/* Module: str String manipulation Strings are a packed UTF-8 representation of text, stored as null terminated buffers of u8 bytes. Strings should be considered by character, for correctness, but some UTF-8 unsafe functions are also provided. For some heavy-duty uses, we recommend trying std::rope. */ import option::{some, none}; export // Creating a string from_bytes, from_byte, //push_utf8_bytes, from_char, from_chars, from_cstr, from_cstr_len, concat, connect, // Adding things to and removing things from a string push_char, pop_char, shift_char, unshift_char, trim_left, trim_right, trim, // Transforming strings bytes, chars, substr, slice, slice_chars, split, split_str, split_char, splitn_char, split_byte, splitn_byte, lines, lines_any, words, windowed, to_lower, to_upper, replace, escape, // Comparing strings eq, le, hash, // Iterating through strings all, any, map, bytes_iter, chars_iter, split_char_iter, splitn_char_iter, words_iter, lines_iter, // Searching //index_chars, index, index_from, rindex, //rindex_chars, find_chars, find_bytes, find_from_bytes, contains, starts_with, ends_with, // String properties is_ascii, is_empty, is_not_empty, is_whitespace, len, len_bytes, len_chars, // Misc // FIXME: perhaps some more of this section shouldn't be exported? is_utf8, substr_len_bytes, substr_len_chars, utf8_char_width, char_range_at, char_at, substr_all, escape_char, as_bytes, as_buf, //buf, sbuf, reserve, unsafe; #[abi = "cdecl"] native mod rustrt { fn rust_str_push(&s: str, ch: u8); fn str_reserve_shared(&ss: str, nn: ctypes::size_t); } // FIXME: add pure to a lot of functions /* Section: Creating a string */ /* Function: from_bytes Convert a vector of bytes to a UTF-8 string. Fails if invalid UTF-8. */ fn from_bytes(vv: [u8]) -> str unsafe { assert is_utf8(vv); ret unsafe::from_bytes(vv); } /* Function: from_byte Convert a byte to a UTF-8 string. Fails if invalid UTF-8. */ fn from_byte(uu: u8) -> str { from_bytes([uu]) } fn push_utf8_bytes(&s: str, ch: char) unsafe { let code = ch as uint; let bytes = if code < max_one_b { [code as u8] } else if code < max_two_b { [(code >> 6u & 31u | tag_two_b) as u8, (code & 63u | tag_cont) as u8] } else if code < max_three_b { [(code >> 12u & 15u | tag_three_b) as u8, (code >> 6u & 63u | tag_cont) as u8, (code & 63u | tag_cont) as u8] } else if code < max_four_b { [(code >> 18u & 7u | tag_four_b) as u8, (code >> 12u & 63u | tag_cont) as u8, (code >> 6u & 63u | tag_cont) as u8, (code & 63u | tag_cont) as u8] } else if code < max_five_b { [(code >> 24u & 3u | tag_five_b) as u8, (code >> 18u & 63u | tag_cont) as u8, (code >> 12u & 63u | tag_cont) as u8, (code >> 6u & 63u | tag_cont) as u8, (code & 63u | tag_cont) as u8] } else { [(code >> 30u & 1u | tag_six_b) as u8, (code >> 24u & 63u | tag_cont) as u8, (code >> 18u & 63u | tag_cont) as u8, (code >> 12u & 63u | tag_cont) as u8, (code >> 6u & 63u | tag_cont) as u8, (code & 63u | tag_cont) as u8] }; unsafe::push_bytes(s, bytes); } /* Function: from_char Convert a char to a string */ fn from_char(ch: char) -> str { let buf = ""; push_utf8_bytes(buf, ch); ret buf; } /* Function: from_chars Convert a vector of chars to a string */ fn from_chars(chs: [char]) -> str { let buf = ""; for ch: char in chs { push_utf8_bytes(buf, ch); } ret buf; } /* Function: from_cstr Create a Rust string from a null-terminated C string */ fn from_cstr(cstr: sbuf) -> str unsafe { let start = cstr; let curr = start; let i = 0u; while *curr != 0u8 { i += 1u; curr = ptr::offset(start, i); } ret from_cstr_len(cstr, i); } /* Function: from_cstr_len Create a Rust string from a C string of the given length */ fn from_cstr_len(cstr: sbuf, len: uint) -> str unsafe { let buf: [u8] = []; vec::reserve(buf, len + 1u); vec::as_buf(buf) {|b| ptr::memcpy(b, cstr, len); } vec::unsafe::set_len(buf, len); buf += [0u8]; assert is_utf8(buf); let s: str = ::unsafe::reinterpret_cast(buf); ::unsafe::leak(buf); ret s; } /* Function: concat Concatenate a vector of strings */ fn concat(v: [str]) -> str { let s: str = ""; for ss: str in v { s += ss; } ret s; } /* Function: connect Concatenate a vector of strings, placing a given separator between each */ fn connect(v: [str], sep: str) -> str { let s: str = ""; let first: bool = true; for ss: str in v { if first { first = false; } else { s += sep; } s += ss; } ret s; } /* Section: Adding to and removing from a string */ /* Function: push_char Append a character to a string */ fn push_char(&s: str, ch: char) { s += from_char(ch); } /* Function: pop_char Remove the final character from a string and return it. Failure: If the string does not contain any characters. */ fn pop_char(&s: str) -> char unsafe { let end = len_bytes(s); let {ch:ch, prev:end} = char_range_at_reverse(s, end); s = unsafe::slice_bytes(s, 0u, end); ret ch; } /* Function: shift_char Remove the first character from a string and return it. Failure: If the string does not contain any characters. */ fn shift_char(&s: str) -> char unsafe { let r = char_range_at(s, 0u); s = unsafe::slice_bytes(s, r.next, len_bytes(s)); ret r.ch; } /* Function: unshift_char Prepend a char to a string */ fn unshift_char(&s: str, ch: char) { s = from_char(ch) + s; } /* Function: trim_left Returns a string with leading whitespace removed. */ fn trim_left(s: str) -> str { fn count_whities(s: [char]) -> uint { let i = 0u; while i < vec::len(s) { if !char::is_whitespace(s[i]) { break; } i += 1u; } ret i; } let chars = chars(s); let whities = count_whities(chars); ret from_chars(vec::slice(chars, whities, vec::len(chars))); } /* Function: trim_right Returns a string with trailing whitespace removed. */ fn trim_right(s: str) -> str { fn count_whities(s: [char]) -> uint { let i = vec::len(s); while 0u < i { if !char::is_whitespace(s[i - 1u]) { break; } i -= 1u; } ret i; } let chars = chars(s); let whities = count_whities(chars); ret from_chars(vec::slice(chars, 0u, whities)); } /* Function: trim Returns a string with leading and trailing whitespace removed */ fn trim(s: str) -> str { trim_left(trim_right(s)) } /* Section: Transforming strings */ /* Function: bytes Converts a string to a vector of bytes. The result vector is not null-terminated. */ fn bytes(s: str) -> [u8] unsafe { as_bytes(s) { |v| vec::slice(v, 0u, vec::len(v) - 1u) } } /* Function: chars Convert a string to a vector of characters */ fn chars(s: str) -> [char] { let buf: [char] = []; let i = 0u; let len = len_bytes(s); while i < len { let cur = char_range_at(s, i); buf += [cur.ch]; i = cur.next; } ret buf; } /* Function: substr Take a substring of another. Returns a string containing `len` chars starting at char offset `begin`. Failure: If `begin` + `len` is is greater than the char length of the string */ fn substr(s: str, begin: uint, len: uint) -> str { ret slice_chars(s, begin, begin + len); } // Function: slice // // Return a slice of the given string from the byte range [`begin`..`end`) // or else fail when `begin` and `end` do not point to valid characters or // beyond the last character of the string fn slice(ss: str, begin: uint, end: uint) -> str { alt maybe_slice(ss, begin, end) { some(sli) { ret sli; } none { fail "slice requires a valid start and end"; } } } // Function: maybe_slice // // Like slice, only returns an option fn maybe_slice(ss: str, begin: uint, end: uint) -> option unsafe { let sli = unsafe::slice_bytes(ss, begin, end); if is_utf8(bytes(sli)) { ret some(sli); } else { ret none; } } /* Function: slice_chars Unicode-safe slice. Returns a slice of the given string containing the characters in the range [`begin`..`end`). `begin` and `end` are character indexes, not byte indexes. Failure: - If begin is greater than end - If end is greater than the character length of the string FIXME: make faster by avoiding char conversion */ fn slice_chars(s: str, begin: uint, end: uint) -> str { from_chars(vec::slice(chars(s), begin, end)) } // Function: split_byte // // Splits a string into substrings at each occurrence of a given byte // // The byte must be a valid UTF-8/ASCII byte fn split_byte(ss: str, sep: u8) -> [str] unsafe { // still safe if we only split on an ASCII byte assert u8::is_ascii(sep); let vv = []; let start = 0u, current = 0u; str::bytes_iter(ss) {|cc| if sep == cc { vec::push(vv, str::unsafe::slice_bytes(ss, start, current)); start = current + 1u; } current += 1u; } vec::push(vv, str::unsafe::slice_bytes(ss, start, current)); ret vv; } // Function: splitn_byte // // Splits a string into substrings at each occurrence of a given byte // up to 'count' times // // The byte must be a valid UTF-8/ASCII byte fn splitn_byte(ss: str, sep: u8, count: uint) -> [str] unsafe { // still safe if we only split on an ASCII byte assert u8::is_ascii(sep); let vv = []; let start = 0u, current = 0u, len = len_bytes(ss); let splits_done = 0u; while splits_done < count && current < len { if sep == ss[current] { vec::push(vv, str::unsafe::slice_bytes(ss, start, current)); start = current + 1u; splits_done += 1u; } current += 1u; } vec::push(vv, str::unsafe::slice_bytes(ss, start, len)); ret vv; } /* Function: split_str Splits a string into a vector of the substrings separated by a given string Note that this has recently been changed. For example: > assert ["", "XXX", "YYY", ""] == split_str(".XXX.YYY.", ".") FIXME: Boyer-Moore variation */ fn split_str(ss: str, sep: str) -> [str] unsafe { // unsafe is justified: we are splitting // UTF-8 with UTF-8, so the results will be OK let sep_len = len_bytes(sep); assert sep_len > 0u; let vv = []; let start = 0u, start_match = 0u, current = 0u, matching = 0u; str::bytes_iter(ss) {|cc| if sep[matching] == cc { matching += 1u; } else { start_match += 1u; } if matching == sep_len { // found a separator // push whatever is before it, including "" vec::push(vv, str::unsafe::slice_bytes(ss, start, start_match)); // reset cursors and counters start = current + 1u; start_match = current + 1u; matching = 0u; } current += 1u; } // whether we have a "", or something meaningful, push it vec::push(vv, str::unsafe::slice_bytes(ss, start, current)); ret vv; } /* Function: split Splits a string into substrings using a character function (unicode safe) */ fn split(ss: str, sepfn: fn(cc: char)->bool) -> [str] { let vv: [str] = []; let accum: str = ""; let ends_with_sep: bool = false; chars_iter(ss, {|cc| if sepfn(cc) { vv += [accum]; accum = ""; ends_with_sep = true; } else { str::push_char(accum, cc); ends_with_sep = false; } }); if len_chars(accum) >= 0u || ends_with_sep { vv += [accum]; } ret vv; } /* Function: split_char Splits a string into a vector of the substrings separated by a given character */ fn split_char(ss: str, cc: char) -> [str] { split(ss, {|kk| kk == cc}) } /* Function: splitn_char Splits a string into a vector of the substrings separated by a given character up to `count` times */ fn splitn_char(ss: str, sep: char, count: uint) -> [str] unsafe { let vv = []; let start = 0u, current = 0u, len = len_bytes(ss); let splits_done = 0u; while splits_done < count && current < len { // grab a char... let {ch, next} = char_range_at(ss, current); if sep == ch { vec::push(vv, str::unsafe::slice_bytes(ss, start, current)); start = next; splits_done += 1u; } current = next; } vec::push(vv, str::unsafe::slice_bytes(ss, start, len)); ret vv; } /* Function: lines Splits a string into a vector of the substrings separated by LF ('\n') */ fn lines(ss: str) -> [str] { split(ss, {|cc| cc == '\n'}) } /* Function: lines_any Splits a string into a vector of the substrings separated by LF ('\n') and/or CR LF ('\r\n') */ fn lines_any(ss: str) -> [str] { vec::map(lines(ss), {|s| trim_right(s)}) } /* Function: words Splits a string into a vector of the substrings separated by whitespace */ fn words(ss: str) -> [str] { ret vec::filter( split(ss, {|cc| char::is_whitespace(cc)}), {|w| 0u < str::len_chars(w)}); } /* Function: windowed Create a vector of substrings of size `nn` */ fn windowed(nn: uint, ss: str) -> [str] { let ww = []; let len = str::len_chars(ss); assert 1u <= nn; let ii = 0u; while ii+nn <= len { let w = slice_chars( ss, ii, ii+nn ); vec::push(ww,w); ii += 1u; } ret ww; } /* Function: to_lower Convert a string to lowercase */ fn to_lower(s: str) -> str { map(s, char::to_lower) } /* Function: to_upper Convert a string to uppercase */ fn to_upper(s: str) -> str { map(s, char::to_upper) } // FIXME: This is super-inefficient /* Function: replace Replace all occurances of one string with another Parameters: s - The string containing substrings to replace from - The string to replace to - The replacement string Returns: The original string with all occurances of `from` replaced with `to` */ fn replace(s: str, from: str, to: str) -> str unsafe { assert is_not_empty(from); if len_bytes(s) == 0u { ret ""; } else if starts_with(s, from) { ret to + replace( unsafe::slice_bytes(s, len_bytes(from), len_bytes(s)), from, to); } else { let idx; alt find_bytes(s, from) { some(x) { idx = x; } none { ret s; } } let before = unsafe::slice_bytes(s, 0u, idx as uint); let after = unsafe::slice_bytes(s, idx as uint + len_bytes(from), len_bytes(s)); ret before + to + replace(after, from, to); } } /* Function: escape Escapes special characters inside the string, making it safe for transfer. */ fn escape(s: str) -> str { let r = ""; chars_iter(s) { |c| r += escape_char(c) }; r } /* Section: Comparing strings */ /* Function: eq Bytewise string equality */ pure fn eq(&&a: str, &&b: str) -> bool { a == b } /* Function: le Bytewise less than or equal */ pure fn le(&&a: str, &&b: str) -> bool { a <= b } /* Function: hash String hash function */ fn hash(&&s: str) -> uint { // djb hash. // FIXME: replace with murmur. let u: uint = 5381u; for c: u8 in s { u *= 33u; u += c as uint; } ret u; } /* Section: Iterating through strings */ /* Function: all Return true if a predicate matches all characters or if the string contains no characters */ fn all(s: str, it: fn(char) -> bool) -> bool{ ret substr_all(s, 0u, len_bytes(s), it); } /* Function: any Return true if a predicate matches any character (and false if it matches none or there are no characters) */ fn any(ss: str, pred: fn(char) -> bool) -> bool { !all(ss, {|cc| !pred(cc)}) } /* Function: map Apply a function to each character */ fn map(ss: str, ff: fn(char) -> char) -> str { let result = ""; reserve(result, len_bytes(ss)); chars_iter(ss, {|cc| str::push_char(result, ff(cc)); }); ret result; } /* Function: bytes_iter Iterate over the bytes in a string */ fn bytes_iter(ss: str, it: fn(u8)) { let pos = 0u; let len = len_bytes(ss); while (pos < len) { it(ss[pos]); pos += 1u; } } /* Function: chars_iter Iterate over the characters in a string */ fn chars_iter(s: str, it: fn(char)) { let pos = 0u, len = len_bytes(s); while (pos < len) { let {ch, next} = char_range_at(s, pos); pos = next; it(ch); } } /* Function: split_char_iter Apply a function to each substring after splitting by character */ fn split_char_iter(ss: str, cc: char, ff: fn(&&str)) { vec::iter(split_char(ss, cc), ff) } /* Function: splitn_char_iter Apply a function to each substring after splitting by character, up to `count` times */ fn splitn_char_iter(ss: str, sep: char, count: uint, ff: fn(&&str)) unsafe { vec::iter(splitn_char(ss, sep, count), ff) } /* Function: words_iter Apply a function to each word */ fn words_iter(ss: str, ff: fn(&&str)) { vec::iter(words(ss), ff) } /* Function: lines_iter Apply a function to each lines (by '\n') */ fn lines_iter(ss: str, ff: fn(&&str)) { vec::iter(lines(ss), ff) } /* Section: Searching */ // Function: index // // Returns the byte index of the first matching char // (as option some/none) fn index(ss: str, cc: char) -> option { index_from(ss, cc, 0u, len_bytes(ss)) } // Function: index_from // // Returns the byte index of the first matching char // (as option some/none), starting at `nn` fn index_from(ss: str, cc: char, start: uint, end: uint) -> option { let bii = start; while bii < end { let {ch, next} = char_range_at(ss, bii); // found here? if ch == cc { ret some(bii); } bii = next; } // wasn't found ret none; } // Function: index_chars // // Returns the char index of the first matching char // (as option some/none) fn index_chars(ss: str, cc: char) -> option { let bii = 0u; let cii = 0u; let len = len_bytes(ss); while bii < len { let {ch, next} = char_range_at(ss, bii); // found here? if ch == cc { ret some(cii); } cii += 1u; bii = next; } // wasn't found ret none; } // Function: byte_index // // Returns the index of the first matching byte // (as option some/none) // FIXME: delete fn byte_index(s: str, b: u8) -> option { byte_index_from(s, b, 0u, len_bytes(s)) } // Function: byte_index_from // // Returns the index of the first matching byte within the range [`start`, // `end`). // (as option some/none) // FIXME: delete fn byte_index_from(s: str, b: u8, start: uint, end: uint) -> option { assert end <= len_bytes(s); str::as_bytes(s) { |v| vec::position_from(v, start, end) { |x| x == b } } } // Function: rindex // // Returns the byte index of the first matching char // (as option some/none) fn rindex(ss: str, cc: char) -> option { let bii = len_bytes(ss); while bii > 0u { let {ch, prev} = char_range_at_reverse(ss, bii); bii = prev; // found here? if ch == cc { ret some(bii); } } // wasn't found ret none; } // Function: rindex_chars // // Returns the char index of the first matching char // (as option some/none) fn rindex_chars(ss: str, cc: char) -> option { let bii = len_bytes(ss); let cii = len_chars(ss); while bii > 0u { let {ch, prev} = char_range_at_reverse(ss, bii); cii -= 1u; bii = prev; // found here? if ch == cc { ret some(cii); } } // wasn't found ret none; } //Function: find_bytes // // Find the byte position of the first instance of one string // within another, or return option::none fn find_bytes(haystack: str, needle: str) -> option { find_from_bytes(haystack, needle, 0u, len_bytes(haystack)) } //Function: find_from_bytes // // Find the byte position of the first instance of one string // within another, or return option::none // // FIXME: Boyer-Moore should be significantly faster fn find_from_bytes(haystack: str, needle: str, start: uint, end:uint) -> option { assert end <= len_bytes(haystack); let needle_len = len_bytes(needle); if needle_len == 0u { ret some(start); } if needle_len > end { ret none; } fn match_at(haystack: str, needle: str, ii: uint) -> bool { let jj = ii; for c: u8 in needle { if haystack[jj] != c { ret false; } jj += 1u; } ret true; } let ii = start; while ii <= end - needle_len { if match_at(haystack, needle, ii) { ret some(ii); } ii += 1u; } ret none; } // Function: find_chars // // Find the char position of the first instance of one string // within another, or return option::none fn find_chars(haystack: str, needle: str) -> option { alt find_bytes(haystack, needle) { none { ret none; } some(nn) { ret some(b2c_pos(haystack, nn)); } } } // Function: b2c_pos // // Convert a byte position into a char position // within a given string fn b2c_pos(ss: str, bpos: uint) -> uint { assert bpos == 0u || bpos < len_bytes(ss); let ii = 0u; let cpos = 0u; while ii < bpos { let sz = utf8_char_width(ss[ii]); ii += sz; cpos += 1u; } ret cpos; } /* Function: contains Returns true if one string contains another Parameters: haystack - The string to look in needle - The string to look for */ fn contains(haystack: str, needle: str) -> bool { option::is_some(find_bytes(haystack, needle)) } /* Function: starts_with Returns true if one string starts with another Parameters: haystack - The string to look in needle - The string to look for */ fn starts_with(haystack: str, needle: str) -> bool unsafe { let haystack_len: uint = len_bytes(haystack); let needle_len: uint = len_bytes(needle); if needle_len == 0u { ret true; } if needle_len > haystack_len { ret false; } ret eq(unsafe::slice_bytes(haystack, 0u, needle_len), needle); } /* Function: ends_with Returns true if one string ends with another haystack - The string to look in needle - The string to look for */ fn ends_with(haystack: str, needle: str) -> bool { let haystack_len: uint = len_chars(haystack); let needle_len: uint = len_chars(needle); ret if needle_len == 0u { true } else if needle_len > haystack_len { false } else { eq(substr(haystack, haystack_len - needle_len, needle_len), needle) }; } /* Section: String properties */ /* Function: is_ascii Determines if a string contains only ASCII characters */ fn is_ascii(s: str) -> bool { let i: uint = len_bytes(s); while i > 0u { i -= 1u; if !u8::is_ascii(s[i]) { ret false; } } ret true; } /* Predicate: is_empty Returns true if the string has length 0 */ pure fn is_empty(s: str) -> bool { for c: u8 in s { ret false; } ret true; } /* Predicate: is_not_empty Returns true if the string has length greater than 0 */ pure fn is_not_empty(s: str) -> bool { !is_empty(s) } /* Function: is_whitespace Returns true if the string contains only whitespace */ fn is_whitespace(s: str) -> bool { ret all(s, char::is_whitespace); } // Function: len_bytes // // Returns the string length in bytes pure fn len_bytes(s: str) -> uint unsafe { as_bytes(s) { |v| let vlen = vec::len(v); // There should always be a null terminator assert (vlen > 0u); vlen - 1u } } // Function: len // // String length or size in characters. // (Synonym: len_bytes) fn len(s: str) -> uint { len_bytes(s) } fn len_chars(s: str) -> uint { substr_len_chars(s, 0u, len_bytes(s)) } /* Section: Misc */ /* Function: is_utf8 Determines if a vector of bytes contains valid UTF-8 */ fn is_utf8(v: [u8]) -> bool { let i = 0u; let total = vec::len::(v); while i < total { let chsize = utf8_char_width(v[i]); if chsize == 0u { ret false; } if i + chsize > total { ret false; } i += 1u; while chsize > 1u { if v[i] & 192u8 != tag_cont_u8 { ret false; } i += 1u; chsize -= 1u; } } ret true; } /* Function: substr_len_chars As char_len but for a slice of a string Parameters: s - A valid string byte_start - The position inside `s` where to start counting in bytes. byte_len - The number of bytes of `s` to take into account. Returns: The number of Unicode characters in `s` in segment [byte_start, byte_start+len( . Safety note: - This function does not check whether the substring is valid. - This function fails if `byte_offset` or `byte_len` do not represent valid positions inside `s` */ fn substr_len_chars(s: str, byte_start: uint, byte_len: uint) -> uint { let i = byte_start; let byte_stop = i + byte_len; let len = 0u; while i < byte_stop { let chsize = utf8_char_width(s[i]); assert (chsize > 0u); len += 1u; i += chsize; } ret len; } /* Function: substr_len_bytes As byte_len but for a substring Parameters: s - A string byte_offset - The byte offset at which to start in the string char_len - The number of chars (not bytes!) in the range Returns: The number of bytes in the substring starting at `byte_offset` and containing `char_len` chars. Safety note: This function fails if `byte_offset` or `char_len` do not represent valid positions in `s` */ fn substr_len_bytes(s: str, byte_offset: uint, char_len: uint) -> uint { let i = byte_offset; let chars = 0u; while chars < char_len { let chsize = utf8_char_width(s[i]); assert (chsize > 0u); i += chsize; chars += 1u; } ret i - byte_offset; } /* Function: utf8_char_width Given a first byte, determine how many bytes are in this UTF-8 character */ pure fn utf8_char_width(b: u8) -> uint { let byte: uint = b as uint; if byte < 128u { ret 1u; } if byte < 192u { ret 0u; // Not a valid start byte } if byte < 224u { ret 2u; } if byte < 240u { ret 3u; } if byte < 248u { ret 4u; } if byte < 252u { ret 5u; } ret 6u; } /* Function: char_range_at Pluck a character out of a string and return the index of the next character. This function can be used to iterate over the unicode characters of a string. Example: > let s = "中华Việt Nam"; > let i = 0u; > while i < str::len_bytes(s) { > let {ch, next} = str::char_range_at(s, i); > std::io::println(#fmt("%u: %c",i,ch)); > i = next; > } Example output: 0: 中 3: 华 6: V 7: i 8: ệ 11: t 12: 13: N 14: a 15: m Parameters: s - The string i - The byte offset of the char to extract Returns: A record {ch: char, next: uint} containing the char value and the byte index of the next unicode character. Failure: If `i` is greater than or equal to the length of the string. If `i` is not the index of the beginning of a valid UTF-8 character. */ fn char_range_at(s: str, i: uint) -> {ch: char, next: uint} { let b0 = s[i]; let w = utf8_char_width(b0); assert (w != 0u); if w == 1u { ret {ch: b0 as char, next: i + 1u}; } let val = 0u; let end = i + w; let i = i + 1u; while i < end { let byte = s[i]; assert (byte & 192u8 == tag_cont_u8); val <<= 6u; val += (byte & 63u8) as uint; i += 1u; } // Clunky way to get the right bits from the first byte. Uses two shifts, // the first to clip off the marker bits at the left of the byte, and then // a second (as uint) to get it to the right position. val += ((b0 << ((w + 1u) as u8)) as uint) << ((w - 1u) * 6u - w - 1u); ret {ch: val as char, next: i}; } /* Function: char_at Pluck a character out of a string */ fn char_at(s: str, i: uint) -> char { ret char_range_at(s, i).ch; } // Function: char_range_at_reverse // // Given a byte position and a str, return the previous char and its position // This function can be used to iterate over a unicode string in reverse. fn char_range_at_reverse(ss: str, start: uint) -> {ch: char, prev: uint} { let prev = start; // while there is a previous byte == 10...... while prev > 0u && ss[prev - 1u] & 192u8 == tag_cont_u8 { prev -= 1u; } // now refer to the initial byte of previous char prev -= 1u; let ch = char_at(ss, prev); ret {ch:ch, prev:prev}; } /* Function: substr_all Loop through a substring, char by char Parameters: s - A string to traverse. It may be empty. byte_offset - The byte offset at which to start in the string. byte_len - The number of bytes to traverse in the string it - A block to execute with each consecutive character of `s`. Return `true` to continue, `false` to stop. Returns: `true` If execution proceeded correctly, `false` if it was interrupted, that is if `it` returned `false` at any point. Safety note: - This function does not check whether the substring is valid. - This function fails if `byte_offset` or `byte_len` do not represent valid positions inside `s` */ fn substr_all(s: str, byte_offset: uint, byte_len: uint, it: fn(char) -> bool) -> bool { let i = byte_offset; let result = true; while i < byte_len { let {ch, next} = char_range_at(s, i); if !it(ch) {result = false; break;} i = next; } ret result; } /* Function: escape_char Escapes a single character. */ fn escape_char(c: char) -> str { alt c { '"' { "\\\"" } '\\' { "\\\\" } '\n' { "\\n" } '\t' { "\\t" } '\r' { "\\r" } '\x00' to '\x1f' { #fmt["\\x%02x", c as uint] } v { from_char(c) } } } // UTF-8 tags and ranges const tag_cont_u8: u8 = 128u8; const tag_cont: uint = 128u; const max_one_b: uint = 128u; const tag_two_b: uint = 192u; const max_two_b: uint = 2048u; const tag_three_b: uint = 224u; const max_three_b: uint = 65536u; const tag_four_b: uint = 240u; const max_four_b: uint = 2097152u; const tag_five_b: uint = 248u; const max_five_b: uint = 67108864u; const tag_six_b: uint = 252u; /* Function: as_bytes Work with the byte buffer of a string. Allows for unsafe manipulation of strings, which is useful for native interop. Example: > let i = str::as_bytes("Hello World") { |bytes| vec::len(bytes) }; */ fn as_bytes(s: str, f: fn([u8]) -> T) -> T unsafe { let v: [u8] = ::unsafe::reinterpret_cast(s); let r = f(v); ::unsafe::leak(v); r } /* Function: as_buf Work with the byte buffer of a string. Allows for unsafe manipulation of strings, which is useful for native interop. Example: > let s = str::as_buf("PATH", { |path_buf| libc::getenv(path_buf) }); */ fn as_buf(s: str, f: fn(sbuf) -> T) -> T unsafe { as_bytes(s) { |v| vec::as_buf(v, f) } } /* Type: sbuf An unsafe buffer of bytes. Corresponds to a C char pointer. */ type sbuf = *u8; // Function: reserve // // Allocate more memory for a string, up to `nn` + 1 bytes fn reserve(&ss: str, nn: uint) { rustrt::str_reserve_shared(ss, nn); } // Module: unsafe // // These functions may create invalid UTF-8 strings and eat your baby. mod unsafe { export from_bytes, from_byte, slice_bytes, slice_bytes_safe_range, push_byte, push_bytes, // note: wasn't exported pop_byte, shift_byte; // Function: unsafe::from_bytes // // Converts a vector of bytes to a string. Does not verify that the // vector contains valid UTF-8. unsafe fn from_bytes(v: [const u8]) -> str unsafe { let vcopy: [u8] = v + [0u8]; let scopy: str = ::unsafe::reinterpret_cast(vcopy); ::unsafe::leak(vcopy); ret scopy; } // Function: unsafe::from_byte // // Converts a byte to a string. Does not verify that the byte is // valid UTF-8. unsafe fn from_byte(u: u8) -> str { unsafe::from_bytes([u]) } /* Function: slice_bytes Takes a bytewise (not UTF-8) slice from a string. Returns the substring from [`begin`..`end`). Failure: - If begin is greater than end. - If end is greater than the length of the string. */ unsafe fn slice_bytes(s: str, begin: uint, end: uint) -> str unsafe { // FIXME: Typestate precondition assert (begin <= end); assert (end <= len_bytes(s)); let v = as_bytes(s) { |v| vec::slice(v, begin, end) }; v += [0u8]; let s: str = ::unsafe::reinterpret_cast(v); ::unsafe::leak(v); ret s; } /* Function: slice_bytes_safe_range Like slice_bytes, with a precondition */ unsafe fn slice_bytes_safe_range(s: str, begin: uint, end: uint) : uint::le(begin, end) -> str { // would need some magic to make this a precondition assert (end <= len_bytes(s)); ret slice_bytes(s, begin, end); } // Function: push_byte // // Appends a byte to a string. (Not UTF-8 safe). unsafe fn push_byte(&s: str, b: u8) { rustrt::rust_str_push(s, b); } // Function: push_bytes // // Appends a vector of bytes to a string. (Not UTF-8 safe). unsafe fn push_bytes(&s: str, bytes: [u8]) { for byte in bytes { rustrt::rust_str_push(s, byte); } } // Function: pop_byte // // Removes the last byte from a string and returns it. (Not UTF-8 safe). unsafe fn pop_byte(&s: str) -> u8 unsafe { let len = len_bytes(s); assert (len > 0u); let b = s[len - 1u]; s = unsafe::slice_bytes(s, 0u, len - 1u); ret b; } // Function: shift_byte // // Removes the first byte from a string and returns it. (Not UTF-8 safe). unsafe fn shift_byte(&s: str) -> u8 unsafe { let len = len_bytes(s); assert (len > 0u); let b = s[0]; s = unsafe::slice_bytes(s, 1u, len); ret b; } } #[cfg(test)] mod tests { #[test] fn test_eq() { assert (eq("", "")); assert (eq("foo", "foo")); assert (!eq("foo", "bar")); } #[test] fn test_le() { assert (le("", "")); assert (le("", "foo")); assert (le("foo", "foo")); assert (!eq("foo", "bar")); } #[test] fn test_len() { assert (len_bytes("") == 0u); assert (len_bytes("hello world") == 11u); assert (len_bytes("\x63") == 1u); assert (len_bytes("\xa2") == 2u); assert (len_bytes("\u03c0") == 2u); assert (len_bytes("\u2620") == 3u); assert (len_bytes("\U0001d11e") == 4u); assert (len_chars("") == 0u); assert (len_chars("hello world") == 11u); assert (len_chars("\x63") == 1u); assert (len_chars("\xa2") == 1u); assert (len_chars("\u03c0") == 1u); assert (len_chars("\u2620") == 1u); assert (len_chars("\U0001d11e") == 1u); assert (len_chars("ประเทศไทย中华Việt Nam") == 19u); } #[test] fn test_index_chars() { assert ( index_chars("hello", 'h') == some(0u)); assert ( index_chars("hello", 'e') == some(1u)); assert ( index_chars("hello", 'o') == some(4u)); assert ( index_chars("hello", 'z') == none); } #[test] fn test_rindex() { assert rindex("hello", 'l') == some(3u); assert rindex("hello", 'o') == some(4u); assert rindex("hello", 'h') == some(0u); assert rindex("hello", 'z') == none; assert rindex("ประเทศไทย中华Việt Nam", '华') == some(30u); } #[test] fn test_rindex_chars() { assert (rindex_chars("hello", 'l') == some(3u)); assert (rindex_chars("hello", 'o') == some(4u)); assert (rindex_chars("hello", 'h') == some(0u)); assert (rindex_chars("hello", 'z') == none); } #[test] fn test_pop_char() { let data = "ประเทศไทย中华"; let cc = pop_char(data); assert "ประเทศไทย中" == data; assert '华' == cc; } #[test] fn test_pop_char_2() { let data2 = "华"; let cc2 = pop_char(data2); assert "" == data2; assert '华' == cc2; } #[test] #[should_fail] #[ignore(cfg(target_os = "win32"))] fn test_pop_char_fail() { let data = ""; let _cc3 = pop_char(data); } #[test] fn test_split_byte() { fn t(s: str, c: char, u: [str]) { log(debug, "split_byte: " + s); let v = split_byte(s, c as u8); #debug("split_byte to: "); log(debug, v); assert (vec::all2(v, u, { |a,b| a == b })); } t("abc.hello.there", '.', ["abc", "hello", "there"]); t(".hello.there", '.', ["", "hello", "there"]); t("...hello.there.", '.', ["", "", "", "hello", "there", ""]); assert ["", "", "", "hello", "there", ""] == split_byte("...hello.there.", '.' as u8); assert [""] == split_byte("", 'z' as u8); assert ["",""] == split_byte("z", 'z' as u8); assert ["ok"] == split_byte("ok", 'z' as u8); } #[test] fn test_split_byte_2() { let data = "ประเทศไทย中华Việt Nam"; assert ["ประเทศไทย中华", "iệt Nam"] == split_byte(data, 'V' as u8); } #[test] fn test_splitn_byte() { fn t(s: str, c: char, n: uint, u: [str]) { log(debug, "splitn_byte: " + s); let v = splitn_byte(s, c as u8, n); #debug("split_byte to: "); log(debug, v); #debug("comparing vs. "); log(debug, u); assert (vec::all2(v, u, { |a,b| a == b })); } t("abc.hello.there", '.', 0u, ["abc.hello.there"]); t("abc.hello.there", '.', 1u, ["abc", "hello.there"]); t("abc.hello.there", '.', 2u, ["abc", "hello", "there"]); t("abc.hello.there", '.', 3u, ["abc", "hello", "there"]); t(".hello.there", '.', 0u, [".hello.there"]); t(".hello.there", '.', 1u, ["", "hello.there"]); t("...hello.there.", '.', 3u, ["", "", "", "hello.there."]); t("...hello.there.", '.', 5u, ["", "", "", "hello", "there", ""]); assert [""] == splitn_byte("", 'z' as u8, 5u); assert ["",""] == splitn_byte("z", 'z' as u8, 5u); assert ["ok"] == splitn_byte("ok", 'z' as u8, 5u); assert ["z"] == splitn_byte("z", 'z' as u8, 0u); assert ["w.x.y"] == splitn_byte("w.x.y", '.' as u8, 0u); assert ["w","x.y"] == splitn_byte("w.x.y", '.' as u8, 1u); } #[test] fn test_splitn_byte_2() { let data = "ประเทศไทย中华Việt Nam"; assert ["ประเทศไทย中华", "iệt Nam"] == splitn_byte(data, 'V' as u8, 1u); } #[test] fn test_split_str() { fn t(s: str, sep: str, i: int, k: str) { let v = split_str(s, sep); assert eq(v[i], k); } t("abc::hello::there", "::", 0, "abc"); t("abc::hello::there", "::", 1, "hello"); t("abc::hello::there", "::", 2, "there"); t("::hello::there", "::", 0, ""); t("hello::there::", "::", 2, ""); t("::hello::there::", "::", 3, ""); let data = "ประเทศไทย中华Việt Nam"; assert ["ประเทศไทย", "Việt Nam"] == split_str (data, "中华"); assert ["", "XXX", "YYY", ""] == split_str("zzXXXzzYYYzz", "zz"); assert ["zz", "zYYYz"] == split_str("zzXXXzYYYz", "XXX"); assert ["", "XXX", "YYY", ""] == split_str(".XXX.YYY.", "."); assert [""] == split_str("", "."); assert ["",""] == split_str("zz", "zz"); assert ["ok"] == split_str("ok", "z"); assert ["","z"] == split_str("zzz", "zz"); assert ["","","z"] == split_str("zzzzz", "zz"); } #[test] fn test_split () { let data = "ประเทศไทย中华Việt Nam"; assert ["ประเทศไทย中", "Việt Nam"] == split (data, {|cc| cc == '华'}); assert ["", "", "XXX", "YYY", ""] == split("zzXXXzYYYz", char::is_lowercase); assert ["zz", "", "", "z", "", "", "z"] == split("zzXXXzYYYz", char::is_uppercase); assert ["",""] == split("z", {|cc| cc == 'z'}); assert [""] == split("", {|cc| cc == 'z'}); assert ["ok"] == split("ok", {|cc| cc == 'z'}); } #[test] fn test_split_char () { let data = "ประเทศไทย中华Việt Nam"; assert ["ประเทศไทย中", "Việt Nam"] == split_char(data, '华'); assert ["", "", "XXX", "YYY", ""] == split_char("zzXXXzYYYz", 'z'); assert ["",""] == split_char("z", 'z'); assert [""] == split_char("", 'z'); assert ["ok"] == split_char("ok", 'z'); } #[test] fn test_splitn_char () { let data = "ประเทศไทย中华Việt Nam"; assert ["ประเทศไทย中", "Việt Nam"] == splitn_char(data, '华', 1u); assert ["", "", "XXX", "YYYzWWWz"] == splitn_char("zzXXXzYYYzWWWz", 'z', 3u); assert ["",""] == splitn_char("z", 'z', 5u); assert [""] == splitn_char("", 'z', 5u); assert ["ok"] == splitn_char("ok", 'z', 5u); } #[test] fn test_lines () { let lf = "\nMary had a little lamb\nLittle lamb\n"; let crlf = "\r\nMary had a little lamb\r\nLittle lamb\r\n"; assert ["", "Mary had a little lamb", "Little lamb", ""] == lines(lf); assert ["", "Mary had a little lamb", "Little lamb", ""] == lines_any(lf); assert ["\r", "Mary had a little lamb\r", "Little lamb\r", ""] == lines(crlf); assert ["", "Mary had a little lamb", "Little lamb", ""] == lines_any(crlf); assert [""] == lines (""); assert [""] == lines_any(""); assert ["",""] == lines ("\n"); assert ["",""] == lines_any("\n"); assert ["banana"] == lines ("banana"); assert ["banana"] == lines_any("banana"); } #[test] fn test_words () { let data = "\nMary had a little lamb\nLittle lamb\n"; assert ["Mary","had","a","little","lamb","Little","lamb"] == words(data); assert ["ok"] == words("ok"); assert [] == words(""); } #[test] fn test_find_bytes() { // byte positions assert (find_bytes("banana", "apple pie") == none); assert (find_bytes("", "") == some(0u)); let data = "ประเทศไทย中华Việt Nam"; assert (find_bytes(data, "") == some(0u)); assert (find_bytes(data, "ประเ") == some( 0u)); assert (find_bytes(data, "ะเ") == some( 6u)); assert (find_bytes(data, "中华") == some(27u)); assert (find_bytes(data, "ไท华") == none); } #[test] fn test_find_from_bytes() { // byte positions assert (find_from_bytes("", "", 0u, 0u) == some(0u)); let data = "abcabc"; assert find_from_bytes(data, "ab", 0u, 6u) == some(0u); assert find_from_bytes(data, "ab", 2u, 6u) == some(3u); assert find_from_bytes(data, "ab", 2u, 4u) == none; let data = "ประเทศไทย中华Việt Nam"; data += data; assert find_from_bytes(data, "", 0u, 43u) == some(0u); assert find_from_bytes(data, "", 6u, 43u) == some(6u); assert find_from_bytes(data, "ประ", 0u, 43u) == some( 0u); assert find_from_bytes(data, "ทศไ", 0u, 43u) == some(12u); assert find_from_bytes(data, "ย中", 0u, 43u) == some(24u); assert find_from_bytes(data, "iệt", 0u, 43u) == some(34u); assert find_from_bytes(data, "Nam", 0u, 43u) == some(40u); assert find_from_bytes(data, "ประ", 43u, 86u) == some(43u); assert find_from_bytes(data, "ทศไ", 43u, 86u) == some(55u); assert find_from_bytes(data, "ย中", 43u, 86u) == some(67u); assert find_from_bytes(data, "iệt", 43u, 86u) == some(77u); assert find_from_bytes(data, "Nam", 43u, 86u) == some(83u); } #[test] fn test_find_chars() { // char positions assert (find_chars("banana", "apple pie") == none); assert (find_chars("", "") == some(0u)); let data = "ประเทศไทย中华Việt Nam"; assert (find_chars(data, "") == some(0u)); assert (find_chars(data, "ประเ") == some(0u)); assert (find_chars(data, "ะเ") == some(2u)); assert (find_chars(data, "中华") == some(9u)); assert (find_chars(data, "ไท华") == none); } #[test] fn test_b2c_pos() { let data = "ประเทศไทย中华Việt Nam"; assert 0u == b2c_pos(data, 0u); assert 2u == b2c_pos(data, 6u); assert 9u == b2c_pos(data, 27u); } #[test] fn test_substr() { fn t(a: str, b: str, start: int) { assert (eq(substr(a, start as uint, len_bytes(b)), b)); } t("hello", "llo", 2); t("hello", "el", 1); assert "ะเทศไท" == substr("ประเทศไทย中华Việt Nam", 2u, 6u); } #[test] fn test_concat() { fn t(v: [str], s: str) { assert (eq(concat(v), s)); } t(["you", "know", "I'm", "no", "good"], "youknowI'mnogood"); let v: [str] = []; t(v, ""); t(["hi"], "hi"); } #[test] fn test_connect() { fn t(v: [str], sep: str, s: str) { assert (eq(connect(v, sep), s)); } t(["you", "know", "I'm", "no", "good"], " ", "you know I'm no good"); let v: [str] = []; t(v, " ", ""); t(["hi"], " ", "hi"); } #[test] fn test_to_upper() { // char::to_upper, and hence str::to_upper // are culturally insensitive: I'm not sure they // really work for anything but English ASCII, but YMMV let unicode = "\u65e5\u672c"; let input = "abcDEF" + unicode + "xyz:.;"; let expected = "ABCDEF" + unicode + "XYZ:.;"; let actual = to_upper(input); assert (eq(expected, actual)); } #[test] fn test_to_lower() { assert "" == map("", char::to_lower); assert "ymca" == map("YMCA", char::to_lower); } #[test] fn test_unsafe_slice() unsafe { assert (eq("ab", unsafe::slice_bytes("abc", 0u, 2u))); assert (eq("bc", unsafe::slice_bytes("abc", 1u, 3u))); assert (eq("", unsafe::slice_bytes("abc", 1u, 1u))); fn a_million_letter_a() -> str { let i = 0; let rs = ""; while i < 100000 { rs += "aaaaaaaaaa"; i += 1; } ret rs; } fn half_a_million_letter_a() -> str { let i = 0; let rs = ""; while i < 100000 { rs += "aaaaa"; i += 1; } ret rs; } assert (eq(half_a_million_letter_a(), unsafe::slice_bytes(a_million_letter_a(), 0u, 500000u))); } #[test] fn test_starts_with() { assert (starts_with("", "")); assert (starts_with("abc", "")); assert (starts_with("abc", "a")); assert (!starts_with("a", "abc")); assert (!starts_with("", "abc")); } #[test] fn test_ends_with() { assert (ends_with("", "")); assert (ends_with("abc", "")); assert (ends_with("abc", "c")); assert (!ends_with("a", "abc")); assert (!ends_with("", "abc")); } #[test] fn test_is_empty() { assert (is_empty("")); assert (!is_empty("a")); } #[test] fn test_is_not_empty() { assert (is_not_empty("a")); assert (!is_not_empty("")); } #[test] fn test_replace() { let a = "a"; assert (replace("", a, "b") == ""); assert (replace("a", a, "b") == "b"); assert (replace("ab", a, "b") == "bb"); let test = "test"; assert (replace(" test test ", test, "toast") == " toast toast "); assert (replace(" test test ", test, "") == " "); } #[test] fn test_replace_2a() { let data = "ประเทศไทย中华"; let repl = "دولة الكويت"; let a = "ประเ"; let A = "دولة الكويتทศไทย中华"; assert (replace(data, a, repl) == A); } #[test] fn test_replace_2b() { let data = "ประเทศไทย中华"; let repl = "دولة الكويت"; let b = "ะเ"; let B = "ปรدولة الكويتทศไทย中华"; assert (replace(data, b, repl) == B); } #[test] fn test_replace_2c() { let data = "ประเทศไทย中华"; let repl = "دولة الكويت"; let c = "中华"; let C = "ประเทศไทยدولة الكويت"; assert (replace(data, c, repl) == C); } #[test] fn test_replace_2d() { let data = "ประเทศไทย中华"; let repl = "دولة الكويت"; let d = "ไท华"; assert (replace(data, d, repl) == data); } #[test] fn test_slice() { assert (eq("ab", slice("abc", 0u, 2u))); assert (eq("bc", slice("abc", 1u, 3u))); assert (eq("", slice("abc", 1u, 1u))); assert (eq("\u65e5", slice("\u65e5\u672c", 0u, 3u))); let data = "ประเทศไทย中华"; assert (eq("ป", slice(data, 0u, 3u))); assert (eq("ร", slice(data, 3u, 6u))); assert (eq("", slice(data, 1u, 1u))); assert (eq("华", slice(data, 30u, 33u))); fn a_million_letter_X() -> str { let i = 0; let rs = ""; while i < 100000 { rs += "华华华华华华华华华华"; i += 1; } ret rs; } fn half_a_million_letter_X() -> str { let i = 0; let rs = ""; while i < 100000 { rs += "华华华华华"; i += 1; } ret rs; } assert (eq(half_a_million_letter_X(), slice(a_million_letter_X(), 0u, (3u * 500000u)))); } #[test] fn test_maybe_slice() { let ss = "中华Việt Nam"; assert none == maybe_slice(ss, 0u, 2u); assert none == maybe_slice(ss, 1u, 3u); assert none == maybe_slice(ss, 1u, 2u); assert some("华") == maybe_slice(ss, 3u, 6u); assert some("Việt Nam") == maybe_slice(ss, 6u, 16u); assert none == maybe_slice(ss, 4u, 16u); /* 0: 中 3: 华 6: V 7: i 8: ệ 11: t 12: 13: N 14: a 15: m */ } #[test] fn test_slice_chars() { assert (eq("ab", slice_chars("abc", 0u, 2u))); assert (eq("bc", slice_chars("abc", 1u, 3u))); assert (eq("", slice_chars("abc", 1u, 1u))); assert (eq("\u65e5", slice_chars("\u65e5\u672c", 0u, 1u))); let data = "ประเทศไทย中华"; assert (eq("ป", slice_chars(data, 0u, 1u))); assert (eq("ร", slice_chars(data, 1u, 2u))); assert (eq("华", slice_chars(data, 10u, 11u))); assert (eq("", slice_chars(data, 1u, 1u))); fn a_million_letter_X() -> str { let i = 0; let rs = ""; while i < 100000 { rs += "华华华华华华华华华华"; i += 1; } ret rs; } fn half_a_million_letter_X() -> str { let i = 0; let rs = ""; while i < 100000 { rs += "华华华华华"; i += 1; } ret rs; } assert (eq(half_a_million_letter_X(), slice_chars(a_million_letter_X(), 0u, 500000u))); } #[test] fn test_trim_left() { assert (trim_left("") == ""); assert (trim_left("a") == "a"); assert (trim_left(" ") == ""); assert (trim_left(" blah") == "blah"); assert (trim_left(" \u3000 wut") == "wut"); assert (trim_left("hey ") == "hey "); } #[test] fn test_trim_right() { assert (trim_right("") == ""); assert (trim_right("a") == "a"); assert (trim_right(" ") == ""); assert (trim_right("blah ") == "blah"); assert (trim_right("wut \u3000 ") == "wut"); assert (trim_right(" hey") == " hey"); } #[test] fn test_trim() { assert (trim("") == ""); assert (trim("a") == "a"); assert (trim(" ") == ""); assert (trim(" blah ") == "blah"); assert (trim("\nwut \u3000 ") == "wut"); assert (trim(" hey dude ") == "hey dude"); } #[test] fn test_is_whitespace() { assert (is_whitespace("")); assert (is_whitespace(" ")); assert (is_whitespace("\u2009")); // Thin space assert (is_whitespace(" \n\t ")); assert (!is_whitespace(" _ ")); } #[test] fn test_is_ascii() { assert (is_ascii("")); assert (is_ascii("a")); assert (!is_ascii("\u2009")); } #[test] fn test_shift_byte() unsafe { let s = "ABC"; let b = unsafe::shift_byte(s); assert (s == "BC"); assert (b == 65u8); } #[test] fn test_pop_byte() unsafe { let s = "ABC"; let b = unsafe::pop_byte(s); assert (s == "AB"); assert (b == 67u8); } #[test] fn test_unsafe_from_bytes() unsafe { let a = [65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 65u8]; let b = unsafe::from_bytes(a); assert (b == "AAAAAAA"); } #[test] fn test_from_bytes() { let ss = "ศไทย中华Việt Nam"; let bb = [0xe0_u8, 0xb8_u8, 0xa8_u8, 0xe0_u8, 0xb9_u8, 0x84_u8, 0xe0_u8, 0xb8_u8, 0x97_u8, 0xe0_u8, 0xb8_u8, 0xa2_u8, 0xe4_u8, 0xb8_u8, 0xad_u8, 0xe5_u8, 0x8d_u8, 0x8e_u8, 0x56_u8, 0x69_u8, 0xe1_u8, 0xbb_u8, 0x87_u8, 0x74_u8, 0x20_u8, 0x4e_u8, 0x61_u8, 0x6d_u8]; assert ss == from_bytes(bb); } #[test] #[should_fail] #[ignore(cfg(target_os = "win32"))] fn test_from_bytes_fail() { let bb = [0xff_u8, 0xb8_u8, 0xa8_u8, 0xe0_u8, 0xb9_u8, 0x84_u8, 0xe0_u8, 0xb8_u8, 0x97_u8, 0xe0_u8, 0xb8_u8, 0xa2_u8, 0xe4_u8, 0xb8_u8, 0xad_u8, 0xe5_u8, 0x8d_u8, 0x8e_u8, 0x56_u8, 0x69_u8, 0xe1_u8, 0xbb_u8, 0x87_u8, 0x74_u8, 0x20_u8, 0x4e_u8, 0x61_u8, 0x6d_u8]; let _x = from_bytes(bb); } #[test] fn test_from_cstr() unsafe { let a = [65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 0u8]; let b = vec::to_ptr(a); let c = from_cstr(b); assert (c == "AAAAAAA"); } #[test] fn test_from_cstr_len() unsafe { let a = [65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 0u8]; let b = vec::to_ptr(a); let c = from_cstr_len(b, 3u); assert (c == "AAA"); } #[test] fn test_as_buf() unsafe { let a = "Abcdefg"; let b = as_buf(a, {|buf| assert (*buf == 65u8); 100 }); assert (b == 100); } #[test] fn test_as_buf_small() unsafe { let a = "A"; let b = as_buf(a, {|buf| assert (*buf == 65u8); 100 }); assert (b == 100); } #[test] fn test_as_buf2() unsafe { let s = "hello"; let sb = as_buf(s, {|b| b }); let s_cstr = from_cstr(sb); assert (eq(s_cstr, s)); } #[test] fn vec_str_conversions() { let s1: str = "All mimsy were the borogoves"; let v: [u8] = bytes(s1); let s2: str = from_bytes(v); let i: uint = 0u; let n1: uint = len_bytes(s1); let n2: uint = vec::len::(v); assert (n1 == n2); while i < n1 { let a: u8 = s1[i]; let b: u8 = s2[i]; log(debug, a); log(debug, b); assert (a == b); i += 1u; } } #[test] fn test_contains() { assert contains("abcde", "bcd"); assert contains("abcde", "abcd"); assert contains("abcde", "bcde"); assert contains("abcde", ""); assert contains("", ""); assert !contains("abcde", "def"); assert !contains("", "a"); let data = "ประเทศไทย中华Việt Nam"; assert contains(data, "ประเ"); assert contains(data, "ะเ"); assert contains(data, "中华"); assert !contains(data, "ไท华"); } #[test] fn test_chars_iter() { let i = 0; chars_iter("x\u03c0y") {|ch| alt check i { 0 { assert ch == 'x'; } 1 { assert ch == '\u03c0'; } 2 { assert ch == 'y'; } } i += 1; } chars_iter("") {|_ch| fail; } // should not fail } #[test] fn test_bytes_iter() { let i = 0; bytes_iter("xyz") {|bb| alt check i { 0 { assert bb == 'x' as u8; } 1 { assert bb == 'y' as u8; } 2 { assert bb == 'z' as u8; } } i += 1; } bytes_iter("") {|bb| assert bb == 0u8; } } #[test] fn test_split_char_iter() { let data = "\nMary had a little lamb\nLittle lamb\n"; let ii = 0; split_char_iter(data, ' ') {|xx| alt ii { 0 { assert "\nMary" == xx; } 1 { assert "had" == xx; } 2 { assert "a" == xx; } 3 { assert "little" == xx; } _ { () } } ii += 1; } } #[test] fn test_splitn_char_iter() { let data = "\nMary had a little lamb\nLittle lamb\n"; let ii = 0; splitn_char_iter(data, ' ', 2u) {|xx| alt ii { 0 { assert "\nMary" == xx; } 1 { assert "had" == xx; } 2 { assert "a little lamb\nLittle lamb\n" == xx; } _ { () } } ii += 1; } } #[test] fn test_words_iter() { let data = "\nMary had a little lamb\nLittle lamb\n"; let ii = 0; words_iter(data) {|ww| alt ii { 0 { assert "Mary" == ww; } 1 { assert "had" == ww; } 2 { assert "a" == ww; } 3 { assert "little" == ww; } _ { () } } ii += 1; } words_iter("") {|_x| fail; } // should not fail } #[test] fn test_lines_iter () { let lf = "\nMary had a little lamb\nLittle lamb\n"; let ii = 0; lines_iter(lf) {|x| alt ii { 0 { assert "" == x; } 1 { assert "Mary had a little lamb" == x; } 2 { assert "Little lamb" == x; } 3 { assert "" == x; } _ { () } } ii += 1; } } #[test] fn test_escape() { assert(escape("abcdef") == "abcdef"); assert(escape("abc\\def") == "abc\\\\def"); assert(escape("abc\ndef") == "abc\\ndef"); assert(escape("abc\"def") == "abc\\\"def"); } #[test] fn test_escape_char() { assert escape_char('\x1f') == "\\x1f"; } #[test] fn test_map() { assert "" == map("", char::to_upper); assert "YMCA" == map("ymca", char::to_upper); } #[test] fn test_all() { assert true == all("", char::is_uppercase); assert false == all("ymca", char::is_uppercase); assert true == all("YMCA", char::is_uppercase); assert false == all("yMCA", char::is_uppercase); assert false == all("YMCy", char::is_uppercase); } #[test] fn test_any() { assert false == any("", char::is_uppercase); assert false == any("ymca", char::is_uppercase); assert true == any("YMCA", char::is_uppercase); assert true == any("yMCA", char::is_uppercase); assert true == any("Ymcy", char::is_uppercase); } #[test] fn test_windowed() { let data = "ประเทศไทย中"; assert ["ประ", "ระเ", "ะเท", "เทศ", "ทศไ", "ศไท", "ไทย", "ทย中"] == windowed(3u, data); assert [data] == windowed(10u, data); assert [] == windowed(6u, "abcd"); } #[test] #[should_fail] #[ignore(cfg(target_os = "win32"))] fn test_windowed_() { let _x = windowed(0u, "abcd"); } #[test] fn test_chars() { let ss = "ศไทย中华Việt Nam"; assert ['ศ','ไ','ท','ย','中','华','V','i','ệ','t',' ','N','a','m'] == chars(ss); } }