// ---------------------------------------------------------------------- // Checking loans // // Phase 2 of check: we walk down the tree and check that: // 1. assignments are always made to mutable locations; // 2. loans made in overlapping scopes do not conflict // 3. assignments do not affect things loaned out as immutable // 4. moves to dnot affect things loaned out in any way import categorization::public_methods; export check_loans; enum check_loan_ctxt = @{ bccx: borrowck_ctxt, req_maps: req_maps, reported: hashmap, // Keep track of whether we're inside a ctor, so as to // allow mutating immutable fields in the same class if // we are in a ctor, we track the self id mut in_ctor: bool, mut declared_purity: ast::purity, mut fn_args: [ast::node_id] }; // if we are enforcing purity, why are we doing so? enum purity_cause { // enforcing purity because fn was declared pure: pc_pure_fn, // enforce purity because we need to guarantee the // validity of some alias; `bckerr` describes the // reason we needed to enforce purity. pc_cmt(bckerr) } fn check_loans(bccx: borrowck_ctxt, req_maps: req_maps, crate: @ast::crate) { let clcx = check_loan_ctxt(@{bccx: bccx, req_maps: req_maps, reported: int_hash(), mut in_ctor: false, mut declared_purity: ast::impure_fn, mut fn_args: []}); let vt = visit::mk_vt(@{visit_expr: check_loans_in_expr, visit_block: check_loans_in_block, visit_fn: check_loans_in_fn with *visit::default_visitor()}); visit::visit_crate(*crate, clcx, vt); } enum assignment_type { at_straight_up, at_swap, at_mutbl_ref, } impl methods for assignment_type { fn checked_by_liveness() -> bool { // the liveness pass guarantees that immutable local variables // are only assigned once; but it doesn't consider &mut alt self { at_straight_up {true} at_swap {true} at_mutbl_ref {false} } } fn ing_form(desc: str) -> str { alt self { at_straight_up { "assigning to " + desc } at_swap { "swapping to and from " + desc } at_mutbl_ref { "taking mut reference to " + desc } } } } impl methods for check_loan_ctxt { fn tcx() -> ty::ctxt { self.bccx.tcx } fn purity(scope_id: ast::node_id) -> option { let default_purity = alt self.declared_purity { // an unsafe declaration overrides all ast::unsafe_fn { ret none; } // otherwise, remember what was declared as the // default, but we must scan for requirements // imposed by the borrow check ast::pure_fn { some(pc_pure_fn) } ast::crust_fn | ast::impure_fn { none } }; // scan to see if this scope or any enclosing scope requires // purity. if so, that overrides the declaration. let mut scope_id = scope_id; let region_map = self.tcx().region_map; let pure_map = self.req_maps.pure_map; loop { alt pure_map.find(scope_id) { none {} some(e) {ret some(pc_cmt(e));} } alt region_map.find(scope_id) { none { ret default_purity; } some(next_scope_id) { scope_id = next_scope_id; } } } } fn walk_loans(scope_id: ast::node_id, f: fn(loan) -> bool) { let mut scope_id = scope_id; let region_map = self.tcx().region_map; let req_loan_map = self.req_maps.req_loan_map; loop { for req_loan_map.find(scope_id).each { |loanss| for (*loanss).each { |loans| for (*loans).each { |loan| if !f(loan) { ret; } } } } alt region_map.find(scope_id) { none { ret; } some(next_scope_id) { scope_id = next_scope_id; } } } } fn walk_loans_of(scope_id: ast::node_id, lp: @loan_path, f: fn(loan) -> bool) { for self.walk_loans(scope_id) { |loan| if loan.lp == lp { if !f(loan) { ret; } } } } // when we are in a pure context, we check each call to ensure // that the function which is invoked is itself pure. fn check_pure_callee_or_arg(pc: purity_cause, expr: @ast::expr) { let tcx = self.tcx(); #debug["check_pure_callee_or_arg(pc=%?, expr=%s, ty=%s)", pc, pprust::expr_to_str(expr), ty_to_str(self.tcx(), tcx.ty(expr))]; // Purity rules: an expr B is a legal callee or argument to a // call within a pure function A if at least one of the // following holds: // // (a) A was declared pure and B is one of its arguments; // (b) B is a stack closure; // (c) B is a pure fn; // (d) B is not a fn. alt expr.node { ast::expr_path(_) if pc == pc_pure_fn { let def = self.tcx().def_map.get(expr.id); let did = ast_util::def_id_of_def(def); let is_fn_arg = did.crate == ast::local_crate && self.fn_args.contains(did.node); if is_fn_arg { ret; } // case (a) above } ast::expr_fn_block(*) | ast::expr_fn(*) | ast::expr_loop_body(*) { if self.is_stack_closure(expr.id) { ret; } // case (b) above } _ {} } let expr_ty = tcx.ty(expr); alt ty::get(expr_ty).struct { ty::ty_fn(fn_ty) { alt fn_ty.purity { ast::pure_fn { ret; } // case (c) above ast::impure_fn | ast::unsafe_fn | ast::crust_fn { self.report_purity_error( pc, expr.span, #fmt["access to %s function", pprust::purity_to_str(fn_ty.purity)]); } } } _ { ret; } // case (d) above } } // True if the expression with the given `id` is a stack closure. // The expression must be an expr_fn(*) or expr_fn_block(*) fn is_stack_closure(id: ast::node_id) -> bool { let fn_ty = ty::node_id_to_type(self.tcx(), id); let proto = ty::ty_fn_proto(fn_ty); alt proto { ast::proto_block | ast::proto_any {true} ast::proto_bare | ast::proto_uniq | ast::proto_box {false} } } fn is_allowed_pure_arg(expr: @ast::expr) -> bool { ret alt expr.node { ast::expr_path(_) { let def = self.tcx().def_map.get(expr.id); let did = ast_util::def_id_of_def(def); did.crate == ast::local_crate && self.fn_args.contains(did.node) } ast::expr_fn_block(*) | ast::expr_fn(*) { self.is_stack_closure(expr.id) } _ {false} }; } fn check_for_conflicting_loans(scope_id: ast::node_id) { let new_loanss = alt self.req_maps.req_loan_map.find(scope_id) { none { ret; } some(loanss) { loanss } }; let par_scope_id = self.tcx().region_map.get(scope_id); for self.walk_loans(par_scope_id) { |old_loan| for (*new_loanss).each { |new_loans| for (*new_loans).each { |new_loan| if old_loan.lp != new_loan.lp { cont; } alt (old_loan.mutbl, new_loan.mutbl) { (m_const, _) | (_, m_const) | (m_mutbl, m_mutbl) | (m_imm, m_imm) { /*ok*/ } (m_mutbl, m_imm) | (m_imm, m_mutbl) { self.bccx.span_err( new_loan.cmt.span, #fmt["loan of %s as %s \ conflicts with prior loan", self.bccx.cmt_to_str(new_loan.cmt), self.bccx.mut_to_str(new_loan.mutbl)]); self.bccx.span_note( old_loan.cmt.span, #fmt["prior loan as %s granted here", self.bccx.mut_to_str(old_loan.mutbl)]); } } } } } } fn is_local_variable(cmt: cmt) -> bool { alt cmt.cat { cat_local(_) {true} _ {false} } } fn is_self_field(cmt: cmt) -> bool { alt cmt.cat { cat_comp(cmt_base, comp_field(*)) { alt cmt_base.cat { cat_special(sk_self) { true } _ { false } } } _ { false } } } fn check_assignment(at: assignment_type, ex: @ast::expr) { let cmt = self.bccx.cat_expr(ex); #debug["check_assignment(cmt=%s)", self.bccx.cmt_to_repr(cmt)]; if self.in_ctor && self.is_self_field(cmt) && at.checked_by_liveness() { // assigning to self.foo in a ctor is always allowed. } else if self.is_local_variable(cmt) && at.checked_by_liveness() { // liveness guarantees that immutable local variables // are only assigned once } else { alt cmt.mutbl { m_mutbl { /*ok*/ } m_const | m_imm { self.bccx.span_err( ex.span, at.ing_form(self.bccx.cmt_to_str(cmt))); ret; } } } // if this is a pure function, only loan-able state can be // assigned, because it is uniquely tied to this function and // is not visible from the outside alt self.purity(ex.id) { none {} some(pc) { if cmt.lp.is_none() { self.report_purity_error( pc, ex.span, at.ing_form(self.bccx.cmt_to_str(cmt))); } } } // check for a conflicting loan as well, except in the case of // taking a mutable ref. that will create a loan of its own // which will be checked for compat separately in // check_for_conflicting_loans() if at != at_mutbl_ref { for cmt.lp.each { |lp| self.check_for_loan_conflicting_with_assignment( at, ex, cmt, lp); } } self.bccx.add_to_mutbl_map(cmt); } fn check_for_loan_conflicting_with_assignment( at: assignment_type, ex: @ast::expr, cmt: cmt, lp: @loan_path) { for self.walk_loans_of(ex.id, lp) { |loan| alt loan.mutbl { m_mutbl | m_const { /*ok*/ } m_imm { self.bccx.span_err( ex.span, #fmt["%s prohibited due to outstanding loan", at.ing_form(self.bccx.cmt_to_str(cmt))]); self.bccx.span_note( loan.cmt.span, #fmt["loan of %s granted here", self.bccx.cmt_to_str(loan.cmt)]); ret; } } } // Subtle: if the mutability of the component being assigned // is inherited from the thing that the component is embedded // within, then we have to check whether that thing has been // loaned out as immutable! An example: // let mut x = {f: some(3)}; // let y = &x; // x loaned out as immutable // x.f = none; // changes type of y.f, which appears to be imm alt *lp { lp_comp(lp_base, ck) if inherent_mutability(ck) != m_mutbl { self.check_for_loan_conflicting_with_assignment( at, ex, cmt, lp_base); } lp_comp(*) | lp_local(*) | lp_arg(*) | lp_deref(*) {} } } fn report_purity_error(pc: purity_cause, sp: span, msg: str) { alt pc { pc_pure_fn { self.tcx().sess.span_err( sp, #fmt["%s prohibited in pure context", msg]); } pc_cmt(e) { if self.reported.insert(e.cmt.id, ()) { self.tcx().sess.span_err( e.cmt.span, #fmt["illegal borrow unless pure: %s", self.bccx.bckerr_code_to_str(e.code)]); self.tcx().sess.span_note( sp, #fmt["impure due to %s", msg]); } } } } fn check_move_out(ex: @ast::expr) { let cmt = self.bccx.cat_expr(ex); self.check_move_out_from_cmt(cmt); } fn check_move_out_from_cmt(cmt: cmt) { #debug["check_move_out_from_cmt(cmt=%s)", self.bccx.cmt_to_repr(cmt)]; alt cmt.cat { // Rvalues, locals, and arguments can be moved: cat_rvalue | cat_local(_) | cat_arg(_) { } // We allow moving out of static items because the old code // did. This seems consistent with permitting moves out of // rvalues, I guess. cat_special(sk_static_item) { } // Nothing else. _ { self.bccx.span_err( cmt.span, #fmt["moving out of %s", self.bccx.cmt_to_str(cmt)]); ret; } } self.bccx.add_to_mutbl_map(cmt); // check for a conflicting loan: let lp = alt cmt.lp { none { ret; } some(lp) { lp } }; for self.walk_loans_of(cmt.id, lp) { |loan| self.bccx.span_err( cmt.span, #fmt["moving out of %s prohibited due to outstanding loan", self.bccx.cmt_to_str(cmt)]); self.bccx.span_note( loan.cmt.span, #fmt["loan of %s granted here", self.bccx.cmt_to_str(loan.cmt)]); ret; } } } fn check_loans_in_fn(fk: visit::fn_kind, decl: ast::fn_decl, body: ast::blk, sp: span, id: ast::node_id, &&self: check_loan_ctxt, visitor: visit::vt) { #debug["purity on entry=%?", self.declared_purity]; save_and_restore(self.in_ctor) {|| save_and_restore(self.declared_purity) {|| save_and_restore(self.fn_args) {|| let is_stack_closure = self.is_stack_closure(id); // In principle, we could consider fk_anon(*) or // fk_fn_block(*) to be in a ctor, I suppose, but the // purpose of the in_ctor flag is to allow modifications // of otherwise immutable fields and typestate wouldn't be // able to "see" into those functions anyway, so it // wouldn't be very helpful. alt fk { visit::fk_ctor(*) { self.in_ctor = true; self.declared_purity = decl.purity; self.fn_args = decl.inputs.map({|i| i.id}); } visit::fk_anon(*) | visit::fk_fn_block(*) if is_stack_closure { self.in_ctor = false; // inherits the purity/fn_args from enclosing ctxt } visit::fk_anon(*) | visit::fk_fn_block(*) | visit::fk_method(*) | visit::fk_item_fn(*) | visit::fk_res(*) | visit::fk_dtor(*) { self.in_ctor = false; self.declared_purity = decl.purity; self.fn_args = decl.inputs.map({|i| i.id}); } } visit::visit_fn(fk, decl, body, sp, id, self, visitor); } } } #debug["purity on exit=%?", self.declared_purity]; } fn check_loans_in_expr(expr: @ast::expr, &&self: check_loan_ctxt, vt: visit::vt) { self.check_for_conflicting_loans(expr.id); alt expr.node { ast::expr_swap(l, r) { self.check_assignment(at_swap, l); self.check_assignment(at_swap, r); } ast::expr_move(dest, src) { self.check_assignment(at_straight_up, dest); self.check_move_out(src); } ast::expr_assign(dest, _) | ast::expr_assign_op(_, dest, _) { self.check_assignment(at_straight_up, dest); } ast::expr_fn(_, _, _, cap_clause) | ast::expr_fn_block(_, _, cap_clause) { for (*cap_clause).each { |cap_item| if cap_item.is_move { let def = self.tcx().def_map.get(cap_item.id); // Hack: the type that is used in the cmt doesn't actually // matter here, so just subst nil instead of looking up // the type of the def that is referred to let cmt = self.bccx.cat_def(cap_item.id, cap_item.span, ty::mk_nil(self.tcx()), def); self.check_move_out_from_cmt(cmt); } } } ast::expr_addr_of(mutbl, base) { alt mutbl { m_const { /*all memory is const*/ } m_mutbl { // If we are taking an &mut ptr, make sure the memory // being pointed at is assignable in the first place: self.check_assignment(at_mutbl_ref, base); } m_imm { // XXX explain why no check is req'd here } } } ast::expr_call(f, args, _) { alt self.purity(expr.id) { none {} some(pc) { self.check_pure_callee_or_arg(pc, f); for args.each { |arg| self.check_pure_callee_or_arg(pc, arg) } } } let arg_tys = ty::ty_fn_args(ty::expr_ty(self.tcx(), f)); vec::iter2(args, arg_tys) { |arg, arg_ty| alt ty::resolved_mode(self.tcx(), arg_ty.mode) { ast::by_move { self.check_move_out(arg); } ast::by_mutbl_ref { self.check_assignment(at_mutbl_ref, arg); } ast::by_ref | ast::by_copy | ast::by_val { } } } } _ { } } visit::visit_expr(expr, self, vt); } fn check_loans_in_block(blk: ast::blk, &&self: check_loan_ctxt, vt: visit::vt) { save_and_restore(self.declared_purity) {|| self.check_for_conflicting_loans(blk.node.id); alt blk.node.rules { ast::default_blk { } ast::unchecked_blk { self.declared_purity = ast::impure_fn; } ast::unsafe_blk { self.declared_purity = ast::unsafe_fn; } } visit::visit_block(blk, self, vt); } }