import option.none; import option.some; tag signedness { signed; unsigned; } tag caseness { case_upper; case_lower; } tag ty { ty_bool; ty_str; ty_char; ty_int(signedness); ty_bits; ty_hex(caseness); // FIXME: More types } tag flag { flag_left_justify; flag_left_zero_pad; flag_left_space_pad; flag_plus_if_positive; flag_alternate; } tag count { count_is(int); count_is_param(int); count_is_next_param; count_implied; } // A formatted conversion from an expression to a string type conv = rec(option.t[int] param, vec[flag] flags, count width, count precision, ty ty); // A fragment of the output sequence tag piece { piece_string(str); piece_conv(conv); } fn parse_fmt_string(str s) -> vec[piece] { let vec[piece] pieces = vec(); auto lim = _str.byte_len(s); auto buf = ""; fn flush_buf(str buf, &vec[piece] pieces) -> str { if (_str.byte_len(buf) > 0u) { auto piece = piece_string(buf); pieces += vec(piece); } ret ""; } auto i = 0u; while (i < lim) { auto curr = _str.substr(s, i, 1u); if (_str.eq(curr, "%")) { i += 1u; if (i >= lim) { log "unterminated conversion at end of string"; fail; } auto curr2 = _str.substr(s, i, 1u); if (_str.eq(curr2, "%")) { i += 1u; } else { buf = flush_buf(buf, pieces); auto res = parse_conversion(s, i, lim); pieces += vec(res._0); i = res._1; } } else { buf += curr; i += 1u; } } buf = flush_buf(buf, pieces); ret pieces; } fn peek_num(str s, uint i, uint lim) -> option.t[tup(uint, uint)] { if (i >= lim) { ret none[tup(uint, uint)]; } auto c = s.(i); if (!('0' as u8 <= c && c <= '9' as u8)) { ret option.none[tup(uint, uint)]; } auto n = (c - ('0' as u8)) as uint; alt (peek_num(s, i + 1u, lim)) { case (none[tup(uint, uint)]) { ret some[tup(uint, uint)](tup(n, i + 1u)); } case (some[tup(uint, uint)](?next)) { auto m = next._0; auto j = next._1; ret some[tup(uint, uint)](tup(n * 10u + m, j)); } } } fn parse_conversion(str s, uint i, uint lim) -> tup(piece, uint) { auto parm = parse_parameter(s, i, lim); auto flags = parse_flags(s, parm._1, lim); auto width = parse_count(s, flags._1, lim); auto prec = parse_precision(s, width._1, lim); auto ty = parse_type(s, prec._1, lim); ret tup(piece_conv(rec(param = parm._0, flags = flags._0, width = width._0, precision = prec._0, ty = ty._0)), ty._1); } fn parse_parameter(str s, uint i, uint lim) -> tup(option.t[int], uint) { if (i >= lim) { ret tup(none[int], i); } auto num = peek_num(s, i, lim); alt (num) { case (none[tup(uint, uint)]) { ret tup(none[int], i); } case (some[tup(uint, uint)](?t)) { auto n = t._0; auto j = t._1; if (j < lim && s.(j) == '$' as u8) { ret tup(some[int](n as int), j + 1u); } else { ret tup(none[int], i); } } } } fn parse_flags(str s, uint i, uint lim) -> tup(vec[flag], uint) { let vec[flag] noflags = vec(); if (i >= lim) { ret tup(noflags, i); } fn more_(flag f, str s, uint i, uint lim) -> tup(vec[flag], uint) { auto next = parse_flags(s, i + 1u, lim); auto rest = next._0; auto j = next._1; let vec[flag] curr = vec(f); ret tup(curr + rest, j); } auto more = bind more_(_, s, i, lim); auto f = s.(i); if (f == ('-' as u8)) { ret more(flag_left_justify); } else if (f == ('0' as u8)) { ret more(flag_left_zero_pad); } else if (f == (' ' as u8)) { ret more(flag_left_space_pad); } else if (f == ('+' as u8)) { ret more(flag_plus_if_positive); } else if (f == ('#' as u8)) { ret more(flag_alternate); } else { ret tup(noflags, i); } } fn parse_count(str s, uint i, uint lim) -> tup(count, uint) { if (i >= lim) { ret tup(count_implied, i); } if (s.(i) == ('*' as u8)) { auto param = parse_parameter(s, i + 1u, lim); auto j = param._1; alt (param._0) { case (none[int]) { ret tup(count_is_next_param, j); } case (some[int](?n)) { ret tup(count_is_param(n), j); } } } else { auto num = peek_num(s, i, lim); alt (num) { case (none[tup(uint, uint)]) { ret tup(count_implied, i); } case (some[tup(uint, uint)](?num)) { ret tup(count_is(num._0 as int), num._1); } } } } fn parse_precision(str s, uint i, uint lim) -> tup(count, uint) { if (i >= lim) { ret tup(count_implied, i); } if (s.(i) == '.' as u8) { ret parse_count(s, i + 1u, lim); } else { ret tup(count_implied, i); } } fn parse_type(str s, uint i, uint lim) -> tup(ty, uint) { if (i >= lim) { log "missing type in conversion"; fail; } auto t; auto tstr = _str.substr(s, i, 1u); if (_str.eq(tstr, "b")) { t = ty_bool; } else if (_str.eq(tstr, "s")) { t = ty_str; } else if (_str.eq(tstr, "c")) { t = ty_char; } else if (_str.eq(tstr, "d") || _str.eq(tstr, "i")) { // TODO: Do we really want two signed types here? // How important is it to be printf compatible? t = ty_int(signed); } else if (_str.eq(tstr, "u")) { t = ty_int(unsigned); } else if (_str.eq(tstr, "x")) { t = ty_hex(case_lower); } else if (_str.eq(tstr, "X")) { t = ty_hex(case_upper); } else if (_str.eq(tstr, "t")) { t = ty_bits; } else { log "unknown type in conversion"; fail; } ret tup(t, i + 1u); } // Functions used by the fmt extension at runtime mod RT { fn int_to_str(int i) -> str { ret _int.to_str(i, 10u); } fn uint_to_str(uint u) -> str { ret _uint.to_str(u, 10u); } }