// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use back::abi; use lib::llvm::{llvm, ConstFCmp, ConstICmp, SetLinkage, PrivateLinkage, ValueRef, Bool, True}; use lib::llvm::{IntEQ, IntNE, IntUGT, IntUGE, IntULT, IntULE, IntSGT, IntSGE, IntSLT, IntSLE, RealOEQ, RealOGT, RealOGE, RealOLT, RealOLE, RealONE}; use metadata::csearch; use middle::const_eval; use middle::trans::adt; use middle::trans::base; use middle::trans::base::push_ctxt; use middle::trans::common::*; use middle::trans::consts; use middle::trans::expr; use middle::trans::inline; use middle::trans::machine; use middle::trans::type_of; use middle::ty; use util::ppaux::{Repr, ty_to_str}; use middle::trans::type_::Type; use std::c_str::ToCStr; use std::libc::c_uint; use std::vec; use syntax::{ast, ast_util, ast_map}; pub fn const_lit(cx: &CrateContext, e: &ast::Expr, lit: ast::Lit) -> ValueRef { let _icx = push_ctxt("trans_lit"); match lit.node { ast::LitChar(i) => C_integral(Type::char(), i as u64, false), ast::LitInt(i, t) => C_integral(Type::int_from_ty(cx, t), i as u64, true), ast::LitUint(u, t) => C_integral(Type::uint_from_ty(cx, t), u, false), ast::LitIntUnsuffixed(i) => { let lit_int_ty = ty::node_id_to_type(cx.tcx, e.id); match ty::get(lit_int_ty).sty { ty::ty_int(t) => { C_integral(Type::int_from_ty(cx, t), i as u64, true) } ty::ty_uint(t) => { C_integral(Type::uint_from_ty(cx, t), i as u64, false) } _ => cx.sess.span_bug(lit.span, format!("integer literal has type {} (expected int or uint)", ty_to_str(cx.tcx, lit_int_ty))) } } ast::LitFloat(fs, t) => C_floating(fs, Type::float_from_ty(t)), ast::LitFloatUnsuffixed(fs) => { let lit_float_ty = ty::node_id_to_type(cx.tcx, e.id); match ty::get(lit_float_ty).sty { ty::ty_float(t) => { C_floating(fs, Type::float_from_ty(t)) } _ => { cx.sess.span_bug(lit.span, "floating point literal doesn't have the right type"); } } } ast::LitBool(b) => C_bool(b), ast::LitNil => C_nil(), ast::LitStr(s, _) => C_str_slice(cx, s), ast::LitBinary(data) => C_binary_slice(cx, data), } } pub fn const_ptrcast(cx: &CrateContext, a: ValueRef, t: Type) -> ValueRef { unsafe { let b = llvm::LLVMConstPointerCast(a, t.ptr_to().to_ref()); let mut const_globals = cx.const_globals.borrow_mut(); assert!(const_globals.get().insert(b as int, a)); b } } fn const_vec(cx: @CrateContext, e: &ast::Expr, es: &[@ast::Expr]) -> (ValueRef, Type, bool) { let vec_ty = ty::expr_ty(cx.tcx, e); let unit_ty = ty::sequence_element_type(cx.tcx, vec_ty); let llunitty = type_of::type_of(cx, unit_ty); let (vs, inlineable) = vec::unzip(es.iter().map(|e| const_expr(cx, *e))); // If the vector contains enums, an LLVM array won't work. let v = if vs.iter().any(|vi| val_ty(*vi) != llunitty) { C_struct(vs, false) } else { C_array(llunitty, vs) }; (v, llunitty, inlineable.iter().fold(true, |a, &b| a && b)) } fn const_addr_of(cx: &CrateContext, cv: ValueRef) -> ValueRef { unsafe { let gv = "const".with_c_str(|name| { llvm::LLVMAddGlobal(cx.llmod, val_ty(cv).to_ref(), name) }); llvm::LLVMSetInitializer(gv, cv); llvm::LLVMSetGlobalConstant(gv, True); SetLinkage(gv, PrivateLinkage); gv } } fn const_deref_ptr(cx: &CrateContext, v: ValueRef) -> ValueRef { let const_globals = cx.const_globals.borrow(); let v = match const_globals.get().find(&(v as int)) { Some(&v) => v, None => v }; unsafe { assert_eq!(llvm::LLVMIsGlobalConstant(v), True); llvm::LLVMGetInitializer(v) } } fn const_deref_newtype(cx: &CrateContext, v: ValueRef, t: ty::t) -> ValueRef { let repr = adt::represent_type(cx, t); adt::const_get_field(cx, repr, v, 0, 0) } fn const_deref(cx: &CrateContext, v: ValueRef, t: ty::t, explicit: bool) -> (ValueRef, ty::t) { match ty::deref(t, explicit) { Some(ref mt) => { assert!(mt.mutbl != ast::MutMutable); let dv = match ty::get(t).sty { ty::ty_ptr(..) | ty::ty_rptr(..) => { const_deref_ptr(cx, v) } ty::ty_enum(..) | ty::ty_struct(..) => { const_deref_newtype(cx, v, t) } _ => { cx.sess.bug(format!("Unexpected dereferenceable type {}", ty_to_str(cx.tcx, t))) } }; (dv, mt.ty) } None => { cx.sess.bug(format!("Can't dereference const of type {}", ty_to_str(cx.tcx, t))) } } } pub fn get_const_val(cx: @CrateContext, mut def_id: ast::DefId) -> (ValueRef, bool) { let contains_key = { let const_values = cx.const_values.borrow(); const_values.get().contains_key(&def_id.node) }; if !ast_util::is_local(def_id) || !contains_key { if !ast_util::is_local(def_id) { def_id = inline::maybe_instantiate_inline(cx, def_id); } let opt_item = { let items = cx.tcx.items.borrow(); items.get().get_copy(&def_id.node) }; match opt_item { ast_map::NodeItem(@ast::Item { node: ast::ItemStatic(_, ast::MutImmutable, _), .. }, _) => { trans_const(cx, ast::MutImmutable, def_id.node); } _ => cx.tcx.sess.bug("expected a const to be an item") } } let const_values = cx.const_values.borrow(); let non_inlineable_statics = cx.non_inlineable_statics.borrow(); (const_values.get().get_copy(&def_id.node), !non_inlineable_statics.get().contains(&def_id.node)) } pub fn const_expr(cx: @CrateContext, e: &ast::Expr) -> (ValueRef, bool) { let (llconst, inlineable) = const_expr_unadjusted(cx, e); let mut llconst = llconst; let mut inlineable = inlineable; let ety = ty::expr_ty(cx.tcx, e); let adjustment = { let adjustments = cx.tcx.adjustments.borrow(); adjustments.get().find_copy(&e.id) }; match adjustment { None => { } Some(@ty::AutoAddEnv(ty::ReStatic, ast::BorrowedSigil)) => { llconst = C_struct([llconst, C_null(Type::opaque_box(cx).ptr_to())], false) } Some(@ty::AutoAddEnv(ref r, ref s)) => { cx.sess.span_bug(e.span, format!("unexpected static function: \ region {:?} sigil {:?}", *r, *s)) } Some(@ty::AutoObject(..)) => { cx.sess.span_unimpl(e.span, "unimplemented const coercion to trait object"); } Some(@ty::AutoDerefRef(ref adj)) => { let mut ty = ety; let mut maybe_ptr = None; adj.autoderefs.times(|| { let (dv, dt) = const_deref(cx, llconst, ty, false); maybe_ptr = Some(llconst); llconst = dv; ty = dt; }); match adj.autoref { None => { } Some(ref autoref) => { // Don't copy data to do a deref+ref. let llptr = match maybe_ptr { Some(ptr) => ptr, None => { inlineable = false; const_addr_of(cx, llconst) } }; match *autoref { ty::AutoUnsafe(m) | ty::AutoPtr(ty::ReStatic, m) => { assert!(m != ast::MutMutable); llconst = llptr; } ty::AutoBorrowVec(ty::ReStatic, m) => { assert!(m != ast::MutMutable); assert_eq!(abi::slice_elt_base, 0); assert_eq!(abi::slice_elt_len, 1); match ty::get(ty).sty { ty::ty_vec(_, ty::vstore_fixed(len)) => { llconst = C_struct([llptr, C_uint(cx, len)], false); } _ => {} } } _ => { cx.sess.span_bug(e.span, format!("unimplemented const \ autoref {:?}", autoref)) } } } } } } let ety_adjusted = ty::expr_ty_adjusted(cx.tcx, e); let llty = type_of::sizing_type_of(cx, ety_adjusted); let csize = machine::llsize_of_alloc(cx, val_ty(llconst)); let tsize = machine::llsize_of_alloc(cx, llty); if csize != tsize { unsafe { // XXX these values could use some context llvm::LLVMDumpValue(llconst); llvm::LLVMDumpValue(C_undef(llty)); } cx.sess.bug(format!("const {} of type {} has size {} instead of {}", e.repr(cx.tcx), ty_to_str(cx.tcx, ety), csize, tsize)); } (llconst, inlineable) } // the bool returned is whether this expression can be inlined into other crates // if it's assigned to a static. fn const_expr_unadjusted(cx: @CrateContext, e: &ast::Expr) -> (ValueRef, bool) { fn map_list(cx: @CrateContext, exprs: &[@ast::Expr]) -> (~[ValueRef], bool) { exprs.iter().map(|&e| const_expr(cx, e)) .fold((~[], true), |(L, all_inlineable), (val, inlineable)| { (vec::append_one(L, val), all_inlineable && inlineable) }) } unsafe { let _icx = push_ctxt("const_expr"); return match e.node { ast::ExprLit(lit) => (consts::const_lit(cx, e, *lit), true), ast::ExprBinary(_, b, e1, e2) => { let (te1, _) = const_expr(cx, e1); let (te2, _) = const_expr(cx, e2); let te2 = base::cast_shift_const_rhs(b, te1, te2); /* Neither type is bottom, and we expect them to be unified * already, so the following is safe. */ let ty = ty::expr_ty(cx.tcx, e1); let is_float = ty::type_is_fp(ty); let signed = ty::type_is_signed(ty); return (match b { ast::BiAdd => { if is_float { llvm::LLVMConstFAdd(te1, te2) } else { llvm::LLVMConstAdd(te1, te2) } } ast::BiSub => { if is_float { llvm::LLVMConstFSub(te1, te2) } else { llvm::LLVMConstSub(te1, te2) } } ast::BiMul => { if is_float { llvm::LLVMConstFMul(te1, te2) } else { llvm::LLVMConstMul(te1, te2) } } ast::BiDiv => { if is_float { llvm::LLVMConstFDiv(te1, te2) } else if signed { llvm::LLVMConstSDiv(te1, te2) } else { llvm::LLVMConstUDiv(te1, te2) } } ast::BiRem => { if is_float { llvm::LLVMConstFRem(te1, te2) } else if signed { llvm::LLVMConstSRem(te1, te2) } else { llvm::LLVMConstURem(te1, te2) } } ast::BiAnd => llvm::LLVMConstAnd(te1, te2), ast::BiOr => llvm::LLVMConstOr(te1, te2), ast::BiBitXor => llvm::LLVMConstXor(te1, te2), ast::BiBitAnd => llvm::LLVMConstAnd(te1, te2), ast::BiBitOr => llvm::LLVMConstOr(te1, te2), ast::BiShl => llvm::LLVMConstShl(te1, te2), ast::BiShr => { if signed { llvm::LLVMConstAShr(te1, te2) } else { llvm::LLVMConstLShr(te1, te2) } } ast::BiEq => { if is_float { ConstFCmp(RealOEQ, te1, te2) } else { ConstICmp(IntEQ, te1, te2) } }, ast::BiLt => { if is_float { ConstFCmp(RealOLT, te1, te2) } else { if signed { ConstICmp(IntSLT, te1, te2) } else { ConstICmp(IntULT, te1, te2) } } }, ast::BiLe => { if is_float { ConstFCmp(RealOLE, te1, te2) } else { if signed { ConstICmp(IntSLE, te1, te2) } else { ConstICmp(IntULE, te1, te2) } } }, ast::BiNe => { if is_float { ConstFCmp(RealONE, te1, te2) } else { ConstICmp(IntNE, te1, te2) } }, ast::BiGe => { if is_float { ConstFCmp(RealOGE, te1, te2) } else { if signed { ConstICmp(IntSGE, te1, te2) } else { ConstICmp(IntUGE, te1, te2) } } }, ast::BiGt => { if is_float { ConstFCmp(RealOGT, te1, te2) } else { if signed { ConstICmp(IntSGT, te1, te2) } else { ConstICmp(IntUGT, te1, te2) } } }, }, true) }, ast::ExprUnary(_, u, e) => { let (te, _) = const_expr(cx, e); let ty = ty::expr_ty(cx.tcx, e); let is_float = ty::type_is_fp(ty); return (match u { ast::UnBox | ast::UnUniq | ast::UnDeref => { let (dv, _dt) = const_deref(cx, te, ty, true); dv } ast::UnNot => { match ty::get(ty).sty { ty::ty_bool => { // Somewhat questionable, but I believe this is // correct. let te = llvm::LLVMConstTrunc(te, Type::i1().to_ref()); let te = llvm::LLVMConstNot(te); llvm::LLVMConstZExt(te, Type::bool().to_ref()) } _ => llvm::LLVMConstNot(te), } } ast::UnNeg => { if is_float { llvm::LLVMConstFNeg(te) } else { llvm::LLVMConstNeg(te) } } }, true) } ast::ExprField(base, field, _) => { let bt = ty::expr_ty_adjusted(cx.tcx, base); let brepr = adt::represent_type(cx, bt); let (bv, inlineable) = const_expr(cx, base); expr::with_field_tys(cx.tcx, bt, None, |discr, field_tys| { let ix = ty::field_idx_strict(cx.tcx, field.name, field_tys); (adt::const_get_field(cx, brepr, bv, discr, ix), inlineable) }) } ast::ExprIndex(_, base, index) => { let bt = ty::expr_ty_adjusted(cx.tcx, base); let (bv, inlineable) = const_expr(cx, base); let iv = match const_eval::eval_const_expr(cx.tcx, index) { const_eval::const_int(i) => i as u64, const_eval::const_uint(u) => u, _ => cx.sess.span_bug(index.span, "index is not an integer-constant expression") }; let (arr, len) = match ty::get(bt).sty { ty::ty_vec(_, vstore) | ty::ty_str(vstore) => match vstore { ty::vstore_fixed(u) => (bv, C_uint(cx, u)), ty::vstore_slice(_) => { let e1 = const_get_elt(cx, bv, [0]); (const_deref_ptr(cx, e1), const_get_elt(cx, bv, [1])) }, _ => cx.sess.span_bug(base.span, "index-expr base must be fixed-size or slice") }, _ => cx.sess.span_bug(base.span, "index-expr base must be a vector or string type") }; let len = llvm::LLVMConstIntGetZExtValue(len) as u64; let len = match ty::get(bt).sty { ty::ty_str(..) => {assert!(len > 0); len - 1}, _ => len }; if iv >= len { // FIXME #3170: report this earlier on in the const-eval // pass. Reporting here is a bit late. cx.sess.span_err(e.span, "const index-expr is out of bounds"); } (const_get_elt(cx, arr, [iv as c_uint]), inlineable) } ast::ExprCast(base, _) => { let ety = ty::expr_ty(cx.tcx, e); let llty = type_of::type_of(cx, ety); let basety = ty::expr_ty(cx.tcx, base); let (v, inlineable) = const_expr(cx, base); return (match (expr::cast_type_kind(basety), expr::cast_type_kind(ety)) { (expr::cast_integral, expr::cast_integral) => { let s = ty::type_is_signed(basety) as Bool; llvm::LLVMConstIntCast(v, llty.to_ref(), s) } (expr::cast_integral, expr::cast_float) => { if ty::type_is_signed(basety) { llvm::LLVMConstSIToFP(v, llty.to_ref()) } else { llvm::LLVMConstUIToFP(v, llty.to_ref()) } } (expr::cast_float, expr::cast_float) => { llvm::LLVMConstFPCast(v, llty.to_ref()) } (expr::cast_float, expr::cast_integral) => { if ty::type_is_signed(ety) { llvm::LLVMConstFPToSI(v, llty.to_ref()) } else { llvm::LLVMConstFPToUI(v, llty.to_ref()) } } (expr::cast_enum, expr::cast_integral) | (expr::cast_enum, expr::cast_float) => { let repr = adt::represent_type(cx, basety); let discr = adt::const_get_discrim(cx, repr, v); let iv = C_integral(cx.int_type, discr, false); let ety_cast = expr::cast_type_kind(ety); match ety_cast { expr::cast_integral => { let s = ty::type_is_signed(ety) as Bool; llvm::LLVMConstIntCast(iv, llty.to_ref(), s) } expr::cast_float => llvm::LLVMConstUIToFP(iv, llty.to_ref()), _ => cx.sess.bug("enum cast destination is not \ integral or float") } } (expr::cast_pointer, expr::cast_pointer) => { llvm::LLVMConstPointerCast(v, llty.to_ref()) } (expr::cast_integral, expr::cast_pointer) => { llvm::LLVMConstIntToPtr(v, llty.to_ref()) } _ => { cx.sess.impossible_case(e.span, "bad combination of types for cast") } }, inlineable) } ast::ExprAddrOf(ast::MutImmutable, sub) => { let (e, _) = const_expr(cx, sub); (const_addr_of(cx, e), false) } ast::ExprTup(ref es) => { let ety = ty::expr_ty(cx.tcx, e); let repr = adt::represent_type(cx, ety); let (vals, inlineable) = map_list(cx, *es); (adt::trans_const(cx, repr, 0, vals), inlineable) } ast::ExprStruct(_, ref fs, ref base_opt) => { let ety = ty::expr_ty(cx.tcx, e); let repr = adt::represent_type(cx, ety); let tcx = cx.tcx; let base_val = match *base_opt { Some(base) => Some(const_expr(cx, base)), None => None }; expr::with_field_tys(tcx, ety, Some(e.id), |discr, field_tys| { let cs = field_tys.iter().enumerate() .map(|(ix, &field_ty)| { match fs.iter().find(|f| field_ty.ident.name == f.ident.node.name) { Some(f) => const_expr(cx, (*f).expr), None => { match base_val { Some((bv, inlineable)) => { (adt::const_get_field(cx, repr, bv, discr, ix), inlineable) } None => cx.tcx.sess.span_bug(e.span, "missing struct field") } } } }).to_owned_vec(); let (cs, inlineable) = vec::unzip(cs.move_iter()); (adt::trans_const(cx, repr, discr, cs), inlineable.iter().fold(true, |a, &b| a && b)) }) } ast::ExprVec(ref es, ast::MutImmutable) => { let (v, _, inlineable) = const_vec(cx, e, *es); (v, inlineable) } ast::ExprVstore(sub, ast::ExprVstoreSlice) => { match sub.node { ast::ExprLit(ref lit) => { match lit.node { ast::LitStr(..) => { const_expr(cx, sub) } _ => { cx.sess.span_bug(e.span, "bad const-slice lit") } } } ast::ExprVec(ref es, ast::MutImmutable) => { let (cv, llunitty, _) = const_vec(cx, e, *es); let llty = val_ty(cv); let gv = "const".with_c_str(|name| { llvm::LLVMAddGlobal(cx.llmod, llty.to_ref(), name) }); llvm::LLVMSetInitializer(gv, cv); llvm::LLVMSetGlobalConstant(gv, True); SetLinkage(gv, PrivateLinkage); let p = const_ptrcast(cx, gv, llunitty); (C_struct([p, C_uint(cx, es.len())], false), false) } _ => cx.sess.span_bug(e.span, "bad const-slice expr") } } ast::ExprRepeat(elem, count, _) => { let vec_ty = ty::expr_ty(cx.tcx, e); let unit_ty = ty::sequence_element_type(cx.tcx, vec_ty); let llunitty = type_of::type_of(cx, unit_ty); let n = match const_eval::eval_const_expr(cx.tcx, count) { const_eval::const_int(i) => i as uint, const_eval::const_uint(i) => i as uint, _ => cx.sess.span_bug(count.span, "count must be integral const expression.") }; let vs = vec::from_elem(n, const_expr(cx, elem).first()); let v = if vs.iter().any(|vi| val_ty(*vi) != llunitty) { C_struct(vs, false) } else { C_array(llunitty, vs) }; (v, true) } ast::ExprPath(ref pth) => { // Assert that there are no type parameters in this path. assert!(pth.segments.iter().all(|seg| seg.types.is_empty())); let tcx = cx.tcx; let opt_def = { let def_map = tcx.def_map.borrow(); def_map.get().find_copy(&e.id) }; match opt_def { Some(ast::DefFn(def_id, _purity)) => { if !ast_util::is_local(def_id) { let ty = csearch::get_type(cx.tcx, def_id).ty; (base::trans_external_path(cx, def_id, ty), true) } else { assert!(ast_util::is_local(def_id)); (base::get_item_val(cx, def_id.node), true) } } Some(ast::DefStatic(def_id, false)) => { get_const_val(cx, def_id) } Some(ast::DefVariant(enum_did, variant_did, _)) => { let ety = ty::expr_ty(cx.tcx, e); let repr = adt::represent_type(cx, ety); let vinfo = ty::enum_variant_with_id(cx.tcx, enum_did, variant_did); (adt::trans_const(cx, repr, vinfo.disr_val, []), true) } Some(ast::DefStruct(_)) => { let ety = ty::expr_ty(cx.tcx, e); let llty = type_of::type_of(cx, ety); (C_null(llty), true) } _ => { cx.sess.span_bug(e.span, "expected a const, fn, struct, or variant def") } } } ast::ExprCall(callee, ref args, _) => { let tcx = cx.tcx; let opt_def = { let def_map = tcx.def_map.borrow(); def_map.get().find_copy(&callee.id) }; match opt_def { Some(ast::DefStruct(_)) => { let ety = ty::expr_ty(cx.tcx, e); let repr = adt::represent_type(cx, ety); let (arg_vals, inlineable) = map_list(cx, *args); (adt::trans_const(cx, repr, 0, arg_vals), inlineable) } Some(ast::DefVariant(enum_did, variant_did, _)) => { let ety = ty::expr_ty(cx.tcx, e); let repr = adt::represent_type(cx, ety); let vinfo = ty::enum_variant_with_id(cx.tcx, enum_did, variant_did); let (arg_vals, inlineable) = map_list(cx, *args); (adt::trans_const(cx, repr, vinfo.disr_val, arg_vals), inlineable) } _ => cx.sess.span_bug(e.span, "expected a struct or variant def") } } ast::ExprParen(e) => { const_expr(cx, e) } _ => cx.sess.span_bug(e.span, "bad constant expression type in consts::const_expr") }; } } pub fn trans_const(ccx: @CrateContext, m: ast::Mutability, id: ast::NodeId) { unsafe { let _icx = push_ctxt("trans_const"); let g = base::get_item_val(ccx, id); // At this point, get_item_val has already translated the // constant's initializer to determine its LLVM type. let const_values = ccx.const_values.borrow(); let v = const_values.get().get_copy(&id); llvm::LLVMSetInitializer(g, v); if m != ast::MutMutable { llvm::LLVMSetGlobalConstant(g, True); } } }