const evaluating {:?} for {:?} and {:?}", op, left, right); let (val, overflow) = self.use_ecx(source_info, |this| { this.ecx.binary_op(op, l, r) })?; let val = if let Rvalue::CheckedBinaryOp(..) = *rvalue { Immediate::ScalarPair( val.into(), Scalar::from_bool(overflow).into(), ) } else { if overflow { let err = InterpError::Overflow(op).into(); let _: Option<()> = self.use_ecx(source_info, |_| Err(err)); return None; } Immediate::Scalar(val.into()) }; let res = ImmTy { imm: val, layout: place_layout, }; Some(res.into()) }, } } fn operand_from_scalar(&self, scalar: Scalar, ty: Ty<'tcx>, span: Span) -> Operand<'tcx> { Operand::Constant(Box::new( Constant { span, ty, user_ty: None, literal: self.tcx.mk_const(*ty::Const::from_scalar( self.tcx, scalar, ty, )) } )) } fn replace_with_const( &mut self, rval: &mut Rvalue<'tcx>, value: Const<'tcx>, source_info: SourceInfo, ) { trace!("attepting to replace {:?} with {:?}", rval, value); if let Err(e) = self.ecx.validate_operand( value, vec![], // FIXME: is ref tracking too expensive? Some(&mut interpret::RefTracking::empty()), ) { trace!("validation error, attempt failed: {:?}", e); return; } // FIXME> figure out what tho do when try_read_immediate fails let imm = self.use_ecx(source_info, |this| { this.ecx.try_read_immediate(value) }); if let Some(Ok(imm)) = imm { match *imm { interpret::Immediate::Scalar(ScalarMaybeUndef::Scalar(scalar)) => { *rval = Rvalue::Use( self.operand_from_scalar(scalar, value.layout.ty, source_info.span)); }, Immediate::ScalarPair( ScalarMaybeUndef::Scalar(one), ScalarMaybeUndef::Scalar(two) ) => { let ty = &value.layout.ty.sty; if let ty::Tuple(substs) = ty { *rval = Rvalue::Aggregate( Box::new(AggregateKind::Tuple), vec![ self.operand_from_scalar( one, substs[0].expect_ty(), source_info.span ), self.operand_from_scalar( two, substs[1].expect_ty(), source_info.span ), ], ); } }, _ => { } } } } fn should_const_prop(&self) -> bool { self.tcx.sess.opts.debugging_opts.mir_opt_level >= 2 } } fn type_size_of<'tcx>( tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>, ) -> Option { tcx.layout_of(param_env.and(ty)).ok().map(|layout| layout.size.bytes()) } struct CanConstProp { can_const_prop: IndexVec, // false at the beginning, once set, there are not allowed to be any more assignments found_assignment: IndexVec, } impl CanConstProp { /// returns true if `local` can be propagated fn check(body: &Body<'_>) -> IndexVec { let mut cpv = CanConstProp { can_const_prop: IndexVec::from_elem(true, &body.local_decls), found_assignment: IndexVec::from_elem(false, &body.local_decls), }; for (local, val) in cpv.can_const_prop.iter_enumerated_mut() { // cannot use args at all // cannot use locals because if x < y { y - x } else { x - y } would // lint for x != y // FIXME(oli-obk): lint variables until they are used in a condition // FIXME(oli-obk): lint if return value is constant *val = body.local_kind(local) == LocalKind::Temp; if !*val { trace!("local {:?} can't be propagated because it's not a temporary", local); } } cpv.visit_body(body); cpv.can_const_prop } } impl<'tcx> Visitor<'tcx> for CanConstProp { fn visit_local( &mut self, &local: &Local, context: PlaceContext, _: Location, ) { use rustc::mir::visit::PlaceContext::*; match context { // Constants must have at most one write // FIXME(oli-obk): we could be more powerful here, if the multiple writes // only occur in independent execution paths MutatingUse(MutatingUseContext::Store) => if self.found_assignment[local] { trace!("local {:?} can't be propagated because of multiple assignments", local); self.can_const_prop[local] = false; } else { self.found_assignment[local] = true }, // Reading constants is allowed an arbitrary number of times NonMutatingUse(NonMutatingUseContext::Copy) | NonMutatingUse(NonMutatingUseContext::Move) | NonMutatingUse(NonMutatingUseContext::Inspect) | NonMutatingUse(NonMutatingUseContext::Projection) | MutatingUse(MutatingUseContext::Projection) | NonUse(_) => {}, _ => { trace!("local {:?} can't be propagaged because it's used: {:?}", local, context); self.can_const_prop[local] = false; }, } } } impl<'mir, 'tcx> MutVisitor<'tcx> for ConstPropagator<'mir, 'tcx> { fn visit_constant( &mut self, constant: &mut Constant<'tcx>, location: Location, ) { trace!("visit_constant: {:?}", constant); self.super_constant(constant, location); self.eval_constant(constant); } fn visit_statement( &mut self, statement: &mut Statement<'tcx>, location: Location, ) { trace!("visit_statement: {:?}", statement); if let StatementKind::Assign(ref place, ref mut rval) = statement.kind { let place_ty: Ty<'tcx> = place .ty(&self.local_decls, self.tcx) .ty; if let Ok(place_layout) = self.tcx.layout_of(self.param_env.and(place_ty)) { if let Some(value) = self.const_prop(rval, place_layout, statement.source_info) { if let Place { base: PlaceBase::Local(local), projection: None, } = *place { trace!("checking whether {:?} can be stored to {:?}", value, local); if self.can_const_prop[local] { trace!("storing {:?} to {:?}", value, local); assert!(self.get_const(local).is_none()); self.set_const(local, value); if self.should_const_prop() { self.replace_with_const( rval, value, statement.source_info, ); } } } } } } self.super_statement(statement, location); } fn visit_terminator( &mut self, terminator: &mut Terminator<'tcx>, location: Location, ) { self.super_terminator(terminator, location); let source_info = terminator.source_info; match &mut terminator.kind { TerminatorKind::Assert { expected, msg, ref mut cond, .. } => { if let Some(value) = self.eval_operand(&cond, source_info) { trace!("assertion on {:?} should be {:?}", value, expected); let expected = ScalarMaybeUndef::from(Scalar::from_bool(*expected)); let value_const = self.ecx.read_scalar(value).unwrap(); if expected != value_const { // poison all places this operand references so that further code // doesn't use the invalid value match cond { Operand::Move(ref place) | Operand::Copy(ref place) => { if let PlaceBase::Local(local) = place.base { self.remove_const(local); } }, Operand::Constant(_) => {} } let span = terminator.source_info.span; let hir_id = self .tcx .hir() .as_local_hir_id(self.source.def_id()) .expect("some part of a failing const eval must be local"); use rustc::mir::interpret::InterpError::*; let msg = match msg { Overflow(_) | OverflowNeg | DivisionByZero | RemainderByZero => msg.description().to_owned(), BoundsCheck { ref len, ref index } => { let len = self .eval_operand(len, source_info) .expect("len must be const"); let len = match self.ecx.read_scalar(len) { Ok(ScalarMaybeUndef::Scalar(Scalar::Raw { data, .. })) => data, other => bug!("const len not primitive: {:?}", other), }; let index = self .eval_operand(index, source_info) .expect("index must be const"); let index = match self.ecx.read_scalar(index) { Ok(ScalarMaybeUndef::Scalar(Scalar::Raw { data, .. })) => data, other => bug!("const index not primitive: {:?}", other), }; format!( "index out of bounds: \ the len is {} but the index is {}", len, index, ) }, // Need proper const propagator for these _ => return, }; self.tcx.lint_hir( ::rustc::lint::builtin::CONST_ERR, hir_id, span, &msg, ); } else { if self.should_const_prop() { if let ScalarMaybeUndef::Scalar(scalar) = value_const { *cond = self.operand_from_scalar( scalar, self.tcx.types.bool, source_info.span, ); } } } } }, TerminatorKind::SwitchInt { ref mut discr, switch_ty, .. } => { if self.should_const_prop() { if let Some(value) = self.eval_operand(&discr, source_info) { if let ScalarMaybeUndef::Scalar(scalar) = self.ecx.read_scalar(value).unwrap() { *discr = self.operand_from_scalar(scalar, switch_ty, source_info.span); } } } }, //none of these have Operands to const-propagate TerminatorKind::Goto { .. } | TerminatorKind::Resume | TerminatorKind::Abort | TerminatorKind::Return | TerminatorKind::Unreachable | TerminatorKind::Drop { .. } | TerminatorKind::DropAndReplace { .. } | TerminatorKind::Yield { .. } | TerminatorKind::GeneratorDrop | TerminatorKind::FalseEdges { .. } | TerminatorKind::FalseUnwind { .. } => { } //FIXME(wesleywiser) Call does have Operands that could be const-propagated TerminatorKind::Call { .. } => { } } } }