// Copyright 2015-2016 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use super::*; use dep_graph::{DepGraph, DepKind, DepNodeIndex}; use ich::Fingerprint; use hir::intravisit::{Visitor, NestedVisitorMap}; use std::iter::repeat; use syntax::ast::{NodeId, CRATE_NODE_ID}; use syntax_pos::Span; use ich::StableHashingContext; use rustc_data_structures::stable_hasher::{HashStable, StableHasher, StableHasherResult}; /// A Visitor that walks over the HIR and collects Nodes into a HIR map pub(super) struct NodeCollector<'a, 'hir> { /// The crate krate: &'hir Crate, /// The node map map: Vec>, /// The parent of this node parent_node: NodeId, // These fields keep track of the currently relevant DepNodes during // the visitor's traversal. current_dep_node_owner: DefIndex, current_signature_dep_index: DepNodeIndex, current_full_dep_index: DepNodeIndex, currently_in_body: bool, dep_graph: &'a DepGraph, definitions: &'a definitions::Definitions, hcx: StableHashingContext<'a>, // We are collecting DepNode::HirBody hashes here so we can compute the // crate hash from then later on. hir_body_nodes: Vec, } impl<'a, 'hir> NodeCollector<'a, 'hir> { pub(super) fn root(krate: &'hir Crate, dep_graph: &'a DepGraph, definitions: &'a definitions::Definitions, hcx: StableHashingContext<'a>) -> NodeCollector<'a, 'hir> { let root_mod_def_path_hash = definitions.def_path_hash(CRATE_DEF_INDEX); // Allocate DepNodes for the root module let (root_mod_sig_dep_index, root_mod_full_dep_index); { let Crate { ref module, // Crate attributes are not copied over to the root `Mod`, so hash // them explicitly here. ref attrs, span, // These fields are handled separately: exported_macros: _, items: _, trait_items: _, impl_items: _, bodies: _, trait_impls: _, trait_default_impl: _, body_ids: _, } = *krate; root_mod_sig_dep_index = dep_graph.with_task( root_mod_def_path_hash.to_dep_node(DepKind::Hir), &hcx, HirItemLike { item_like: (module, attrs, span), hash_bodies: false }, identity_fn ).1; root_mod_full_dep_index = dep_graph.with_task( root_mod_def_path_hash.to_dep_node(DepKind::HirBody), &hcx, HirItemLike { item_like: (module, attrs, span), hash_bodies: true }, identity_fn ).1; } { dep_graph.with_task( DepNode::new_no_params(DepKind::AllLocalTraitImpls), &hcx, &krate.trait_impls, identity_fn ); } let hir_body_nodes = vec![root_mod_def_path_hash]; let mut collector = NodeCollector { krate, map: vec![], parent_node: CRATE_NODE_ID, current_signature_dep_index: root_mod_sig_dep_index, current_full_dep_index: root_mod_full_dep_index, current_dep_node_owner: CRATE_DEF_INDEX, currently_in_body: false, dep_graph, definitions, hcx, hir_body_nodes, }; collector.insert_entry(CRATE_NODE_ID, RootCrate(root_mod_sig_dep_index)); collector } pub(super) fn finalize_and_compute_crate_hash(self, crate_disambiguator: &Fingerprint) -> Vec> { let mut node_hashes: Vec<_> = self .hir_body_nodes .iter() .map(|&def_path_hash| { let dep_node = def_path_hash.to_dep_node(DepKind::HirBody); (def_path_hash, self.dep_graph.fingerprint_of(&dep_node)) }) .collect(); node_hashes.sort_unstable_by(|&(ref d1, _), &(ref d2, _)| d1.cmp(d2)); self.dep_graph.with_task(DepNode::new_no_params(DepKind::Krate), &self.hcx, (node_hashes, crate_disambiguator), identity_fn); self.map } fn insert_entry(&mut self, id: NodeId, entry: MapEntry<'hir>) { debug!("hir_map: {:?} => {:?}", id, entry); let len = self.map.len(); if id.as_usize() >= len { self.map.extend(repeat(NotPresent).take(id.as_usize() - len + 1)); } self.map[id.as_usize()] = entry; } fn insert(&mut self, id: NodeId, node: Node<'hir>) { let parent = self.parent_node; let dep_node_index = if self.currently_in_body { self.current_full_dep_index } else { self.current_signature_dep_index }; let entry = match node { NodeItem(n) => EntryItem(parent, dep_node_index, n), NodeForeignItem(n) => EntryForeignItem(parent, dep_node_index, n), NodeTraitItem(n) => EntryTraitItem(parent, dep_node_index, n), NodeImplItem(n) => EntryImplItem(parent, dep_node_index, n), NodeVariant(n) => EntryVariant(parent, dep_node_index, n), NodeField(n) => EntryField(parent, dep_node_index, n), NodeExpr(n) => EntryExpr(parent, dep_node_index, n), NodeStmt(n) => EntryStmt(parent, dep_node_index, n), NodeTy(n) => EntryTy(parent, dep_node_index, n), NodeTraitRef(n) => EntryTraitRef(parent, dep_node_index, n), NodeBinding(n) => EntryBinding(parent, dep_node_index, n), NodePat(n) => EntryPat(parent, dep_node_index, n), NodeBlock(n) => EntryBlock(parent, dep_node_index, n), NodeStructCtor(n) => EntryStructCtor(parent, dep_node_index, n), NodeLifetime(n) => EntryLifetime(parent, dep_node_index, n), NodeTyParam(n) => EntryTyParam(parent, dep_node_index, n), NodeVisibility(n) => EntryVisibility(parent, dep_node_index, n), NodeLocal(n) => EntryLocal(parent, dep_node_index, n), NodeMacroDef(n) => EntryMacroDef(dep_node_index, n), }; // Make sure that the DepNode of some node coincides with the HirId // owner of that node. if cfg!(debug_assertions) { let hir_id_owner = self.definitions.node_to_hir_id(id).owner; if hir_id_owner != self.current_dep_node_owner { let node_str = match self.definitions.opt_def_index(id) { Some(def_index) => { self.definitions.def_path(def_index).to_string_no_crate() } None => format!("{:?}", node) }; bug!("inconsistent DepNode for `{}`: \ current_dep_node_owner={}, hir_id.owner={}", node_str, self.definitions .def_path(self.current_dep_node_owner) .to_string_no_crate(), self.definitions.def_path(hir_id_owner).to_string_no_crate()) } } self.insert_entry(id, entry); } fn with_parent(&mut self, parent_id: NodeId, f: F) { let parent_node = self.parent_node; self.parent_node = parent_id; f(self); self.parent_node = parent_node; } fn with_dep_node_owner>, F: FnOnce(&mut Self)>(&mut self, dep_node_owner: DefIndex, item_like: &T, f: F) { let prev_owner = self.current_dep_node_owner; let prev_signature_dep_index = self.current_signature_dep_index; let prev_full_dep_index = self.current_signature_dep_index; let prev_in_body = self.currently_in_body; let def_path_hash = self.definitions.def_path_hash(dep_node_owner); self.current_signature_dep_index = self.dep_graph.with_task( def_path_hash.to_dep_node(DepKind::Hir), &self.hcx, HirItemLike { item_like, hash_bodies: false }, identity_fn ).1; self.current_full_dep_index = self.dep_graph.with_task( def_path_hash.to_dep_node(DepKind::HirBody), &self.hcx, HirItemLike { item_like, hash_bodies: true }, identity_fn ).1; self.hir_body_nodes.push(def_path_hash); self.current_dep_node_owner = dep_node_owner; self.currently_in_body = false; f(self); self.currently_in_body = prev_in_body; self.current_dep_node_owner = prev_owner; self.current_full_dep_index = prev_full_dep_index; self.current_signature_dep_index = prev_signature_dep_index; } } impl<'a, 'hir> Visitor<'hir> for NodeCollector<'a, 'hir> { /// Because we want to track parent items and so forth, enable /// deep walking so that we walk nested items in the context of /// their outer items. fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'hir> { panic!("visit_nested_xxx must be manually implemented in this visitor") } fn visit_nested_item(&mut self, item: ItemId) { debug!("visit_nested_item: {:?}", item); self.visit_item(self.krate.item(item.id)); } fn visit_nested_trait_item(&mut self, item_id: TraitItemId) { self.visit_trait_item(self.krate.trait_item(item_id)); } fn visit_nested_impl_item(&mut self, item_id: ImplItemId) { self.visit_impl_item(self.krate.impl_item(item_id)); } fn visit_nested_body(&mut self, id: BodyId) { let prev_in_body = self.currently_in_body; self.currently_in_body = true; self.visit_body(self.krate.body(id)); self.currently_in_body = prev_in_body; } fn visit_item(&mut self, i: &'hir Item) { debug!("visit_item: {:?}", i); debug_assert_eq!(i.hir_id.owner, self.definitions.opt_def_index(i.id).unwrap()); self.with_dep_node_owner(i.hir_id.owner, i, |this| { this.insert(i.id, NodeItem(i)); this.with_parent(i.id, |this| { match i.node { ItemStruct(ref struct_def, _) => { // If this is a tuple-like struct, register the constructor. if !struct_def.is_struct() { this.insert(struct_def.id(), NodeStructCtor(struct_def)); } } _ => {} } intravisit::walk_item(this, i); }); }); } fn visit_foreign_item(&mut self, foreign_item: &'hir ForeignItem) { self.insert(foreign_item.id, NodeForeignItem(foreign_item)); self.with_parent(foreign_item.id, |this| { intravisit::walk_foreign_item(this, foreign_item); }); } fn visit_generics(&mut self, generics: &'hir Generics) { for ty_param in generics.ty_params.iter() { self.insert(ty_param.id, NodeTyParam(ty_param)); } intravisit::walk_generics(self, generics); } fn visit_trait_item(&mut self, ti: &'hir TraitItem) { debug_assert_eq!(ti.hir_id.owner, self.definitions.opt_def_index(ti.id).unwrap()); self.with_dep_node_owner(ti.hir_id.owner, ti, |this| { this.insert(ti.id, NodeTraitItem(ti)); this.with_parent(ti.id, |this| { intravisit::walk_trait_item(this, ti); }); }); } fn visit_impl_item(&mut self, ii: &'hir ImplItem) { debug_assert_eq!(ii.hir_id.owner, self.definitions.opt_def_index(ii.id).unwrap()); self.with_dep_node_owner(ii.hir_id.owner, ii, |this| { this.insert(ii.id, NodeImplItem(ii)); this.with_parent(ii.id, |this| { intravisit::walk_impl_item(this, ii); }); }); } fn visit_pat(&mut self, pat: &'hir Pat) { let node = if let PatKind::Binding(..) = pat.node { NodeBinding(pat) } else { NodePat(pat) }; self.insert(pat.id, node); self.with_parent(pat.id, |this| { intravisit::walk_pat(this, pat); }); } fn visit_expr(&mut self, expr: &'hir Expr) { self.insert(expr.id, NodeExpr(expr)); self.with_parent(expr.id, |this| { intravisit::walk_expr(this, expr); }); } fn visit_stmt(&mut self, stmt: &'hir Stmt) { let id = stmt.node.id(); self.insert(id, NodeStmt(stmt)); self.with_parent(id, |this| { intravisit::walk_stmt(this, stmt); }); } fn visit_ty(&mut self, ty: &'hir Ty) { self.insert(ty.id, NodeTy(ty)); self.with_parent(ty.id, |this| { intravisit::walk_ty(this, ty); }); } fn visit_trait_ref(&mut self, tr: &'hir TraitRef) { self.insert(tr.ref_id, NodeTraitRef(tr)); self.with_parent(tr.ref_id, |this| { intravisit::walk_trait_ref(this, tr); }); } fn visit_fn(&mut self, fk: intravisit::FnKind<'hir>, fd: &'hir FnDecl, b: BodyId, s: Span, id: NodeId) { assert_eq!(self.parent_node, id); intravisit::walk_fn(self, fk, fd, b, s, id); } fn visit_block(&mut self, block: &'hir Block) { self.insert(block.id, NodeBlock(block)); self.with_parent(block.id, |this| { intravisit::walk_block(this, block); }); } fn visit_local(&mut self, l: &'hir Local) { self.insert(l.id, NodeLocal(l)); self.with_parent(l.id, |this| { intravisit::walk_local(this, l) }) } fn visit_lifetime(&mut self, lifetime: &'hir Lifetime) { self.insert(lifetime.id, NodeLifetime(lifetime)); } fn visit_vis(&mut self, visibility: &'hir Visibility) { match *visibility { Visibility::Public | Visibility::Crate | Visibility::Inherited => {} Visibility::Restricted { id, .. } => { self.insert(id, NodeVisibility(visibility)); self.with_parent(id, |this| { intravisit::walk_vis(this, visibility); }); } } } fn visit_macro_def(&mut self, macro_def: &'hir MacroDef) { let def_index = self.definitions.opt_def_index(macro_def.id).unwrap(); self.with_dep_node_owner(def_index, macro_def, |this| { this.insert(macro_def.id, NodeMacroDef(macro_def)); }); } fn visit_variant(&mut self, v: &'hir Variant, g: &'hir Generics, item_id: NodeId) { let id = v.node.data.id(); self.insert(id, NodeVariant(v)); self.with_parent(id, |this| { intravisit::walk_variant(this, v, g, item_id); }); } fn visit_struct_field(&mut self, field: &'hir StructField) { self.insert(field.id, NodeField(field)); self.with_parent(field.id, |this| { intravisit::walk_struct_field(this, field); }); } fn visit_trait_item_ref(&mut self, ii: &'hir TraitItemRef) { // Do not visit the duplicate information in TraitItemRef. We want to // map the actual nodes, not the duplicate ones in the *Ref. let TraitItemRef { id, name: _, kind: _, span: _, defaultness: _, } = *ii; self.visit_nested_trait_item(id); } fn visit_impl_item_ref(&mut self, ii: &'hir ImplItemRef) { // Do not visit the duplicate information in ImplItemRef. We want to // map the actual nodes, not the duplicate ones in the *Ref. let ImplItemRef { id, name: _, kind: _, span: _, vis: _, defaultness: _, } = *ii; self.visit_nested_impl_item(id); } } // We use this with DepGraph::with_task(). Since we are handling only input // values here, the "task" computing them just passes them through. fn identity_fn(_: &StableHashingContext, item_like: T) -> T { item_like } // This is a wrapper structure that allows determining if span values within // the wrapped item should be hashed or not. struct HirItemLike { item_like: T, hash_bodies: bool, } impl<'hir, T> HashStable> for HirItemLike where T: HashStable> { fn hash_stable(&self, hcx: &mut StableHashingContext<'hir>, hasher: &mut StableHasher) { hcx.while_hashing_hir_bodies(self.hash_bodies, |hcx| { self.item_like.hash_stable(hcx, hasher); }); } }