// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Operations on managed vectors (`@[T]` type) use clone::Clone; use container::Container; use iter::{Iterator, FromIterator}; use option::{Option, Some, None}; use mem; use unstable::raw::Repr; use vec::{ImmutableVector, OwnedVector}; /// Code for dealing with @-vectors. This is pretty incomplete, and /// contains a bunch of duplication from the code for ~-vectors. /// Returns the number of elements the vector can hold without reallocating #[inline] pub fn capacity(v: @[T]) -> uint { unsafe { let managed_box = v.repr(); (*managed_box).data.alloc / mem::size_of::() } } /** * Builds a vector by calling a provided function with an argument * function that pushes an element to the back of a vector. * The initial size for the vector may optionally be specified * * # Arguments * * * size - An option, maybe containing initial size of the vector to reserve * * builder - A function that will construct the vector. It receives * as an argument a function that will push an element * onto the vector being constructed. */ #[inline] pub fn build(size: Option, builder: |push: |v: A||) -> @[A] { let mut vec = @[]; unsafe { raw::reserve(&mut vec, size.unwrap_or(4)); } builder(|x| unsafe { raw::push(&mut vec, x) }); vec } // Appending /// Iterates over the `rhs` vector, copying each element and appending it to the /// `lhs`. Afterwards, the `lhs` is then returned for use again. #[inline] pub fn append(lhs: @[T], rhs: &[T]) -> @[T] { build(Some(lhs.len() + rhs.len()), |push| { for x in lhs.iter() { push((*x).clone()); } for elt in rhs.iter() { push(elt.clone()); } }) } /// Apply a function to each element of a vector and return the results #[inline] pub fn map(v: &[T], f: |x: &T| -> U) -> @[U] { build(Some(v.len()), |push| { for elem in v.iter() { push(f(elem)); } }) } /** * Creates and initializes an immutable vector. * * Creates an immutable vector of size `n_elts` and initializes the elements * to the value returned by the function `op`. */ #[inline] pub fn from_fn(n_elts: uint, op: |uint| -> T) -> @[T] { build(Some(n_elts), |push| { let mut i: uint = 0u; while i < n_elts { push(op(i)); i += 1u; } }) } /** * Creates and initializes an immutable vector. * * Creates an immutable vector of size `n_elts` and initializes the elements * to the value `t`. */ #[inline] pub fn from_elem(n_elts: uint, t: T) -> @[T] { build(Some(n_elts), |push| { let mut i: uint = 0u; while i < n_elts { push(t.clone()); i += 1u; } }) } /** * Creates and initializes an immutable managed vector by moving all the * elements from an owned vector. */ #[inline] pub fn to_managed_move(v: ~[T]) -> @[T] { let mut av = @[]; unsafe { raw::reserve(&mut av, v.len()); for x in v.move_iter() { raw::push(&mut av, x); } av } } /** * Creates and initializes an immutable managed vector by copying all the * elements of a slice. */ #[inline] pub fn to_managed(v: &[T]) -> @[T] { from_fn(v.len(), |i| v[i].clone()) } impl Clone for @[T] { fn clone(&self) -> @[T] { *self } } impl FromIterator for @[A] { #[inline] fn from_iterator>(iterator: &mut T) -> @[A] { let (lower, _) = iterator.size_hint(); build(Some(lower), |push| { for x in *iterator { push(x); } }) } } #[cfg(not(test))] #[allow(missing_doc)] pub mod traits { use at_vec::append; use clone::Clone; use ops::Add; use vec::Vector; impl<'a,T:Clone, V: Vector> Add for @[T] { #[inline] fn add(&self, rhs: &V) -> @[T] { append(*self, rhs.as_slice()) } } } #[cfg(test)] pub mod traits {} #[allow(missing_doc)] pub mod raw { use at_vec::capacity; use cast; use cast::{transmute, transmute_copy}; use container::Container; use option::None; use ptr; use mem; use uint; use unstable::intrinsics::{move_val_init, TyDesc}; use unstable::intrinsics; use unstable::raw::{Box, Vec}; /** * Sets the length of a vector * * This will explicitly set the size of the vector, without actually * modifying its buffers, so it is up to the caller to ensure that * the vector is actually the specified size. */ #[inline] pub unsafe fn set_len(v: &mut @[T], new_len: uint) { let repr: *mut Box> = cast::transmute_copy(v); (*repr).data.fill = new_len * mem::size_of::(); } /** * Pushes a new value onto this vector. */ #[inline] pub unsafe fn push(v: &mut @[T], initval: T) { let full = { let repr: *Box> = cast::transmute_copy(v); (*repr).data.alloc > (*repr).data.fill }; if full { push_fast(v, initval); } else { push_slow(v, initval); } } #[inline] // really pretty please unsafe fn push_fast(v: &mut @[T], initval: T) { let repr: *mut Box> = cast::transmute_copy(v); let amt = v.len(); (*repr).data.fill += mem::size_of::(); let p = ptr::offset(&(*repr).data.data as *T, amt as int) as *mut T; move_val_init(&mut(*p), initval); } #[inline] unsafe fn push_slow(v: &mut @[T], initval: T) { reserve_at_least(v, v.len() + 1u); push_fast(v, initval); } /** * Reserves capacity for exactly `n` elements in the given vector. * * If the capacity for `v` is already equal to or greater than the * requested capacity, then no action is taken. * * # Arguments * * * v - A vector * * n - The number of elements to reserve space for */ #[inline] pub unsafe fn reserve(v: &mut @[T], n: uint) { // Only make the (slow) call into the runtime if we have to if capacity(*v) < n { let ptr: *mut *mut Box> = transmute(v); let ty = intrinsics::get_tydesc::(); return reserve_raw(ty, ptr, n); } } // Implementation detail. Shouldn't be public #[allow(missing_doc)] #[inline] pub fn reserve_raw(ty: *TyDesc, ptr: *mut *mut Box>, n: uint) { // check for `uint` overflow unsafe { if n > (**ptr).data.alloc / (*ty).size { let alloc = n * (*ty).size; let total_size = alloc + mem::size_of::>(); if alloc / (*ty).size != n || total_size < alloc { fail!("vector size is too large: {}", n); } (*ptr) = local_realloc(*ptr as *(), total_size) as *mut Box>; (**ptr).data.alloc = alloc; } } #[inline] fn local_realloc(ptr: *(), size: uint) -> *() { use rt::local::Local; use rt::task::Task; let mut task = Local::borrow(None::); task.get().heap.realloc(ptr as *mut Box<()>, size) as *() } } /** * Reserves capacity for at least `n` elements in the given vector. * * This function will over-allocate in order to amortize the * allocation costs in scenarios where the caller may need to * repeatedly reserve additional space. * * If the capacity for `v` is already equal to or greater than the * requested capacity, then no action is taken. * * # Arguments * * * v - A vector * * n - The number of elements to reserve space for */ #[inline] pub unsafe fn reserve_at_least(v: &mut @[T], n: uint) { reserve(v, uint::next_power_of_two(n)); } } #[cfg(test)] mod test { use super::*; use prelude::*; use bh = extra::test::BenchHarness; #[test] fn test() { // Some code that could use that, then: fn seq_range(lo: uint, hi: uint) -> @[uint] { build(None, |push| { for i in range(lo, hi) { push(i); } }) } assert_eq!(seq_range(10, 15), @[10, 11, 12, 13, 14]); assert_eq!(from_fn(5, |x| x+1), @[1, 2, 3, 4, 5]); assert_eq!(from_elem(5, 3.14), @[3.14, 3.14, 3.14, 3.14, 3.14]); } #[test] fn append_test() { assert_eq!(@[1,2,3] + &[4,5,6], @[1,2,3,4,5,6]); } #[test] fn test_to_managed_move() { assert_eq!(to_managed_move::(~[]), @[]); assert_eq!(to_managed_move(~[true]), @[true]); assert_eq!(to_managed_move(~[1, 2, 3, 4, 5]), @[1, 2, 3, 4, 5]); assert_eq!(to_managed_move(~[~"abc", ~"123"]), @[~"abc", ~"123"]); assert_eq!(to_managed_move(~[~[42]]), @[~[42]]); } #[test] fn test_to_managed() { assert_eq!(to_managed::([]), @[]); assert_eq!(to_managed([true]), @[true]); assert_eq!(to_managed([1, 2, 3, 4, 5]), @[1, 2, 3, 4, 5]); assert_eq!(to_managed([@"abc", @"123"]), @[@"abc", @"123"]); assert_eq!(to_managed([@[42]]), @[@[42]]); } #[bench] fn bench_capacity(b: &mut bh) { let x = @[1, 2, 3]; b.iter(|| { let _ = capacity(x); }); } #[bench] fn bench_build_sized(b: &mut bh) { let len = 64; b.iter(|| { build(Some(len), |push| for i in range(0, 1024) { push(i) }); }); } #[bench] fn bench_build(b: &mut bh) { b.iter(|| { for i in range(0, 95) { build(None, |push| push(i)); } }); } #[bench] fn bench_append(b: &mut bh) { let lhs = @[7, ..128]; let rhs = range(0, 256).to_owned_vec(); b.iter(|| { let _ = append(lhs, rhs); }) } #[bench] fn bench_map(b: &mut bh) { let elts = range(0, 256).to_owned_vec(); b.iter(|| { let _ = map(elts, |x| x*2); }) } #[bench] fn bench_from_fn(b: &mut bh) { b.iter(|| { let _ = from_fn(1024, |x| x); }); } #[bench] fn bench_from_elem(b: &mut bh) { b.iter(|| { let _ = from_elem(1024, 0u64); }); } #[bench] fn bench_to_managed_move(b: &mut bh) { b.iter(|| { let elts = range(0, 1024).to_owned_vec(); // yikes! can't move out of capture, though to_managed_move(elts); }) } #[bench] fn bench_to_managed(b: &mut bh) { let elts = range(0, 1024).to_owned_vec(); b.iter(|| { let _ = to_managed(elts); }); } #[bench] fn bench_clone(b: &mut bh) { let elts = to_managed(range(0, 1024).to_owned_vec()); b.iter(|| { let _ = elts.clone(); }); } }