/** * A doubly-linked list. Supports O(1) head, tail, count, push, pop, etc. * * Do not use ==, !=, <, etc on doubly-linked lists -- it may not terminate. */ import dlist_iter::extensions; export dlist, dlist_node; export create, from_elt, from_vec, extensions; type dlist_link = option>; enum dlist_node = @{ data: T, mut root: option>, mut prev: dlist_link, mut next: dlist_link }; // Needs to be an @-box so nodes can back-reference it. enum dlist = @{ mut size: uint, mut hd: dlist_link, mut tl: dlist_link }; impl private_methods for dlist_node { pure fn assert_links() { alt self.next { some(neighbour) { alt neighbour.prev { some(me) { if !box::ptr_eq(*self, *me) { fail "Asymmetric next-link in dlist node." } } none { fail "One-way next-link in dlist node." } } } none { } } alt self.prev { some(neighbour) { alt neighbour.next { some(me) { if !box::ptr_eq(*me, *self) { fail "Asymmetric prev-link in dlist node." } } none { fail "One-way prev-link in dlist node." } } } none { } } } } impl extensions for dlist_node { /// Get the next node in the list, if there is one. pure fn next_link() -> option> { self.assert_links(); self.next } /// Get the next node in the list, failing if there isn't one. pure fn next_node() -> dlist_node { alt self.next_link() { some(nobe) { nobe } none { fail "This dlist node has no next neighbour." } } } /// Get the previous node in the list, if there is one. pure fn prev_link() -> option> { self.assert_links(); self.prev } /// Get the previous node in the list, failing if there isn't one. pure fn prev_node() -> dlist_node { alt self.prev_link() { some(nobe) { nobe } none { fail "This dlist node has no previous neighbour." } } } /// Remove a node from whatever dlist it's on (failing if none). fn remove() { if option::is_some(self.root) { option::get(self.root).remove(self); } else { fail "Removing an orphaned dlist node - what do I remove from?" } } } /// Creates a new dlist node with the given data. pure fn create_node(+data: T) -> dlist_node { dlist_node(@{data: data, mut root: none, mut prev: none, mut next: none}) } /// Creates a new, empty dlist. pure fn create() -> dlist { dlist(@{mut size: 0, mut hd: none, mut tl: none}) } /// Creates a new dlist with a single element fn from_elt(+data: T) -> dlist { let list = create(); list.push(data); list } fn from_vec(+vec: &[T]) -> dlist { do vec::foldl(create(), vec) |list,data| { list.push(data); // Iterating left-to-right -- add newly to the tail. list } } impl private_methods for dlist { pure fn new_link(-data: T) -> dlist_link { some(dlist_node(@{data: data, mut root: some(self), mut prev: none, mut next: none})) } pure fn assert_mine(nobe: dlist_node) { alt nobe.root { some(me) { assert box::ptr_eq(*self, *me); } none { fail "This node isn't on this dlist." } } } fn make_mine(nobe: dlist_node) { if option::is_some(nobe.root) { fail "Cannot insert node that's already on a dlist!" } nobe.root = some(self); } // Link two nodes together. If either of them are 'none', also sets // the head and/or tail pointers appropriately. #[inline(always)] fn link(+before: dlist_link, +after: dlist_link) { alt before { some(neighbour) { neighbour.next = after; } none { self.hd = after; } } alt after { some(neighbour) { neighbour.prev = before; } none { self.tl = before; } } } // Remove a node from the list. fn unlink(nobe: dlist_node) { self.assert_mine(nobe); assert self.size > 0; self.link(nobe.prev, nobe.next); nobe.prev = none; // Release extraneous references. nobe.next = none; nobe.root = none; self.size -= 1; } fn add_head(+nobe: dlist_link) { self.link(nobe, self.hd); // Might set tail too. self.hd = nobe; self.size += 1; } fn add_tail(+nobe: dlist_link) { self.link(self.tl, nobe); // Might set head too. self.tl = nobe; self.size += 1; } fn insert_left(nobe: dlist_link, neighbour: dlist_node) { self.assert_mine(neighbour); assert self.size > 0; self.link(neighbour.prev, nobe); self.link(nobe, some(neighbour)); self.size += 1; } fn insert_right(neighbour: dlist_node, nobe: dlist_link) { self.assert_mine(neighbour); assert self.size > 0; self.link(nobe, neighbour.next); self.link(some(neighbour), nobe); self.size += 1; } } impl extensions for dlist { /// Get the size of the list. O(1). pure fn len() -> uint { self.size } /// Returns true if the list is empty. O(1). pure fn is_empty() -> bool { self.len() == 0 } /// Returns true if the list is not empty. O(1). pure fn is_not_empty() -> bool { self.len() != 0 } /// Add data to the head of the list. O(1). fn push_head(+data: T) { self.add_head(self.new_link(data)); } /** * Add data to the head of the list, and get the new containing * node. O(1). */ fn push_head_n(+data: T) -> dlist_node { let mut nobe = self.new_link(data); self.add_head(nobe); option::get(nobe) } /// Add data to the tail of the list. O(1). fn push(+data: T) { self.add_tail(self.new_link(data)); } /** * Add data to the tail of the list, and get the new containing * node. O(1). */ fn push_n(+data: T) -> dlist_node { let mut nobe = self.new_link(data); self.add_tail(nobe); option::get(nobe) } /** * Insert data into the middle of the list, left of the given node. * O(1). */ fn insert_before(+data: T, neighbour: dlist_node) { self.insert_left(self.new_link(data), neighbour); } /** * Insert an existing node in the middle of the list, left of the * given node. O(1). */ fn insert_n_before(nobe: dlist_node, neighbour: dlist_node) { self.make_mine(nobe); self.insert_left(some(nobe), neighbour); } /** * Insert data in the middle of the list, left of the given node, * and get its containing node. O(1). */ fn insert_before_n(+data: T, neighbour: dlist_node) -> dlist_node { let mut nobe = self.new_link(data); self.insert_left(nobe, neighbour); option::get(nobe) } /** * Insert data into the middle of the list, right of the given node. * O(1). */ fn insert_after(+data: T, neighbour: dlist_node) { self.insert_right(neighbour, self.new_link(data)); } /** * Insert an existing node in the middle of the list, right of the * given node. O(1). */ fn insert_n_after(nobe: dlist_node, neighbour: dlist_node) { self.make_mine(nobe); self.insert_right(neighbour, some(nobe)); } /** * Insert data in the middle of the list, right of the given node, * and get its containing node. O(1). */ fn insert_after_n(+data: T, neighbour: dlist_node) -> dlist_node { let mut nobe = self.new_link(data); self.insert_right(neighbour, nobe); option::get(nobe) } /// Remove a node from the head of the list. O(1). fn pop_n() -> option> { let hd = self.peek_n(); hd.map(|nobe| self.unlink(nobe)); hd } /// Remove a node from the tail of the list. O(1). fn pop_tail_n() -> option> { let tl = self.peek_tail_n(); tl.map(|nobe| self.unlink(nobe)); tl } /// Get the node at the list's head. O(1). pure fn peek_n() -> option> { self.hd } /// Get the node at the list's tail. O(1). pure fn peek_tail_n() -> option> { self.tl } /// Get the node at the list's head, failing if empty. O(1). pure fn head_n() -> dlist_node { alt self.hd { some(nobe) { nobe } none { fail "Attempted to get the head of an empty dlist." } } } /// Get the node at the list's tail, failing if empty. O(1). pure fn tail_n() -> dlist_node { alt self.tl { some(nobe) { nobe } none { fail "Attempted to get the tail of an empty dlist." } } } /// Remove a node from anywhere in the list. O(1). fn remove(nobe: dlist_node) { self.unlink(nobe); } /// Check data structure integrity. O(n). fn assert_consistent() { if option::is_none(self.hd) || option::is_none(self.tl) { assert option::is_none(self.hd) && option::is_none(self.tl); } // iterate forwards let mut count = 0; let mut link = self.peek_n(); let mut rabbit = link; while option::is_some(link) { let nobe = option::get(link); // check self on this list assert option::is_some(nobe.root) && box::ptr_eq(*option::get(nobe.root), *self); // check cycle if option::is_some(rabbit) { rabbit = option::get(rabbit).next; } if option::is_some(rabbit) { rabbit = option::get(rabbit).next; } if option::is_some(rabbit) { assert !box::ptr_eq(*option::get(rabbit), *nobe); } // advance link = nobe.next_link(); count += 1; } assert count == self.len(); // iterate backwards - some of this is probably redundant. link = self.peek_tail_n(); rabbit = link; while option::is_some(link) { let nobe = option::get(link); // check self on this list assert option::is_some(nobe.root) && box::ptr_eq(*option::get(nobe.root), *self); // check cycle if option::is_some(rabbit) { rabbit = option::get(rabbit).prev; } if option::is_some(rabbit) { rabbit = option::get(rabbit).prev; } if option::is_some(rabbit) { assert !box::ptr_eq(*option::get(rabbit), *nobe); } // advance link = nobe.prev_link(); count -= 1; } assert count == 0; } } impl extensions for dlist { /// Remove data from the head of the list. O(1). fn pop() -> option { self.pop_n().map (|nobe| nobe.data) } /// Remove data from the tail of the list. O(1). fn pop_tail() -> option { self.pop_tail_n().map (|nobe| nobe.data) } /// Get data at the list's head. O(1). fn peek() -> option { self.peek_n().map (|nobe| nobe.data) } /// Get data at the list's tail. O(1). fn peek_tail() -> option { self.peek_tail_n().map (|nobe| nobe.data) } /// Get data at the list's head, failing if empty. O(1). pure fn head() -> T { self.head_n().data } /// Get data at the list's tail, failing if empty. O(1). pure fn tail() -> T { self.tail_n().data } } #[cfg(test)] mod tests { #[test] fn test_dlist_is_empty() { let empty = create::(); let full1 = from_vec(~[1,2,3]); assert empty.is_empty(); assert !full1.is_empty(); assert !empty.is_not_empty(); assert full1.is_not_empty(); } #[test] fn test_dlist_head_tail() { let l = from_vec(~[1,2,3]); assert l.head() == 1; assert l.tail() == 3; assert l.len() == 3; } #[test] fn test_dlist_pop() { let l = from_vec(~[1,2,3]); assert l.pop().get() == 1; assert l.tail() == 3; assert l.head() == 2; assert l.pop().get() == 2; assert l.tail() == 3; assert l.head() == 3; assert l.pop().get() == 3; assert l.is_empty(); assert l.pop().is_none(); } #[test] fn test_dlist_pop_tail() { let l = from_vec(~[1,2,3]); assert l.pop_tail().get() == 3; assert l.tail() == 2; assert l.head() == 1; assert l.pop_tail().get() == 2; assert l.tail() == 1; assert l.head() == 1; assert l.pop_tail().get() == 1; assert l.is_empty(); assert l.pop_tail().is_none(); } #[test] fn test_dlist_push() { let l = create::(); l.push(1); assert l.head() == 1; assert l.tail() == 1; l.push(2); assert l.head() == 1; assert l.tail() == 2; l.push(3); assert l.head() == 1; assert l.tail() == 3; assert l.len() == 3; } #[test] fn test_dlist_push_head() { let l = create::(); l.push_head(3); assert l.head() == 3; assert l.tail() == 3; l.push_head(2); assert l.head() == 2; assert l.tail() == 3; l.push_head(1); assert l.head() == 1; assert l.tail() == 3; assert l.len() == 3; } #[test] fn test_dlist_foldl() { let l = from_vec(vec::from_fn(101, |x|x)); assert iter::foldl(l, 0, |accum,elem| accum+elem) == 5050; } #[test] fn test_dlist_remove_head() { let l = create::(); l.assert_consistent(); let one = l.push_n(1); l.assert_consistent(); let _two = l.push_n(2); l.assert_consistent(); let _three = l.push_n(3); l.assert_consistent(); assert l.len() == 3; l.assert_consistent(); l.remove(one); l.assert_consistent(); assert l.len() == 2; l.assert_consistent(); assert l.head() == 2; l.assert_consistent(); assert l.tail() == 3; l.assert_consistent(); assert l.pop().get() == 2; l.assert_consistent(); assert l.pop().get() == 3; l.assert_consistent(); assert l.is_empty(); } #[test] fn test_dlist_remove_mid() { let l = create::(); l.assert_consistent(); let _one = l.push_n(1); l.assert_consistent(); let two = l.push_n(2); l.assert_consistent(); let _three = l.push_n(3); l.assert_consistent(); assert l.len() == 3; l.assert_consistent(); l.remove(two); l.assert_consistent(); assert l.len() == 2; l.assert_consistent(); assert l.head() == 1; l.assert_consistent(); assert l.tail() == 3; l.assert_consistent(); assert l.pop().get() == 1; l.assert_consistent(); assert l.pop().get() == 3; l.assert_consistent(); assert l.is_empty(); } #[test] fn test_dlist_remove_tail() { let l = create::(); l.assert_consistent(); let _one = l.push_n(1); l.assert_consistent(); let _two = l.push_n(2); l.assert_consistent(); let three = l.push_n(3); l.assert_consistent(); assert l.len() == 3; l.assert_consistent(); l.remove(three); l.assert_consistent(); assert l.len() == 2; l.assert_consistent(); assert l.head() == 1; l.assert_consistent(); assert l.tail() == 2; l.assert_consistent(); assert l.pop().get() == 1; l.assert_consistent(); assert l.pop().get() == 2; l.assert_consistent(); assert l.is_empty(); } #[test] fn test_dlist_remove_one_two() { let l = create::(); l.assert_consistent(); let one = l.push_n(1); l.assert_consistent(); let two = l.push_n(2); l.assert_consistent(); let _three = l.push_n(3); l.assert_consistent(); assert l.len() == 3; l.assert_consistent(); l.remove(one); l.assert_consistent(); l.remove(two); // and through and through, the vorpal blade went snicker-snack l.assert_consistent(); assert l.len() == 1; l.assert_consistent(); assert l.head() == 3; l.assert_consistent(); assert l.tail() == 3; l.assert_consistent(); assert l.pop().get() == 3; l.assert_consistent(); assert l.is_empty(); } #[test] fn test_dlist_remove_one_three() { let l = create::(); l.assert_consistent(); let one = l.push_n(1); l.assert_consistent(); let _two = l.push_n(2); l.assert_consistent(); let three = l.push_n(3); l.assert_consistent(); assert l.len() == 3; l.assert_consistent(); l.remove(one); l.assert_consistent(); l.remove(three); l.assert_consistent(); assert l.len() == 1; l.assert_consistent(); assert l.head() == 2; l.assert_consistent(); assert l.tail() == 2; l.assert_consistent(); assert l.pop().get() == 2; l.assert_consistent(); assert l.is_empty(); } #[test] fn test_dlist_remove_two_three() { let l = create::(); l.assert_consistent(); let _one = l.push_n(1); l.assert_consistent(); let two = l.push_n(2); l.assert_consistent(); let three = l.push_n(3); l.assert_consistent(); assert l.len() == 3; l.assert_consistent(); l.remove(two); l.assert_consistent(); l.remove(three); l.assert_consistent(); assert l.len() == 1; l.assert_consistent(); assert l.head() == 1; l.assert_consistent(); assert l.tail() == 1; l.assert_consistent(); assert l.pop().get() == 1; l.assert_consistent(); assert l.is_empty(); } #[test] fn test_dlist_remove_all() { let l = create::(); l.assert_consistent(); let one = l.push_n(1); l.assert_consistent(); let two = l.push_n(2); l.assert_consistent(); let three = l.push_n(3); l.assert_consistent(); assert l.len() == 3; l.assert_consistent(); l.remove(two); l.assert_consistent(); l.remove(three); l.assert_consistent(); l.remove(one); // Twenty-three is number one! l.assert_consistent(); assert l.peek() == none; l.assert_consistent(); assert l.is_empty(); } #[test] fn test_dlist_insert_n_before() { let l = create::(); l.assert_consistent(); let _one = l.push_n(1); l.assert_consistent(); let two = l.push_n(2); l.assert_consistent(); let three = create_node(3); l.assert_consistent(); assert l.len() == 2; l.assert_consistent(); l.insert_n_before(three, two); l.assert_consistent(); assert l.len() == 3; l.assert_consistent(); assert l.head() == 1; l.assert_consistent(); assert l.tail() == 2; l.assert_consistent(); assert l.pop().get() == 1; l.assert_consistent(); assert l.pop().get() == 3; l.assert_consistent(); assert l.pop().get() == 2; l.assert_consistent(); assert l.is_empty(); } #[test] fn test_dlist_insert_n_after() { let l = create::(); l.assert_consistent(); let one = l.push_n(1); l.assert_consistent(); let _two = l.push_n(2); l.assert_consistent(); let three = create_node(3); l.assert_consistent(); assert l.len() == 2; l.assert_consistent(); l.insert_n_after(three, one); l.assert_consistent(); assert l.len() == 3; l.assert_consistent(); assert l.head() == 1; l.assert_consistent(); assert l.tail() == 2; l.assert_consistent(); assert l.pop().get() == 1; l.assert_consistent(); assert l.pop().get() == 3; l.assert_consistent(); assert l.pop().get() == 2; l.assert_consistent(); assert l.is_empty(); } #[test] fn test_dlist_insert_before_head() { let l = create::(); l.assert_consistent(); let one = l.push_n(1); l.assert_consistent(); let _two = l.push_n(2); l.assert_consistent(); assert l.len() == 2; l.assert_consistent(); l.insert_before(3, one); l.assert_consistent(); assert l.len() == 3; l.assert_consistent(); assert l.head() == 3; l.assert_consistent(); assert l.tail() == 2; l.assert_consistent(); assert l.pop().get() == 3; l.assert_consistent(); assert l.pop().get() == 1; l.assert_consistent(); assert l.pop().get() == 2; l.assert_consistent(); assert l.is_empty(); } #[test] fn test_dlist_insert_after_tail() { let l = create::(); l.assert_consistent(); let _one = l.push_n(1); l.assert_consistent(); let two = l.push_n(2); l.assert_consistent(); assert l.len() == 2; l.assert_consistent(); l.insert_after(3, two); l.assert_consistent(); assert l.len() == 3; l.assert_consistent(); assert l.head() == 1; l.assert_consistent(); assert l.tail() == 3; l.assert_consistent(); assert l.pop().get() == 1; l.assert_consistent(); assert l.pop().get() == 2; l.assert_consistent(); assert l.pop().get() == 3; l.assert_consistent(); assert l.is_empty(); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_asymmetric_link() { let l = create::(); let _one = l.push_n(1); let two = l.push_n(2); two.prev = none; l.assert_consistent(); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_cyclic_list() { let l = create::(); let one = l.push_n(1); let _two = l.push_n(2); let three = l.push_n(3); three.next = some(one); one.prev = some(three); l.assert_consistent(); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_headless() { create::().head(); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_insert_already_present_before() { let l = create::(); let one = l.push_n(1); let two = l.push_n(2); l.insert_n_before(two, one); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_insert_already_present_after() { let l = create::(); let one = l.push_n(1); let two = l.push_n(2); l.insert_n_after(one, two); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_insert_before_orphan() { let l = create::(); let one = create_node(1); let two = create_node(2); l.insert_n_before(one, two); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_insert_after_orphan() { let l = create::(); let one = create_node(1); let two = create_node(2); l.insert_n_after(two, one); } }