// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /*! * A task-based interface to the uv loop * * The I/O task runs in its own single-threaded scheduler. By using the * `interact` function you can execute code in a uv callback. */ use ll = uv_ll; use core::libc::c_void; use core::libc; use core::comm::{stream, Port, Chan, SharedChan}; use core::prelude::*; use core::ptr::addr_of; use core::task; /// Used to abstract-away direct interaction with a libuv loop. pub struct IoTask { async_handle: *ll::uv_async_t, op_chan: SharedChan } impl Clone for IoTask { fn clone(&self) -> IoTask { IoTask{ async_handle: self.async_handle, op_chan: self.op_chan.clone() } } } pub fn spawn_iotask(task: task::TaskBuilder) -> IoTask { let (iotask_port, iotask_chan) = stream(); do task.sched_mode(task::SingleThreaded).spawn { debug!("entering libuv task"); run_loop(&iotask_chan); debug!("libuv task exiting"); }; iotask_port.recv() } /** * Provide a callback to be processed by `iotask` * * The primary way to do operations again a running `iotask` that * doesn't involve creating a uv handle via `safe_handle` * * # Warning * * This function is the only safe way to interact with _any_ `iotask`. * Using functions in the `uv::ll` module outside of the `cb` passed into * this function is _very dangerous_. * * # Arguments * * * iotask - a uv I/O task that you want to do operations against * * cb - a function callback to be processed on the running loop's * thread. The only parameter passed in is an opaque pointer representing the * running `uv_loop_t*`. In the context of this callback, it is safe to use * this pointer to do various uv_* API calls contained within the `uv::ll` * module. It is not safe to send the `loop_ptr` param to this callback out * via ports/chans. */ pub unsafe fn interact(iotask: &IoTask, cb: ~fn(*c_void)) { send_msg(iotask, Interaction(cb)); } /** * Shut down the I/O task * * Is used to signal to the loop that it should close the internally-held * async handle and do a sanity check to make sure that all other handles are * closed, causing a failure otherwise. */ pub fn exit(iotask: &IoTask) { unsafe { send_msg(iotask, TeardownLoop); } } // INTERNAL API enum IoTaskMsg { Interaction(~fn(*libc::c_void)), TeardownLoop } /// Run the loop and begin handling messages fn run_loop(iotask_ch: &Chan) { unsafe { debug!("creating loop"); let loop_ptr = ll::loop_new(); // set up the special async handle we'll use to allow multi-task // communication with this loop let async = ll::async_t(); let async_handle = addr_of(&async); // associate the async handle with the loop ll::async_init(loop_ptr, async_handle, wake_up_cb); let (msg_po, msg_ch) = stream::(); // initialize our loop data and store it in the loop let data: IoTaskLoopData = IoTaskLoopData { async_handle: async_handle, msg_po: msg_po }; ll::set_data_for_uv_handle(async_handle, addr_of(&data)); // Send out a handle through which folks can talk to us // while we dwell in the I/O loop let iotask = IoTask{ async_handle: async_handle, op_chan: SharedChan(msg_ch) }; iotask_ch.send(iotask); debug!("about to run uv loop"); // enter the loop... this blocks until the loop is done.. ll::run(loop_ptr); debug!("uv loop ended"); ll::loop_delete(loop_ptr); } } // data that lives for the lifetime of the high-evel oo struct IoTaskLoopData { async_handle: *ll::uv_async_t, msg_po: Port, } fn send_msg(iotask: &IoTask, msg: IoTaskMsg) { iotask.op_chan.send(msg); unsafe { ll::async_send(iotask.async_handle); } } /// Dispatch all pending messages extern fn wake_up_cb(async_handle: *ll::uv_async_t, status: int) { debug!("wake_up_cb extern.. handle: %? status: %?", async_handle, status); unsafe { let loop_ptr = ll::get_loop_for_uv_handle(async_handle); let data = ll::get_data_for_uv_handle(async_handle) as *IoTaskLoopData; let msg_po = &(*data).msg_po; while msg_po.peek() { match msg_po.recv() { Interaction(ref cb) => (*cb)(loop_ptr), TeardownLoop => begin_teardown(data) } } } } fn begin_teardown(data: *IoTaskLoopData) { unsafe { debug!("iotask begin_teardown() called, close async_handle"); let async_handle = (*data).async_handle; ll::close(async_handle as *c_void, tear_down_close_cb); } } extern fn tear_down_walk_cb(handle: *libc::c_void, arg: *libc::c_void) { debug!("IN TEARDOWN WALK CB"); // pretty much, if we still have an active handle and it is *not* // the async handle that facilities global loop communication, we // want to barf out and fail assert!(handle == arg); } extern fn tear_down_close_cb(handle: *ll::uv_async_t) { unsafe { let loop_ptr = ll::get_loop_for_uv_handle(handle); debug!("in tear_down_close_cb"); ll::walk(loop_ptr, tear_down_walk_cb, handle as *libc::c_void); } } #[cfg(test)] extern fn async_close_cb(handle: *ll::uv_async_t) { unsafe { debug!("async_close_cb handle %?", handle); let exit_ch = &(*(ll::get_data_for_uv_handle(handle) as *AhData)).exit_ch; let exit_ch = exit_ch.clone(); exit_ch.send(()); } } #[cfg(test)] extern fn async_handle_cb(handle: *ll::uv_async_t, status: libc::c_int) { unsafe { debug!("async_handle_cb handle %? status %?",handle,status); ll::close(handle, async_close_cb); } } #[cfg(test)] struct AhData { iotask: IoTask, exit_ch: SharedChan<()> } #[cfg(test)] fn impl_uv_iotask_async(iotask: &IoTask) { unsafe { let async_handle = ll::async_t(); let ah_ptr = ptr::addr_of(&async_handle); let (exit_po, exit_ch) = stream::<()>(); let ah_data = AhData { iotask: iotask.clone(), exit_ch: SharedChan(exit_ch) }; let ah_data_ptr: *AhData = unsafe { ptr::to_unsafe_ptr(&ah_data) }; debug!("about to interact"); do interact(iotask) |loop_ptr| { unsafe { debug!("interacting"); ll::async_init(loop_ptr, ah_ptr, async_handle_cb); ll::set_data_for_uv_handle( ah_ptr, ah_data_ptr as *libc::c_void); ll::async_send(ah_ptr); } }; debug!("waiting for async close"); exit_po.recv(); } } // this fn documents the bear minimum neccesary to roll your own // high_level_loop #[cfg(test)] unsafe fn spawn_test_loop(exit_ch: ~Chan<()>) -> IoTask { let (iotask_port, iotask_ch) = stream::(); do task::spawn_sched(task::ManualThreads(1u)) { debug!("about to run a test loop"); run_loop(&iotask_ch); exit_ch.send(()); }; return iotask_port.recv(); } #[cfg(test)] extern fn lifetime_handle_close(handle: *libc::c_void) { unsafe { debug!("lifetime_handle_close ptr %?", handle); } } #[cfg(test)] extern fn lifetime_async_callback(handle: *libc::c_void, status: libc::c_int) { debug!("lifetime_handle_close ptr %? status %?", handle, status); } #[test] fn test_uv_iotask_async() { unsafe { let (exit_po, exit_ch) = stream::<()>(); let iotask = &spawn_test_loop(~exit_ch); debug!("spawned iotask"); // using this handle to manage the lifetime of the // high_level_loop, as it will exit the first time one of // the impl_uv_hl_async() is cleaned up with no one ref'd // handles on the loop (Which can happen under // race-condition type situations.. this ensures that the // loop lives until, at least, all of the // impl_uv_hl_async() runs have been called, at least. let (work_exit_po, work_exit_ch) = stream::<()>(); let work_exit_ch = SharedChan(work_exit_ch); for iter::repeat(7u) { let iotask_clone = iotask.clone(); let work_exit_ch_clone = work_exit_ch.clone(); do task::spawn_sched(task::ManualThreads(1u)) { debug!("async"); impl_uv_iotask_async(&iotask_clone); debug!("done async"); work_exit_ch_clone.send(()); }; }; for iter::repeat(7u) { debug!("waiting"); work_exit_po.recv(); }; debug!(~"sending teardown_loop msg.."); exit(iotask); exit_po.recv(); debug!(~"after recv on exit_po.. exiting.."); } }