//! Implements "Stacked Borrows". See //! for further information. use log::trace; use std::cell::RefCell; use std::collections::HashMap; use std::fmt; use std::num::NonZeroU64; use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_hir::Mutability; use rustc_middle::mir::RetagKind; use rustc_middle::ty::{ self, layout::{HasParamEnv, LayoutOf}, }; use rustc_span::Span; use rustc_span::DUMMY_SP; use rustc_target::abi::Size; use std::collections::HashSet; use crate::*; pub mod diagnostics; use diagnostics::{AllocHistory, GlobalStateExt, StackExt}; use diagnostics::TagHistory; pub type PtrId = NonZeroU64; pub type CallId = NonZeroU64; pub type AllocExtra = Stacks; /// Tracking pointer provenance #[derive(Copy, Clone, Hash, PartialEq, Eq)] pub enum SbTag { Tagged(PtrId), Untagged, } impl fmt::Debug for SbTag { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { SbTag::Tagged(id) => write!(f, "<{}>", id), SbTag::Untagged => write!(f, ""), } } } /// Indicates which permission is granted (by this item to some pointers) #[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)] pub enum Permission { /// Grants unique mutable access. Unique, /// Grants shared mutable access. SharedReadWrite, /// Grants shared read-only access. SharedReadOnly, /// Grants no access, but separates two groups of SharedReadWrite so they are not /// all considered mutually compatible. Disabled, } /// An item in the per-location borrow stack. #[derive(Copy, Clone, Hash, PartialEq, Eq)] pub struct Item { /// The permission this item grants. perm: Permission, /// The pointers the permission is granted to. tag: SbTag, /// An optional protector, ensuring the item cannot get popped until `CallId` is over. protector: Option, } impl fmt::Debug for Item { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "[{:?} for {:?}", self.perm, self.tag)?; if let Some(call) = self.protector { write!(f, " (call {})", call)?; } write!(f, "]")?; Ok(()) } } /// Extra per-location state. #[derive(Clone, Debug, PartialEq, Eq)] pub struct Stack { /// Used *mostly* as a stack; never empty. /// Invariants: /// * Above a `SharedReadOnly` there can only be more `SharedReadOnly`. /// * Except for `Untagged`, no tag occurs in the stack more than once. borrows: Vec, } /// Extra per-allocation state. #[derive(Clone, Debug)] pub struct Stacks { // Even reading memory can have effects on the stack, so we need a `RefCell` here. stacks: RefCell>, } /// Extra global state, available to the memory access hooks. #[derive(Debug)] pub struct GlobalStateInner { /// Next unused pointer ID (tag). next_ptr_id: PtrId, /// Table storing the "base" tag for each allocation. /// The base tag is the one used for the initial pointer. /// We need this in a separate table to handle cyclic statics. base_ptr_ids: FxHashMap, /// Next unused call ID (for protectors). next_call_id: CallId, /// Those call IDs corresponding to functions that are still running. active_calls: FxHashSet, /// The pointer ids to trace tracked_pointer_tags: HashSet, /// The call ids to trace tracked_call_ids: HashSet, /// Whether to track raw pointers. tag_raw: bool, /// Extra per-allocation information extras: HashMap, /// Current span pub(crate) current_span: Span, } /// We need interior mutable access to the global state. pub type GlobalState = RefCell; /// Indicates which kind of access is being performed. #[derive(Copy, Clone, Hash, PartialEq, Eq, Debug)] pub enum AccessKind { Read, Write, } impl fmt::Display for AccessKind { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { AccessKind::Read => write!(f, "read access"), AccessKind::Write => write!(f, "write access"), } } } /// Indicates which kind of reference is being created. /// Used by high-level `reborrow` to compute which permissions to grant to the /// new pointer. #[derive(Copy, Clone, Hash, PartialEq, Eq)] pub enum RefKind { /// `&mut` and `Box`. Unique { two_phase: bool }, /// `&` with or without interior mutability. Shared, /// `*mut`/`*const` (raw pointers). Raw { mutable: bool }, } impl fmt::Display for RefKind { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { RefKind::Unique { two_phase: false } => write!(f, "unique"), RefKind::Unique { two_phase: true } => write!(f, "unique (two-phase)"), RefKind::Shared => write!(f, "shared"), RefKind::Raw { mutable: true } => write!(f, "raw (mutable)"), RefKind::Raw { mutable: false } => write!(f, "raw (constant)"), } } } /// Utilities for initialization and ID generation impl GlobalStateInner { pub fn new( tracked_pointer_tags: HashSet, tracked_call_ids: HashSet, tag_raw: bool, ) -> Self { GlobalStateInner { next_ptr_id: NonZeroU64::new(1).unwrap(), base_ptr_ids: FxHashMap::default(), next_call_id: NonZeroU64::new(1).unwrap(), active_calls: FxHashSet::default(), tracked_pointer_tags, tracked_call_ids, tag_raw, extras: HashMap::new(), current_span: DUMMY_SP, } } fn new_ptr(&mut self) -> PtrId { let id = self.next_ptr_id; if self.tracked_pointer_tags.contains(&id) { register_diagnostic(NonHaltingDiagnostic::CreatedPointerTag(id)); } self.next_ptr_id = NonZeroU64::new(id.get() + 1).unwrap(); id } pub fn new_call(&mut self) -> CallId { let id = self.next_call_id; trace!("new_call: Assigning ID {}", id); if self.tracked_call_ids.contains(&id) { register_diagnostic(NonHaltingDiagnostic::CreatedCallId(id)); } assert!(self.active_calls.insert(id)); self.next_call_id = NonZeroU64::new(id.get() + 1).unwrap(); id } pub fn end_call(&mut self, id: CallId) { assert!(self.active_calls.remove(&id)); } fn is_active(&self, id: CallId) -> bool { self.active_calls.contains(&id) } pub fn base_tag(&mut self, id: AllocId) -> SbTag { self.base_ptr_ids.get(&id).copied().unwrap_or_else(|| { let tag = SbTag::Tagged(self.new_ptr()); trace!("New allocation {:?} has base tag {:?}", id, tag); self.base_ptr_ids.try_insert(id, tag).unwrap(); tag }) } pub fn base_tag_untagged(&mut self, id: AllocId) -> SbTag { trace!("New allocation {:?} has no base tag (untagged)", id); let tag = SbTag::Untagged; // This must only be done on new allocations. self.base_ptr_ids.try_insert(id, tag).unwrap(); tag } } /// Error reporting pub fn err_sb_ub( msg: String, help: Option, history: Option, ) -> InterpError<'static> { err_machine_stop!(TerminationInfo::ExperimentalUb { msg, help, url: format!( "https://github.com/rust-lang/unsafe-code-guidelines/blob/master/wip/stacked-borrows.md" ), history }) } // # Stacked Borrows Core Begin /// We need to make at least the following things true: /// /// U1: After creating a `Uniq`, it is at the top. /// U2: If the top is `Uniq`, accesses must be through that `Uniq` or remove it it. /// U3: If an access happens with a `Uniq`, it requires the `Uniq` to be in the stack. /// /// F1: After creating a `&`, the parts outside `UnsafeCell` have our `SharedReadOnly` on top. /// F2: If a write access happens, it pops the `SharedReadOnly`. This has three pieces: /// F2a: If a write happens granted by an item below our `SharedReadOnly`, the `SharedReadOnly` /// gets popped. /// F2b: No `SharedReadWrite` or `Unique` will ever be added on top of our `SharedReadOnly`. /// F3: If an access happens with an `&` outside `UnsafeCell`, /// it requires the `SharedReadOnly` to still be in the stack. /// Core relation on `Permission` to define which accesses are allowed impl Permission { /// This defines for a given permission, whether it permits the given kind of access. fn grants(self, access: AccessKind) -> bool { // Disabled grants nothing. Otherwise, all items grant read access, and except for SharedReadOnly they grant write access. self != Permission::Disabled && (access == AccessKind::Read || self != Permission::SharedReadOnly) } } /// Core per-location operations: access, dealloc, reborrow. impl<'tcx> Stack { /// Find the item granting the given kind of access to the given tag, and return where /// it is on the stack. fn find_granting(&self, access: AccessKind, tag: SbTag) -> Option { self.borrows .iter() .enumerate() // we also need to know *where* in the stack .rev() // search top-to-bottom // Return permission of first item that grants access. // We require a permission with the right tag, ensuring U3 and F3. .find_map( |(idx, item)| { if tag == item.tag && item.perm.grants(access) { Some(idx) } else { None } }, ) } /// Find the first write-incompatible item above the given one -- /// i.e, find the height to which the stack will be truncated when writing to `granting`. fn find_first_write_incompatible(&self, granting: usize) -> usize { let perm = self.borrows[granting].perm; match perm { Permission::SharedReadOnly => bug!("Cannot use SharedReadOnly for writing"), Permission::Disabled => bug!("Cannot use Disabled for anything"), // On a write, everything above us is incompatible. Permission::Unique => granting + 1, Permission::SharedReadWrite => { // The SharedReadWrite *just* above us are compatible, to skip those. let mut idx = granting + 1; while let Some(item) = self.borrows.get(idx) { if item.perm == Permission::SharedReadWrite { // Go on. idx += 1; } else { // Found first incompatible! break; } } idx } } } /// Check if the given item is protected. /// /// The `provoking_access` argument is only used to produce diagnostics. /// It is `Some` when we are granting the contained access for said tag, and it is /// `None` during a deallocation. fn check_protector( item: &Item, provoking_access: Option<(SbTag, AllocId, AllocRange, Size)>, // just for debug printing and error messages global: &GlobalStateInner, ) -> InterpResult<'tcx> { if let SbTag::Tagged(id) = item.tag { if global.tracked_pointer_tags.contains(&id) { register_diagnostic(NonHaltingDiagnostic::PoppedPointerTag( *item, None, )); } } if let Some(call) = item.protector { if global.is_active(call) { if let Some((tag, alloc_id, alloc_range, offset)) = provoking_access { Err(err_sb_ub( format!( "not granting access to tag {:?} because incompatible item is protected: {:?}", tag, item ), None, global.get_stack_history( tag, alloc_id, alloc_range, offset, Some(item.tag), ), ))? } else { Err(err_sb_ub( format!("deallocating while item is protected: {:?}", item), None, None, ))? } } } Ok(()) } /// Test if a memory `access` using pointer tagged `tag` is granted. /// If yes, return the index of the item that granted it. /// `range` refers the entire operation, and `offset` refers to the specific offset into the /// allocation that we are currently checking. fn access( &mut self, access: AccessKind, tag: SbTag, (alloc_id, alloc_range, offset): (AllocId, AllocRange, Size), // just for debug printing and error messages global: &mut GlobalStateInner, ) -> InterpResult<'tcx> { // Two main steps: Find granting item, remove incompatible items above. // Step 1: Find granting item. let granting_idx = self .find_granting(access, tag) .ok_or_else(|| self.access_error(access, tag, alloc_id, alloc_range, offset, global))?; // Step 2: Remove incompatible items above them. Make sure we do not remove protected // items. Behavior differs for reads and writes. if access == AccessKind::Write { // Remove everything above the write-compatible items, like a proper stack. This makes sure read-only and unique // pointers become invalid on write accesses (ensures F2a, and ensures U2 for write accesses). let first_incompatible_idx = self.find_first_write_incompatible(granting_idx); for item in self.borrows.drain(first_incompatible_idx..).rev() { trace!("access: popping item {:?}", item); Stack::check_protector(&item, Some((tag, alloc_id, alloc_range, offset)), global)?; global.add_invalidation(item.tag, alloc_id, alloc_range); } } else { // On a read, *disable* all `Unique` above the granting item. This ensures U2 for read accesses. // The reason this is not following the stack discipline (by removing the first Unique and // everything on top of it) is that in `let raw = &mut *x as *mut _; let _val = *x;`, the second statement // would pop the `Unique` from the reborrow of the first statement, and subsequently also pop the // `SharedReadWrite` for `raw`. // This pattern occurs a lot in the standard library: create a raw pointer, then also create a shared // reference and use that. // We *disable* instead of removing `Unique` to avoid "connecting" two neighbouring blocks of SRWs. for idx in ((granting_idx + 1)..self.borrows.len()).rev() { let item = &mut self.borrows[idx]; if item.perm == Permission::Unique { trace!("access: disabling item {:?}", item); Stack::check_protector( item, Some((tag, alloc_id, alloc_range, offset)), global, )?; item.perm = Permission::Disabled; global.add_invalidation(item.tag, alloc_id, alloc_range); } } } // Done. Ok(()) } /// Deallocate a location: Like a write access, but also there must be no /// active protectors at all because we will remove all items. fn dealloc( &mut self, tag: SbTag, (alloc_id, alloc_range, offset): (AllocId, AllocRange, Size), // just for debug printing and error messages global: &GlobalStateInner, ) -> InterpResult<'tcx> { // Step 1: Find granting item. self.find_granting(AccessKind::Write, tag).ok_or_else(|| { err_sb_ub(format!( "no item granting write access for deallocation to tag {:?} at {:?} found in borrow stack", tag, alloc_id, ), None, global.get_stack_history(tag, alloc_id, alloc_range, offset, None), ) })?; // Step 2: Remove all items. Also checks for protectors. for item in self.borrows.drain(..).rev() { Stack::check_protector(&item, None, global)?; } Ok(()) } /// Derive a new pointer from one with the given tag. /// `weak` controls whether this operation is weak or strong: weak granting does not act as /// an access, and they add the new item directly on top of the one it is derived /// from instead of all the way at the top of the stack. /// `range` refers the entire operation, and `offset` refers to the specific location in /// `range` that we are currently checking. fn grant( &mut self, derived_from: SbTag, new: Item, (alloc_id, alloc_range, offset): (AllocId, AllocRange, Size), // just for debug printing and error messages global: &mut GlobalStateInner, ) -> InterpResult<'tcx> { // Figure out which access `perm` corresponds to. let access = if new.perm.grants(AccessKind::Write) { AccessKind::Write } else { AccessKind::Read }; // Now we figure out which item grants our parent (`derived_from`) this kind of access. // We use that to determine where to put the new item. let granting_idx = self.find_granting(access, derived_from).ok_or_else(|| { self.grant_error(derived_from, new, alloc_id, alloc_range, offset, global) })?; // Compute where to put the new item. // Either way, we ensure that we insert the new item in a way such that between // `derived_from` and the new one, there are only items *compatible with* `derived_from`. let new_idx = if new.perm == Permission::SharedReadWrite { assert!( access == AccessKind::Write, "this case only makes sense for stack-like accesses" ); // SharedReadWrite can coexist with "existing loans", meaning they don't act like a write // access. Instead of popping the stack, we insert the item at the place the stack would // be popped to (i.e., we insert it above all the write-compatible items). // This ensures F2b by adding the new item below any potentially existing `SharedReadOnly`. self.find_first_write_incompatible(granting_idx) } else { // A "safe" reborrow for a pointer that actually expects some aliasing guarantees. // Here, creating a reference actually counts as an access. // This ensures F2b for `Unique`, by removing offending `SharedReadOnly`. self.access(access, derived_from, (alloc_id, alloc_range, offset), global)?; // We insert "as far up as possible": We know only compatible items are remaining // on top of `derived_from`, and we want the new item at the top so that we // get the strongest possible guarantees. // This ensures U1 and F1. self.borrows.len() }; // Put the new item there. As an optimization, deduplicate if it is equal to one of its new neighbors. if self.borrows[new_idx - 1] == new || self.borrows.get(new_idx) == Some(&new) { // Optimization applies, done. trace!("reborrow: avoiding adding redundant item {:?}", new); } else { trace!("reborrow: adding item {:?}", new); self.borrows.insert(new_idx, new); } Ok(()) } } // # Stacked Borrows Core End /// Map per-stack operations to higher-level per-location-range operations. impl<'tcx> Stacks { /// Creates new stack with initial tag. fn new(size: Size, perm: Permission, tag: SbTag) -> Self { let item = Item { perm, tag, protector: None }; let stack = Stack { borrows: vec![item] }; Stacks { stacks: RefCell::new(RangeMap::new(size, stack)) } } /// Call `f` on every stack in the range. fn for_each( &self, range: AllocRange, f: impl Fn(Size, &mut Stack) -> InterpResult<'tcx>, ) -> InterpResult<'tcx> { let mut stacks = self.stacks.borrow_mut(); for (offset, stack) in stacks.iter_mut(range.start, range.size) { f(offset, stack)?; } Ok(()) } /// Call `f` on every stack in the range. fn for_each_mut( &mut self, range: AllocRange, f: impl Fn(Size, &mut Stack) -> InterpResult<'tcx>, ) -> InterpResult<'tcx> { let stacks = self.stacks.get_mut(); for (offset, stack) in stacks.iter_mut(range.start, range.size) { f(offset, stack)?; } Ok(()) } } /// Glue code to connect with Miri Machine Hooks impl Stacks { pub fn new_allocation( id: AllocId, size: Size, state: &GlobalState, kind: MemoryKind, ) -> Self { let mut extra = state.borrow_mut(); let (base_tag, perm) = match kind { // New unique borrow. This tag is not accessible by the program, // so it will only ever be used when using the local directly (i.e., // not through a pointer). That is, whenever we directly write to a local, this will pop // everything else off the stack, invalidating all previous pointers, // and in particular, *all* raw pointers. MemoryKind::Stack => (extra.base_tag(id), Permission::Unique), // `Global` memory can be referenced by global pointers from `tcx`. // Thus we call `global_base_ptr` such that the global pointers get the same tag // as what we use here. // `ExternStatic` is used for extern statics, so the same reasoning applies. // The others are various forms of machine-managed special global memory, and we can get // away with precise tracking there. // The base pointer is not unique, so the base permission is `SharedReadWrite`. MemoryKind::CallerLocation | MemoryKind::Machine( MiriMemoryKind::Global | MiriMemoryKind::ExternStatic | MiriMemoryKind::Tls | MiriMemoryKind::Runtime | MiriMemoryKind::Machine, ) => (extra.base_tag(id), Permission::SharedReadWrite), // Heap allocations we only track precisely when raw pointers are tagged, for now. MemoryKind::Machine( MiriMemoryKind::Rust | MiriMemoryKind::C | MiriMemoryKind::WinHeap, ) => { let tag = if extra.tag_raw { extra.base_tag(id) } else { extra.base_tag_untagged(id) }; (tag, Permission::SharedReadWrite) } }; extra.add_creation(None, base_tag, id, alloc_range(Size::ZERO, size)); Stacks::new(size, perm, base_tag) } #[inline(always)] pub fn memory_read<'tcx>( &self, alloc_id: AllocId, tag: SbTag, range: AllocRange, state: &GlobalState, ) -> InterpResult<'tcx> { trace!( "read access with tag {:?}: {:?}, size {}", tag, Pointer::new(alloc_id, range.start), range.size.bytes() ); self.for_each(range, move |offset, stack| { let mut state = state.borrow_mut(); stack.access(AccessKind::Read, tag, (alloc_id, range, offset), &mut state) }) } #[inline(always)] pub fn memory_written<'tcx>( &mut self, alloc_id: AllocId, tag: SbTag, range: AllocRange, state: &GlobalState, ) -> InterpResult<'tcx> { trace!( "write access with tag {:?}: {:?}, size {}", tag, Pointer::new(alloc_id, range.start), range.size.bytes() ); self.for_each_mut(range, move |offset, stack| { let mut state = state.borrow_mut(); stack.access(AccessKind::Write, tag, (alloc_id, range, offset), &mut state) }) } #[inline(always)] pub fn memory_deallocated<'tcx>( &mut self, alloc_id: AllocId, tag: SbTag, range: AllocRange, state: &GlobalState, ) -> InterpResult<'tcx> { trace!("deallocation with tag {:?}: {:?}, size {}", tag, alloc_id, range.size.bytes()); self.for_each_mut(range, move |offset, stack| { let mut state = state.borrow_mut(); stack.dealloc(tag, (alloc_id, range, offset), &mut state) })?; state.borrow_mut().extras.remove(&alloc_id); Ok(()) } } /// Retagging/reborrowing. There is some policy in here, such as which permissions /// to grant for which references, and when to add protectors. impl<'mir, 'tcx: 'mir> EvalContextPrivExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {} trait EvalContextPrivExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> { fn reborrow( &mut self, place: &MPlaceTy<'tcx, Tag>, size: Size, kind: RefKind, new_tag: SbTag, protect: bool, ) -> InterpResult<'tcx> { let this = self.eval_context_mut(); if size == Size::ZERO { // Nothing to do for zero-sized accesses. trace!( "reborrow of size 0: {} reference {:?} derived from {:?} (pointee {})", kind, new_tag, place.ptr, place.layout.ty, ); return Ok(()); } let (alloc_id, base_offset, orig_tag) = this.ptr_get_alloc_id(place.ptr)?; let mem_extra = this.machine.stacked_borrows.as_mut().unwrap().get_mut(); mem_extra.add_creation( Some(orig_tag), new_tag, alloc_id, alloc_range(base_offset, base_offset + size), ); if protect { mem_extra.add_protector(orig_tag, new_tag, alloc_id); } // Ensure we bail out if the pointer goes out-of-bounds (see miri#1050). let (alloc_size, _) = this.get_alloc_size_and_align(alloc_id, AllocCheck::Dereferenceable)?; if base_offset + size > alloc_size { throw_ub!(PointerOutOfBounds { alloc_id, alloc_size, ptr_offset: this.machine_usize_to_isize(base_offset.bytes()), ptr_size: size, msg: CheckInAllocMsg::InboundsTest }); } let protector = if protect { Some(this.frame().extra.call_id) } else { None }; trace!( "reborrow: {} reference {:?} derived from {:?} (pointee {}): {:?}, size {}", kind, new_tag, orig_tag, place.layout.ty, Pointer::new(alloc_id, base_offset), size.bytes() ); // Update the stacks. // Make sure that raw pointers and mutable shared references are reborrowed "weak": // There could be existing unique pointers reborrowed from them that should remain valid! let perm = match kind { RefKind::Unique { two_phase: false } if place.layout.ty.is_unpin(this.tcx.at(DUMMY_SP), this.param_env()) => { // Only if the type is unpin do we actually enforce uniqueness Permission::Unique } RefKind::Unique { .. } => { // Two-phase references and !Unpin references are treated as SharedReadWrite Permission::SharedReadWrite } RefKind::Raw { mutable: true } => Permission::SharedReadWrite, RefKind::Shared | RefKind::Raw { mutable: false } => { // Shared references and *const are a whole different kind of game, the // permission is not uniform across the entire range! // We need a frozen-sensitive reborrow. // We have to use shared references to alloc/memory_extra here since // `visit_freeze_sensitive` needs to access the global state. let extra = this.get_alloc_extra(alloc_id)?; let stacked_borrows = extra.stacked_borrows.as_ref().expect("we should have Stacked Borrows data"); this.visit_freeze_sensitive(place, size, |mut range, frozen| { // Adjust range. range.start += base_offset; // We are only ever `SharedReadOnly` inside the frozen bits. let perm = if frozen { Permission::SharedReadOnly } else { Permission::SharedReadWrite }; let item = Item { perm, tag: new_tag, protector }; stacked_borrows.for_each(range, |offset, stack| { let mut global = this.machine.stacked_borrows.as_ref().unwrap().borrow_mut(); stack.grant(orig_tag, item, (alloc_id, range, offset), &mut *global) }) })?; return Ok(()); } }; // Here we can avoid `borrow()` calls because we have mutable references. // Note that this asserts that the allocation is mutable -- but since we are creating a // mutable pointer, that seems reasonable. let (alloc_extra, memory_extra) = this.get_alloc_extra_mut(alloc_id)?; let stacked_borrows = alloc_extra.stacked_borrows.as_mut().expect("we should have Stacked Borrows data"); let item = Item { perm, tag: new_tag, protector }; let range = alloc_range(base_offset, size); stacked_borrows.for_each_mut(range, |offset, stack| { let mut global = memory_extra.stacked_borrows.as_ref().unwrap().borrow_mut(); stack.grant(orig_tag, item, (alloc_id, range, offset), &mut *global) })?; Ok(()) } /// Retags an indidual pointer, returning the retagged version. /// `mutbl` can be `None` to make this a raw pointer. fn retag_reference( &mut self, val: &ImmTy<'tcx, Tag>, kind: RefKind, protect: bool, ) -> InterpResult<'tcx, ImmTy<'tcx, Tag>> { let this = self.eval_context_mut(); // We want a place for where the ptr *points to*, so we get one. let place = this.ref_to_mplace(val)?; let size = this.size_and_align_of_mplace(&place)?.map(|(size, _)| size); // FIXME: If we cannot determine the size (because the unsized tail is an `extern type`), // bail out -- we cannot reasonably figure out which memory range to reborrow. // See https://github.com/rust-lang/unsafe-code-guidelines/issues/276. let size = match size { Some(size) => size, None => return Ok(*val), }; // Compute new borrow. let mem_extra = this.machine.stacked_borrows.as_mut().unwrap().get_mut(); let new_tag = match kind { // Give up tracking for raw pointers. RefKind::Raw { .. } if !mem_extra.tag_raw => SbTag::Untagged, // All other pointers are properly tracked. _ => SbTag::Tagged(mem_extra.new_ptr()), }; // Reborrow. this.reborrow(&place, size, kind, new_tag, protect)?; // Adjust pointer. let new_place = place.map_provenance(|p| p.map(|t| Tag { sb: new_tag, ..t })); // Return new pointer. Ok(ImmTy::from_immediate(new_place.to_ref(this), val.layout)) } } impl<'mir, 'tcx: 'mir> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {} pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> { fn retag(&mut self, kind: RetagKind, place: &PlaceTy<'tcx, Tag>) -> InterpResult<'tcx> { let this = self.eval_context_mut(); // Determine mutability and whether to add a protector. // Cannot use `builtin_deref` because that reports *immutable* for `Box`, // making it useless. fn qualify(ty: ty::Ty<'_>, kind: RetagKind) -> Option<(RefKind, bool)> { match ty.kind() { // References are simple. ty::Ref(_, _, Mutability::Mut) => Some(( RefKind::Unique { two_phase: kind == RetagKind::TwoPhase }, kind == RetagKind::FnEntry, )), ty::Ref(_, _, Mutability::Not) => Some((RefKind::Shared, kind == RetagKind::FnEntry)), // Raw pointers need to be enabled. ty::RawPtr(tym) if kind == RetagKind::Raw => Some((RefKind::Raw { mutable: tym.mutbl == Mutability::Mut }, false)), // Boxes do not get a protector: protectors reflect that references outlive the call // they were passed in to; that's just not the case for boxes. ty::Adt(..) if ty.is_box() => Some((RefKind::Unique { two_phase: false }, false)), _ => None, } } // We only reborrow "bare" references/boxes. // Not traversing into fields helps with , // but might also cost us optimization and analyses. We will have to experiment more with this. if let Some((mutbl, protector)) = qualify(place.layout.ty, kind) { // Fast path. let val = this.read_immediate(&this.place_to_op(place)?)?; let val = this.retag_reference(&val, mutbl, protector)?; this.write_immediate(*val, place)?; } Ok(()) } /// After a stack frame got pushed, retag the return place so that we are sure /// it does not alias with anything. /// /// This is a HACK because there is nothing in MIR that would make the retag /// explicit. Also see https://github.com/rust-lang/rust/issues/71117. fn retag_return_place(&mut self) -> InterpResult<'tcx> { let this = self.eval_context_mut(); let return_place = if let Some(return_place) = this.frame_mut().return_place { return_place } else { // No return place, nothing to do. return Ok(()); }; if return_place.layout.is_zst() { // There may not be any memory here, nothing to do. return Ok(()); } // We need this to be in-memory to use tagged pointers. let return_place = this.force_allocation(&return_place)?; // We have to turn the place into a pointer to use the existing code. // (The pointer type does not matter, so we use a raw pointer.) let ptr_layout = this.layout_of(this.tcx.mk_mut_ptr(return_place.layout.ty))?; let val = ImmTy::from_immediate(return_place.to_ref(this), ptr_layout); // Reborrow it. let val = this.retag_reference( &val, RefKind::Unique { two_phase: false }, /*protector*/ true, )?; // And use reborrowed pointer for return place. let return_place = this.ref_to_mplace(&val)?; this.frame_mut().return_place = Some(return_place.into()); Ok(()) } }