import std._str; import std._uint; import std._vec; import std.UFind; import std.map; import std.map.hashmap; import std.option; import std.option.none; import std.option.some; import driver.session; import front.ast; import front.ast.mutability; import front.creader; import middle.metadata; import util.common; import util.common.new_def_hash; import util.common.span; import util.typestate_ann.ts_ann; // Data types type arg = rec(ast.mode mode, @t ty); type field = rec(ast.ident ident, mt mt); type method = rec(ast.proto proto, ast.ident ident, vec[arg] inputs, @t output); type mt = rec(@t ty, ast.mutability mut); // Convert from method type to function type. Pretty easy; we just drop // 'ident'. fn method_ty_to_fn_ty(method m) -> @ty.t { ret mk_fn(m.proto, m.inputs, m.output); } // Do not construct these manually. Soon we want to intern these, at which // point that will break. // // TODO: It'd be really nice to be able to hide this definition from the // outside world, to enforce the above invariant. type t = rec(sty struct, option.t[str] cname); // NB: If you change this, you'll probably want to change the corresponding // AST structure in front/ast.rs as well. tag sty { ty_nil; ty_bool; ty_int; ty_float; ty_uint; ty_machine(util.common.ty_mach); ty_char; ty_str; ty_tag(ast.def_id, vec[@t]); ty_box(mt); ty_vec(mt); ty_port(@t); ty_chan(@t); ty_task; ty_tup(vec[mt]); ty_rec(vec[field]); ty_fn(ast.proto, vec[arg], @t); ty_native_fn(ast.native_abi, vec[arg], @t); ty_obj(vec[method]); ty_var(int); // ephemeral type var ty_local(ast.def_id); // type of a local var ty_param(uint); // fn/tag type param ty_bound_param(uint); // bound param, only paths ty_type; ty_native; // TODO: ty_fn_arg(@t), for a possibly-aliased function argument } // Data structures used in type unification type unify_handler = obj { fn resolve_local(ast.def_id id) -> option.t[@t]; fn record_local(ast.def_id id, @t ty); // TODO: -> unify_result fn record_param(uint index, @t binding) -> unify_result; }; tag type_err { terr_mismatch; terr_box_mutability; terr_vec_mutability; terr_tuple_size(uint, uint); terr_tuple_mutability; terr_record_size(uint, uint); terr_record_mutability; terr_record_fields(ast.ident,ast.ident); terr_meth_count; terr_obj_meths(ast.ident,ast.ident); terr_arg_count; } tag unify_result { ures_ok(@ty.t); ures_err(type_err, @ty.t, @ty.t); } type ty_param_count_and_ty = tup(uint, @t); type type_cache = hashmap[ast.def_id,ty_param_count_and_ty]; // Type constructors fn mk_nil() -> @t { ret plain_ty(ty_nil); } fn mk_bool() -> @t { ret plain_ty(ty_bool); } fn mk_int() -> @t { ret plain_ty(ty_int); } fn mk_float() -> @t { ret plain_ty(ty_float); } fn mk_uint() -> @t { ret plain_ty(ty_uint); } fn mk_mach(util.common.ty_mach tm) -> @t { ret plain_ty(ty_machine(tm)); } fn mk_char() -> @t { ret plain_ty(ty_char); } fn mk_str() -> @t { ret plain_ty(ty_str); } fn mk_tag(ast.def_id did, vec[@t] tys) -> @t { ret plain_ty(ty_tag(did, tys)); } fn mk_box(mt tm) -> @t { ret plain_ty(ty_box(tm)); } fn mk_imm_box(@t ty) -> @t { ret mk_box(rec(ty=ty, mut=ast.imm)); } fn mk_vec(mt tm) -> @t { ret plain_ty(ty_vec(tm)); } fn mk_port(@t ty) -> @t { ret plain_ty(ty_port(ty)); } fn mk_chan(@t ty) -> @t { ret plain_ty(ty_chan(ty)); } fn mk_task() -> @t { ret plain_ty(ty_task); } fn mk_tup(vec[mt] tms) -> @t { ret plain_ty(ty_tup(tms)); } fn mk_imm_tup(vec[@t] tys) -> @t { // TODO: map let vec[ty.mt] mts = vec(); for (@ty.t typ in tys) { mts += vec(rec(ty=typ, mut=ast.imm)); } ret mk_tup(mts); } fn mk_rec(vec[field] fs) -> @t { ret plain_ty(ty_rec(fs)); } fn mk_fn(ast.proto proto, vec[arg] args, @t ty) -> @t { ret plain_ty(ty_fn(proto, args, ty)); } fn mk_native_fn(ast.native_abi abi, vec[arg] args, @t ty) -> @t { ret plain_ty(ty_native_fn(abi, args, ty)); } fn mk_obj(vec[method] meths) -> @t { ret plain_ty(ty_obj(meths)); } fn mk_var(int v) -> @t { ret plain_ty(ty_var(v)); } fn mk_local(ast.def_id did) -> @t { ret plain_ty(ty_local(did)); } fn mk_param(uint n) -> @t { ret plain_ty(ty_param(n)); } fn mk_bound_param(uint n) -> @t { ret plain_ty(ty_bound_param(n)); } fn mk_type() -> @t { ret plain_ty(ty_type); } fn mk_native() -> @t { ret plain_ty(ty_native); } // Stringification fn path_to_str(&ast.path pth) -> str { auto result = _str.connect(pth.node.idents, "."); if (_vec.len[@ast.ty](pth.node.types) > 0u) { auto f = pretty.pprust.ty_to_str; result += "["; result += _str.connect(_vec.map[@ast.ty,str](f, pth.node.types), ","); result += "]"; } ret result; } fn ty_to_str(&@t typ) -> str { fn fn_input_to_str(&rec(ast.mode mode, @t ty) input) -> str { auto s; if (mode_is_alias(input.mode)) { s = "&"; } else { s = ""; } ret s + ty_to_str(input.ty); } fn fn_to_str(ast.proto proto, option.t[ast.ident] ident, vec[arg] inputs, @t output) -> str { auto f = fn_input_to_str; auto s; alt (proto) { case (ast.proto_iter) { s = "iter"; } case (ast.proto_fn) { s = "fn"; } } alt (ident) { case (some[ast.ident](?i)) { s += " "; s += i; } case (_) { } } s += "("; s += _str.connect(_vec.map[arg,str](f, inputs), ", "); s += ")"; if (output.struct != ty_nil) { s += " -> " + ty_to_str(output); } ret s; } fn method_to_str(&method m) -> str { ret fn_to_str(m.proto, some[ast.ident](m.ident), m.inputs, m.output) + ";"; } fn field_to_str(&field f) -> str { ret mt_to_str(f.mt) + " " + f.ident; } fn mt_to_str(&mt m) -> str { auto mstr; alt (m.mut) { case (ast.mut) { mstr = "mutable "; } case (ast.imm) { mstr = ""; } case (ast.maybe_mut) { mstr = "mutable? "; } } ret mstr + ty_to_str(m.ty); } auto s = ""; alt (typ.struct) { case (ty_native) { s += "native"; } case (ty_nil) { s += "()"; } case (ty_bool) { s += "bool"; } case (ty_int) { s += "int"; } case (ty_float) { s += "float"; } case (ty_uint) { s += "uint"; } case (ty_machine(?tm)) { s += common.ty_mach_to_str(tm); } case (ty_char) { s += "char"; } case (ty_str) { s += "str"; } case (ty_box(?tm)) { s += "@" + mt_to_str(tm); } case (ty_vec(?tm)) { s += "vec[" + mt_to_str(tm) + "]"; } case (ty_port(?t)) { s += "port[" + ty_to_str(t) + "]"; } case (ty_chan(?t)) { s += "chan[" + ty_to_str(t) + "]"; } case (ty_type) { s += "type"; } case (ty_tup(?elems)) { auto f = mt_to_str; auto strs = _vec.map[mt,str](f, elems); s += "tup(" + _str.connect(strs, ",") + ")"; } case (ty_rec(?elems)) { auto f = field_to_str; auto strs = _vec.map[field,str](f, elems); s += "rec(" + _str.connect(strs, ",") + ")"; } case (ty_tag(?id, ?tps)) { // The user should never see this if the cname is set properly! s += ""; if (_vec.len[@t](tps) > 0u) { auto f = ty_to_str; auto strs = _vec.map[@t,str](f, tps); s += "[" + _str.connect(strs, ",") + "]"; } } case (ty_fn(?proto, ?inputs, ?output)) { s += fn_to_str(proto, none[ast.ident], inputs, output); } case (ty_native_fn(_, ?inputs, ?output)) { s += fn_to_str(ast.proto_fn, none[ast.ident], inputs, output); } case (ty_obj(?meths)) { alt (typ.cname) { case (some[str](?cs)) { s += cs; } case (_) { auto f = method_to_str; auto m = _vec.map[method,str](f, meths); s += "obj {\n\t" + _str.connect(m, "\n\t") + "\n}"; } } } case (ty_var(?v)) { s += ""; } case (ty_local(?id)) { s += ""; } case (ty_param(?id)) { s += "'" + _str.unsafe_from_bytes(vec(('a' as u8) + (id as u8))); } case (ty_bound_param(?id)) { s += "''" + _str.unsafe_from_bytes(vec(('a' as u8) + (id as u8))); } } ret s; } // Type folds type ty_walk = fn(@t); fn walk_ty(ty_walk walker, @t ty) { alt (ty.struct) { case (ty_nil) { /* no-op */ } case (ty_bool) { /* no-op */ } case (ty_int) { /* no-op */ } case (ty_uint) { /* no-op */ } case (ty_float) { /* no-op */ } case (ty_machine(_)) { /* no-op */ } case (ty_char) { /* no-op */ } case (ty_str) { /* no-op */ } case (ty_type) { /* no-op */ } case (ty_native) { /* no-op */ } case (ty_box(?tm)) { walk_ty(walker, tm.ty); } case (ty_vec(?tm)) { walk_ty(walker, tm.ty); } case (ty_port(?subty)) { walk_ty(walker, subty); } case (ty_chan(?subty)) { walk_ty(walker, subty); } case (ty_tag(?tid, ?subtys)) { for (@t subty in subtys) { walk_ty(walker, subty); } } case (ty_tup(?mts)) { for (mt tm in mts) { walk_ty(walker, tm.ty); } } case (ty_rec(?fields)) { for (field fl in fields) { walk_ty(walker, fl.mt.ty); } } case (ty_fn(?proto, ?args, ?ret_ty)) { for (arg a in args) { walk_ty(walker, a.ty); } walk_ty(walker, ret_ty); } case (ty_native_fn(?abi, ?args, ?ret_ty)) { for (arg a in args) { walk_ty(walker, a.ty); } walk_ty(walker, ret_ty); } case (ty_obj(?methods)) { let vec[method] new_methods = vec(); for (method m in methods) { for (arg a in m.inputs) { walk_ty(walker, a.ty); } walk_ty(walker, m.output); } } case (ty_var(_)) { /* no-op */ } case (ty_local(_)) { /* no-op */ } case (ty_param(_)) { /* no-op */ } case (ty_bound_param(_)) { /* no-op */ } } walker(ty); } type ty_fold = fn(@t) -> @t; fn fold_ty(ty_fold fld, @t ty_0) -> @t { auto ty = ty_0; alt (ty.struct) { case (ty_nil) { /* no-op */ } case (ty_bool) { /* no-op */ } case (ty_int) { /* no-op */ } case (ty_uint) { /* no-op */ } case (ty_float) { /* no-op */ } case (ty_machine(_)) { /* no-op */ } case (ty_char) { /* no-op */ } case (ty_str) { /* no-op */ } case (ty_type) { /* no-op */ } case (ty_native) { /* no-op */ } case (ty_box(?tm)) { ty = copy_cname(mk_box(rec(ty=fold_ty(fld, tm.ty), mut=tm.mut)), ty); } case (ty_vec(?tm)) { ty = copy_cname(mk_vec(rec(ty=fold_ty(fld, tm.ty), mut=tm.mut)), ty); } case (ty_port(?subty)) { ty = copy_cname(mk_port(fold_ty(fld, subty)), ty); } case (ty_chan(?subty)) { ty = copy_cname(mk_chan(fold_ty(fld, subty)), ty); } case (ty_tag(?tid, ?subtys)) { let vec[@t] new_subtys = vec(); for (@t subty in subtys) { new_subtys += vec(fold_ty(fld, subty)); } ty = copy_cname(mk_tag(tid, new_subtys), ty); } case (ty_tup(?mts)) { let vec[mt] new_mts = vec(); for (mt tm in mts) { auto new_subty = fold_ty(fld, tm.ty); new_mts += vec(rec(ty=new_subty, mut=tm.mut)); } ty = copy_cname(mk_tup(new_mts), ty); } case (ty_rec(?fields)) { let vec[field] new_fields = vec(); for (field fl in fields) { auto new_ty = fold_ty(fld, fl.mt.ty); auto new_mt = rec(ty=new_ty, mut=fl.mt.mut); new_fields += vec(rec(ident=fl.ident, mt=new_mt)); } ty = copy_cname(mk_rec(new_fields), ty); } case (ty_fn(?proto, ?args, ?ret_ty)) { let vec[arg] new_args = vec(); for (arg a in args) { auto new_ty = fold_ty(fld, a.ty); new_args += vec(rec(mode=a.mode, ty=new_ty)); } ty = copy_cname(mk_fn(proto, new_args, fold_ty(fld, ret_ty)), ty); } case (ty_native_fn(?abi, ?args, ?ret_ty)) { let vec[arg] new_args = vec(); for (arg a in args) { auto new_ty = fold_ty(fld, a.ty); new_args += vec(rec(mode=a.mode, ty=new_ty)); } ty = copy_cname(mk_native_fn(abi, new_args, fold_ty(fld, ret_ty)), ty); } case (ty_obj(?methods)) { let vec[method] new_methods = vec(); for (method m in methods) { let vec[arg] new_args = vec(); for (arg a in m.inputs) { new_args += vec(rec(mode=a.mode, ty=fold_ty(fld, a.ty))); } new_methods += vec(rec(proto=m.proto, ident=m.ident, inputs=new_args, output=fold_ty(fld, m.output))); } ty = copy_cname(mk_obj(new_methods), ty); } case (ty_var(_)) { /* no-op */ } case (ty_local(_)) { /* no-op */ } case (ty_param(_)) { /* no-op */ } case (ty_bound_param(_)) { /* no-op */ } } ret fld(ty); } // Type utilities fn rename(@t typ, str new_cname) -> @t { ret @rec(struct=typ.struct, cname=some[str](new_cname)); } // Returns a type with the structural part taken from `struct_ty` and the // canonical name from `cname_ty`. fn copy_cname(@t struct_ty, @t cname_ty) -> @t { ret @rec(struct=struct_ty.struct, cname=cname_ty.cname); } // FIXME: remove me when == works on these tags. fn mode_is_alias(ast.mode m) -> bool { alt (m) { case (ast.val) { ret false; } case (ast.alias) { ret true; } } fail; } fn type_is_nil(@t ty) -> bool { alt (ty.struct) { case (ty_nil) { ret true; } case (_) { ret false; } } fail; } fn type_is_bool(@t ty) -> bool { alt (ty.struct) { case (ty_bool) { ret true; } case (_) { ret false; } } } fn type_is_structural(@t ty) -> bool { alt (ty.struct) { case (ty_tup(_)) { ret true; } case (ty_rec(_)) { ret true; } case (ty_tag(_,_)) { ret true; } case (ty_fn(_,_,_)) { ret true; } case (ty_obj(_)) { ret true; } case (_) { ret false; } } fail; } fn type_is_sequence(@t ty) -> bool { alt (ty.struct) { case (ty_str) { ret true; } case (ty_vec(_)) { ret true; } case (_) { ret false; } } fail; } fn sequence_element_type(@t ty) -> @t { alt (ty.struct) { case (ty_str) { ret mk_mach(common.ty_u8); } case (ty_vec(?mt)) { ret mt.ty; } } fail; } fn type_is_tup_like(@t ty) -> bool { alt (ty.struct) { case (ty_box(_)) { ret true; } case (ty_tup(_)) { ret true; } case (ty_rec(_)) { ret true; } case (ty_tag(_,_)) { ret true; } case (_) { ret false; } } fail; } fn get_element_type(@t ty, uint i) -> @t { check (type_is_tup_like(ty)); alt (ty.struct) { case (ty_tup(?mts)) { ret mts.(i).ty; } case (ty_rec(?flds)) { ret flds.(i).mt.ty; } } fail; } fn type_is_box(@t ty) -> bool { alt (ty.struct) { case (ty_box(_)) { ret true; } case (_) { ret false; } } fail; } fn type_is_boxed(@t ty) -> bool { alt (ty.struct) { case (ty_str) { ret true; } case (ty_vec(_)) { ret true; } case (ty_box(_)) { ret true; } case (ty_port(_)) { ret true; } case (ty_chan(_)) { ret true; } case (_) { ret false; } } fail; } fn type_is_scalar(@t ty) -> bool { alt (ty.struct) { case (ty_nil) { ret true; } case (ty_bool) { ret true; } case (ty_int) { ret true; } case (ty_float) { ret true; } case (ty_uint) { ret true; } case (ty_machine(_)) { ret true; } case (ty_char) { ret true; } case (ty_type) { ret true; } case (ty_native) { ret true; } case (_) { ret false; } } fail; } // FIXME: should we just return true for native types in // type_is_scalar? fn type_is_native(@t ty) -> bool { alt (ty.struct) { case (ty_native) { ret true; } case (_) { ret false; } } fail; } fn type_has_dynamic_size(@t ty) -> bool { alt (ty.struct) { case (ty_tup(?mts)) { auto i = 0u; while (i < _vec.len[mt](mts)) { if (type_has_dynamic_size(mts.(i).ty)) { ret true; } i += 1u; } } case (ty_rec(?fields)) { auto i = 0u; while (i < _vec.len[field](fields)) { if (type_has_dynamic_size(fields.(i).mt.ty)) { ret true; } i += 1u; } } case (ty_tag(_, ?subtys)) { auto i = 0u; while (i < _vec.len[@t](subtys)) { if (type_has_dynamic_size(subtys.(i))) { ret true; } i += 1u; } } case (ty_param(_)) { ret true; } case (_) { /* fall through */ } } ret false; } fn type_is_integral(@t ty) -> bool { alt (ty.struct) { case (ty_int) { ret true; } case (ty_uint) { ret true; } case (ty_machine(?m)) { alt (m) { case (common.ty_i8) { ret true; } case (common.ty_i16) { ret true; } case (common.ty_i32) { ret true; } case (common.ty_i64) { ret true; } case (common.ty_u8) { ret true; } case (common.ty_u16) { ret true; } case (common.ty_u32) { ret true; } case (common.ty_u64) { ret true; } case (_) { ret false; } } } case (ty_char) { ret true; } case (_) { ret false; } } fail; } fn type_is_fp(@t ty) -> bool { alt (ty.struct) { case (ty_machine(?tm)) { alt (tm) { case (common.ty_f32) { ret true; } case (common.ty_f64) { ret true; } case (_) { ret false; } } } case (ty_float) { ret true; } case (_) { ret false; } } fail; } fn type_is_signed(@t ty) -> bool { alt (ty.struct) { case (ty_int) { ret true; } case (ty_machine(?tm)) { alt (tm) { case (common.ty_i8) { ret true; } case (common.ty_i16) { ret true; } case (common.ty_i32) { ret true; } case (common.ty_i64) { ret true; } case (_) { ret false; } } } case (_) { ret false; } } fail; } fn type_param(@t ty) -> option.t[uint] { alt (ty.struct) { case (ty_param(?id)) { ret some[uint](id); } case (_) { /* fall through */ } } ret none[uint]; } fn plain_ty(&sty st) -> @t { ret @rec(struct=st, cname=none[str]); } fn def_to_str(ast.def_id did) -> str { ret #fmt("%d:%d", did._0, did._1); } fn simple_ty_code(&@t ty) -> uint { alt (ty.struct) { case (ty_nil) { ret 0u; } case (ty_bool) { ret 1u; } case (ty_int) { ret 2u; } case (ty_float) { ret 3u; } case (ty_uint) { ret 4u; } case (ty_machine(?tm)) { alt (tm) { case (common.ty_i8) { ret 5u; } case (common.ty_i16) { ret 6u; } case (common.ty_i32) { ret 7u; } case (common.ty_i64) { ret 8u; } case (common.ty_u8) { ret 9u; } case (common.ty_u16) { ret 10u; } case (common.ty_u32) { ret 11u; } case (common.ty_u64) { ret 12u; } case (common.ty_f32) { ret 13u; } case (common.ty_f64) { ret 14u; } } } case (ty_char) { ret 15u; } case (ty_str) { ret 16u; } case (ty_task) { ret 17u; } case (ty_type) { ret 18u; } case (ty_native) { ret 19u; } case (_) { } } ret 0xffffu; } fn hash_ty(&@t ty) -> uint { auto s = simple_ty_code(ty); if (s != 0xffffu) { ret s; } auto f = def_to_str; ret _str.hash(metadata.ty_str(ty, f)); } fn eq_ty(&@t a, &@t b) -> bool { auto sa = simple_ty_code(a); if (sa != 0xffffu) { auto sb = simple_ty_code(b); ret sa == sb; } // FIXME: this is gross, but I think it's safe, and I don't think writing // a giant function to handle all the cases is necessary when structural // equality will someday save the day. auto f = def_to_str; ret _str.eq(metadata.ty_str(a, f), metadata.ty_str(b, f)); } fn ann_to_type(&ast.ann ann) -> @t { alt (ann) { case (ast.ann_none) { log_err "ann_to_type() called on node with no type"; fail; } case (ast.ann_type(?ty, _, _)) { ret ty; } } } fn ann_to_type_params(&ast.ann ann) -> vec[@t] { alt (ann) { case (ast.ann_none) { log_err "ann_to_type_params() called on node with no type params"; fail; } case (ast.ann_type(_, ?tps, _)) { alt (tps) { case (none[vec[@ty.t]]) { let vec[@t] result = vec(); ret result; } case (some[vec[@ty.t]](?tps)) { ret tps; } } } } } // Returns the type of an annotation, with type parameter substitutions // performed if applicable. fn ann_to_monotype(ast.ann a) -> @ty.t { // TODO: Refactor to use recursive pattern matching when we're more // confident that it works. alt (a) { case (ast.ann_none) { log_err "ann_to_monotype() called on expression with no type!"; fail; } case (ast.ann_type(?typ, ?tps_opt, _)) { alt (tps_opt) { case (none[vec[@ty.t]]) { ret typ; } case (some[vec[@ty.t]](?tps)) { ret substitute_type_params(tps, typ); } } } } } // Turns a type into an ann_type, using defaults for other fields. fn triv_ann(@ty.t typ) -> ast.ann { ret ast.ann_type(typ, none[vec[@ty.t]], none[@ts_ann]); } // Returns the number of distinct type parameters in the given type. fn count_ty_params(@t ty) -> uint { fn counter(@mutable vec[uint] param_indices, @t ty) { alt (ty.struct) { case (ty_param(?param_idx)) { auto seen = false; for (uint other_param_idx in *param_indices) { if (param_idx == other_param_idx) { seen = true; } } if (!seen) { *param_indices += vec(param_idx); } } case (_) { /* fall through */ } } } let vec[uint] v = vec(); // FIXME: typechecker botch let @mutable vec[uint] param_indices = @mutable v; auto f = bind counter(param_indices, _); walk_ty(f, ty); ret _vec.len[uint](*param_indices); } fn type_contains_vars(@t typ) -> bool { fn checker(@mutable bool flag, @t typ) { alt (typ.struct) { case (ty_var(_)) { *flag = true; } case (_) { /* fall through */ } } } let @mutable bool flag = @mutable false; auto f = bind checker(flag, _); walk_ty(f, typ); ret *flag; } // Type accessors for substructures of types fn ty_fn_args(@t fty) -> vec[arg] { alt (fty.struct) { case (ty.ty_fn(_, ?a, _)) { ret a; } case (ty.ty_native_fn(_, ?a, _)) { ret a; } } fail; } fn ty_fn_proto(@t fty) -> ast.proto { alt (fty.struct) { case (ty.ty_fn(?p, _, _)) { ret p; } } fail; } fn ty_fn_abi(@t fty) -> ast.native_abi { alt (fty.struct) { case (ty.ty_native_fn(?a, _, _)) { ret a; } } fail; } fn ty_fn_ret(@t fty) -> @t { alt (fty.struct) { case (ty.ty_fn(_, _, ?r)) { ret r; } case (ty.ty_native_fn(_, _, ?r)) { ret r; } } fail; } fn is_fn_ty(@t fty) -> bool { alt (fty.struct) { case (ty.ty_fn(_, _, _)) { ret true; } case (ty.ty_native_fn(_, _, _)) { ret true; } case (_) { ret false; } } ret false; } // Type accessors for AST nodes // Given an item, returns the associated type as well as the number of type // parameters it has. fn native_item_ty(@ast.native_item it) -> ty_param_count_and_ty { auto ty_param_count; auto result_ty; alt (it.node) { case (ast.native_item_fn(_, _, _, ?tps, _, ?ann)) { ty_param_count = _vec.len[ast.ty_param](tps); result_ty = ann_to_type(ann); } } ret tup(ty_param_count, result_ty); } fn item_ty(@ast.item it) -> ty_param_count_and_ty { auto ty_param_count; auto result_ty; alt (it.node) { case (ast.item_const(_, _, _, _, ?ann)) { ty_param_count = 0u; result_ty = ann_to_type(ann); } case (ast.item_fn(_, _, ?tps, _, ?ann)) { ty_param_count = _vec.len[ast.ty_param](tps); result_ty = ann_to_type(ann); } case (ast.item_mod(_, _, _)) { fail; // modules are typeless } case (ast.item_ty(_, _, ?tps, _, ?ann)) { ty_param_count = _vec.len[ast.ty_param](tps); result_ty = ann_to_type(ann); } case (ast.item_tag(_, _, ?tps, ?did, ?ann)) { ty_param_count = _vec.len[ast.ty_param](tps); result_ty = ann_to_type(ann); } case (ast.item_obj(_, _, ?tps, _, ?ann)) { ty_param_count = _vec.len[ast.ty_param](tps); result_ty = ann_to_type(ann); } } ret tup(ty_param_count, result_ty); } fn stmt_ty(@ast.stmt s) -> @t { alt (s.node) { case (ast.stmt_expr(?e,_)) { ret expr_ty(e); } case (_) { ret mk_nil(); } } } fn block_ty(&ast.block b) -> @t { alt (b.node.expr) { case (some[@ast.expr](?e)) { ret expr_ty(e); } case (none[@ast.expr]) { ret mk_nil(); } } } // Returns the type of a pattern as a monotype. Like @expr_ty, this function // doesn't provide type parameter substitutions. fn pat_ty(@ast.pat pat) -> @t { alt (pat.node) { case (ast.pat_wild(?ann)) { ret ann_to_monotype(ann); } case (ast.pat_lit(_, ?ann)) { ret ann_to_monotype(ann); } case (ast.pat_bind(_, _, ?ann)) { ret ann_to_monotype(ann); } case (ast.pat_tag(_, _, _, ?ann)) { ret ann_to_monotype(ann); } } fail; // not reached } fn expr_ann(@ast.expr expr) -> option.t[ast.ann] { alt (expr.node) { case (ast.expr_vec(_, _, ?ann)) { ret some[ast.ann](ann); } case (ast.expr_tup(_, ?ann)) { ret some[ast.ann](ann); } case (ast.expr_rec(_, _, ?ann)) { ret some[ast.ann](ann); } case (ast.expr_bind(_, _, ?ann)) { ret some[ast.ann](ann); } case (ast.expr_call(_, _, ?ann)) { ret some[ast.ann](ann); } case (ast.expr_self_method(_, ?ann)) { ret some[ast.ann](ann); } case (ast.expr_spawn(_, _, _, _, ?ann)) { ret some[ast.ann](ann); } case (ast.expr_binary(_, _, _, ?ann)) { ret some[ast.ann](ann); } case (ast.expr_unary(_, _, ?ann)) { ret some[ast.ann](ann); } case (ast.expr_lit(_, ?ann)) { ret some[ast.ann](ann); } case (ast.expr_cast(_, _, ?ann)) { ret some[ast.ann](ann); } case (ast.expr_if(_, _, _, ?ann)) { ret some[ast.ann](ann); } case (ast.expr_for(_, _, _, ?ann)) { ret some[ast.ann](ann); } case (ast.expr_for_each(_, _, _, ?ann)) { ret some[ast.ann](ann); } case (ast.expr_while(_, _, ?ann)) { ret some[ast.ann](ann); } case (ast.expr_do_while(_, _, ?ann)) { ret some[ast.ann](ann); } case (ast.expr_alt(_, _, ?ann)) { ret some[ast.ann](ann); } case (ast.expr_block(_, ?ann)) { ret some[ast.ann](ann); } case (ast.expr_assign(_, _, ?ann)) { ret some[ast.ann](ann); } case (ast.expr_assign_op(_, _, _, ?ann)) { ret some[ast.ann](ann); } case (ast.expr_field(_, _, ?ann)) { ret some[ast.ann](ann); } case (ast.expr_index(_, _, ?ann)) { ret some[ast.ann](ann); } case (ast.expr_path(_, _, ?ann)) { ret some[ast.ann](ann); } case (ast.expr_ext(_, _, _, _, ?ann)) { ret some[ast.ann](ann); } case (ast.expr_port(?ann)) { ret some[ast.ann](ann); } case (ast.expr_chan(_, ?ann)) { ret some[ast.ann](ann); } case (ast.expr_send(_, _, ?ann)) { ret some[ast.ann](ann); } case (ast.expr_recv(_, _, ?ann)) { ret some[ast.ann](ann); } case (ast.expr_fail(_)) { ret none[ast.ann]; } case (ast.expr_break(_)) { ret none[ast.ann]; } case (ast.expr_cont(_)) { ret none[ast.ann]; } case (ast.expr_log(_,_,_)) { ret none[ast.ann]; } case (ast.expr_check_expr(_,_)) { ret none[ast.ann]; } case (ast.expr_ret(_,_)) { ret none[ast.ann]; } case (ast.expr_put(_,_)) { ret none[ast.ann]; } case (ast.expr_be(_,_)) { ret none[ast.ann]; } } fail; } // Returns the type of an expression as a monotype. // // NB: This type doesn't provide type parameter substitutions; e.g. if you // ask for the type of "id" in "id(3)", it will return "fn(&int) -> int" // instead of "fn(&T) -> T with T = int". If this isn't what you want, see // expr_ty_params_and_ty() below. fn expr_ty(@ast.expr expr) -> @t { alt (expr_ann(expr)) { case (none[ast.ann]) { ret mk_nil(); } case (some[ast.ann](?a)) { ret ann_to_monotype(a); } } } fn expr_ty_params_and_ty(@ast.expr expr) -> tup(vec[@t], @t) { alt (expr_ann(expr)) { case (none[ast.ann]) { let vec[@t] tps = vec(); ret tup(tps, mk_nil()); } case (some[ast.ann](?a)) { ret tup(ann_to_type_params(a), ann_to_type(a)); } } } fn expr_has_ty_params(@ast.expr expr) -> bool { // FIXME: Rewrite using complex patterns when they're trustworthy. alt (expr_ann(expr)) { case (none[ast.ann]) { fail; } case (some[ast.ann](?a)) { alt (a) { case (ast.ann_none) { fail; } case (ast.ann_type(_, ?tps_opt, _)) { ret !option.is_none[vec[@t]](tps_opt); } } } } } // FIXME: At the moment this works only for call, bind, and path expressions. fn replace_expr_type(@ast.expr expr, tup(vec[@t], @t) new_tyt) -> @ast.expr { auto new_tps; if (expr_has_ty_params(expr)) { new_tps = some[vec[@t]](new_tyt._0); } else { new_tps = none[vec[@t]]; } auto ann = ast.ann_type(new_tyt._1, new_tps, none[@ts_ann]); alt (expr.node) { case (ast.expr_call(?callee, ?args, _)) { ret @fold.respan[ast.expr_](expr.span, ast.expr_call(callee, args, ann)); } case (ast.expr_self_method(?ident, _)) { ret @fold.respan[ast.expr_](expr.span, ast.expr_self_method(ident, ann)); } case (ast.expr_bind(?callee, ?args, _)) { ret @fold.respan[ast.expr_](expr.span, ast.expr_bind(callee, args, ann)); } case (ast.expr_field(?e, ?i, _)) { ret @fold.respan[ast.expr_](expr.span, ast.expr_field(e, i, ann)); } case (ast.expr_path(?p, ?dopt, _)) { ret @fold.respan[ast.expr_](expr.span, ast.expr_path(p, dopt, ann)); } case (_) { log_err "unhandled expr type in replace_expr_type(): " + pretty.pprust.expr_to_str(expr); fail; } } } // Expression utilities fn field_num(session.session sess, &span sp, &ast.ident id) -> uint { let uint accum = 0u; let uint i = 0u; for (u8 c in id) { if (i == 0u) { if (c != ('_' as u8)) { sess.span_err(sp, "bad numeric field on tuple: " + "missing leading underscore"); } } else { if (('0' as u8) <= c && c <= ('9' as u8)) { accum *= 10u; accum += (c as uint) - ('0' as uint); } else { auto s = ""; s += _str.unsafe_from_byte(c); sess.span_err(sp, "bad numeric field on tuple: " + " non-digit character: " + s); } } i += 1u; } ret accum; } fn field_idx(session.session sess, &span sp, &ast.ident id, vec[field] fields) -> uint { let uint i = 0u; for (field f in fields) { if (_str.eq(f.ident, id)) { ret i; } i += 1u; } sess.span_err(sp, "unknown field '" + id + "' of record"); fail; } fn method_idx(session.session sess, &span sp, &ast.ident id, vec[method] meths) -> uint { let uint i = 0u; for (method m in meths) { if (_str.eq(m.ident, id)) { ret i; } i += 1u; } sess.span_err(sp, "unknown method '" + id + "' of obj"); fail; } fn sort_methods(vec[method] meths) -> vec[method] { fn method_lteq(&method a, &method b) -> bool { ret _str.lteq(a.ident, b.ident); } ret std.sort.merge_sort[method](bind method_lteq(_,_), meths); } fn is_lval(@ast.expr expr) -> bool { alt (expr.node) { case (ast.expr_field(_,_,_)) { ret true; } case (ast.expr_index(_,_,_)) { ret true; } case (ast.expr_path(_,_,_)) { ret true; } case (_) { ret false; } } } // Type unification via Robinson's algorithm (Robinson 1965). Implemented as // described in Hoder and Voronkov: // // http://www.cs.man.ac.uk/~hoderk/ubench/unification_full.pdf type var_bindings = rec(UFind.ufind sets, hashmap[int,uint] var_ids, mutable vec[mutable vec[@t]] types); fn unify(@ty.t expected, @ty.t actual, &unify_handler handler) -> unify_result { // Wraps the given type in an appropriate cname. // // TODO: This doesn't do anything yet. We should carry the cname up from // the expected and/or actual types when unification results in a type // identical to one or both of the two. The precise algorithm for this is // something we'll probably need to develop over time. // Simple structural type comparison. fn struct_cmp(@ty.t expected, @ty.t actual) -> unify_result { if (expected.struct == actual.struct) { ret ures_ok(expected); } ret ures_err(terr_mismatch, expected, actual); } // Unifies two mutability flags. fn unify_mut(ast.mutability expected, ast.mutability actual) -> option.t[ast.mutability] { if (expected == actual) { ret some[ast.mutability](expected); } if (expected == ast.maybe_mut) { ret some[ast.mutability](actual); } if (actual == ast.maybe_mut) { ret some[ast.mutability](expected); } ret none[ast.mutability]; } tag fn_common_res { fn_common_res_err(unify_result); fn_common_res_ok(vec[arg], @t); } fn unify_fn_common(&var_bindings bindings, @ty.t expected, @ty.t actual, &unify_handler handler, vec[arg] expected_inputs, @t expected_output, vec[arg] actual_inputs, @t actual_output) -> fn_common_res { auto expected_len = _vec.len[arg](expected_inputs); auto actual_len = _vec.len[arg](actual_inputs); if (expected_len != actual_len) { ret fn_common_res_err(ures_err(terr_arg_count, expected, actual)); } // TODO: as above, we should have an iter2 iterator. let vec[arg] result_ins = vec(); auto i = 0u; while (i < expected_len) { auto expected_input = expected_inputs.(i); auto actual_input = actual_inputs.(i); // This should be safe, I think? auto result_mode; if (mode_is_alias(expected_input.mode) || mode_is_alias(actual_input.mode)) { result_mode = ast.alias; } else { result_mode = ast.val; } auto result = unify_step(bindings, actual_input.ty, expected_input.ty, handler); alt (result) { case (ures_ok(?rty)) { result_ins += vec(rec(mode=result_mode, ty=rty)); } case (_) { ret fn_common_res_err(result); } } i += 1u; } // Check the output. auto result = unify_step(bindings, expected_output, actual_output, handler); alt (result) { case (ures_ok(?rty)) { ret fn_common_res_ok(result_ins, rty); } case (_) { ret fn_common_res_err(result); } } } fn unify_fn(&var_bindings bindings, ast.proto e_proto, ast.proto a_proto, @ty.t expected, @ty.t actual, &unify_handler handler, vec[arg] expected_inputs, @t expected_output, vec[arg] actual_inputs, @t actual_output) -> unify_result { if (e_proto != a_proto) { ret ures_err(terr_mismatch, expected, actual); } auto t = unify_fn_common(bindings, expected, actual, handler, expected_inputs, expected_output, actual_inputs, actual_output); alt (t) { case (fn_common_res_err(?r)) { ret r; } case (fn_common_res_ok(?result_ins, ?result_out)) { auto t2 = mk_fn(e_proto, result_ins, result_out); ret ures_ok(t2); } } } fn unify_native_fn(&var_bindings bindings, ast.native_abi e_abi, ast.native_abi a_abi, @ty.t expected, @ty.t actual, &unify_handler handler, vec[arg] expected_inputs, @t expected_output, vec[arg] actual_inputs, @t actual_output) -> unify_result { if (e_abi != a_abi) { ret ures_err(terr_mismatch, expected, actual); } auto t = unify_fn_common(bindings, expected, actual, handler, expected_inputs, expected_output, actual_inputs, actual_output); alt (t) { case (fn_common_res_err(?r)) { ret r; } case (fn_common_res_ok(?result_ins, ?result_out)) { auto t2 = mk_native_fn(e_abi, result_ins, result_out); ret ures_ok(t2); } } } fn unify_obj(&var_bindings bindings, @ty.t expected, @ty.t actual, &unify_handler handler, vec[method] expected_meths, vec[method] actual_meths) -> unify_result { let vec[method] result_meths = vec(); let uint i = 0u; let uint expected_len = _vec.len[method](expected_meths); let uint actual_len = _vec.len[method](actual_meths); if (expected_len != actual_len) { ret ures_err(terr_meth_count, expected, actual); } while (i < expected_len) { auto e_meth = expected_meths.(i); auto a_meth = actual_meths.(i); if (! _str.eq(e_meth.ident, a_meth.ident)) { ret ures_err(terr_obj_meths(e_meth.ident, a_meth.ident), expected, actual); } auto r = unify_fn(bindings, e_meth.proto, a_meth.proto, expected, actual, handler, e_meth.inputs, e_meth.output, a_meth.inputs, a_meth.output); alt (r) { case (ures_ok(?tfn)) { alt (tfn.struct) { case (ty_fn(?proto, ?ins, ?out)) { result_meths += vec(rec(inputs = ins, output = out with e_meth)); } } } case (_) { ret r; } } i += 1u; } auto t = mk_obj(result_meths); ret ures_ok(t); } fn get_or_create_set(&var_bindings bindings, int id) -> uint { auto set_num; alt (bindings.var_ids.find(id)) { case (none[uint]) { set_num = UFind.make_set(bindings.sets); bindings.var_ids.insert(id, set_num); } case (some[uint](?n)) { set_num = n; } } ret set_num; } fn unify_step(&var_bindings bindings, @ty.t expected, @ty.t actual, &unify_handler handler) -> unify_result { // TODO: rewrite this using tuple pattern matching when available, to // avoid all this rightward drift and spikiness. // TODO: occurs check, to make sure we don't loop forever when // unifying e.g. 'a and option['a] alt (actual.struct) { // If the RHS is a variable type, then just do the appropriate // binding. case (ty.ty_var(?actual_id)) { auto actual_n = get_or_create_set(bindings, actual_id); alt (expected.struct) { case (ty.ty_var(?expected_id)) { auto expected_n = get_or_create_set(bindings, expected_id); UFind.union(bindings.sets, expected_n, actual_n); } case (_) { // Just bind the type variable to the expected type. auto vlen = _vec.len[mutable vec[@t]](bindings.types); if (actual_n < vlen) { bindings.types.(actual_n) += vec(expected); } else { check (actual_n == vlen); bindings.types += vec(mutable vec(expected)); } } } ret ures_ok(actual); } case (ty.ty_local(?actual_id)) { auto result_ty; alt (handler.resolve_local(actual_id)) { case (none[@ty.t]) { result_ty = expected; } case (some[@ty.t](?actual_ty)) { auto result = unify_step(bindings, expected, actual_ty, handler); alt (result) { case (ures_ok(?rty)) { result_ty = rty; } case (_) { ret result; } } } } handler.record_local(actual_id, result_ty); ret ures_ok(result_ty); } case (ty.ty_bound_param(?actual_id)) { alt (expected.struct) { case (ty.ty_local(_)) { log_err "TODO: bound param unifying with local"; fail; } case (_) { ret handler.record_param(actual_id, expected); } } } case (_) { /* empty */ } } alt (expected.struct) { case (ty.ty_nil) { ret struct_cmp(expected, actual); } case (ty.ty_bool) { ret struct_cmp(expected, actual); } case (ty.ty_int) { ret struct_cmp(expected, actual); } case (ty.ty_uint) { ret struct_cmp(expected, actual); } case (ty.ty_machine(_)) { ret struct_cmp(expected, actual); } case (ty.ty_float) { ret struct_cmp(expected, actual); } case (ty.ty_char) { ret struct_cmp(expected, actual); } case (ty.ty_str) { ret struct_cmp(expected, actual); } case (ty.ty_type) { ret struct_cmp(expected, actual); } case (ty.ty_native) { ret struct_cmp(expected, actual); } case (ty.ty_param(_)) { ret struct_cmp(expected, actual); } case (ty.ty_tag(?expected_id, ?expected_tps)) { alt (actual.struct) { case (ty.ty_tag(?actual_id, ?actual_tps)) { if (expected_id._0 != actual_id._0 || expected_id._1 != actual_id._1) { ret ures_err(terr_mismatch, expected, actual); } // TODO: factor this cruft out, see the TODO in the // ty.ty_tup case let vec[@ty.t] result_tps = vec(); auto i = 0u; auto expected_len = _vec.len[@ty.t](expected_tps); while (i < expected_len) { auto expected_tp = expected_tps.(i); auto actual_tp = actual_tps.(i); auto result = unify_step(bindings, expected_tp, actual_tp, handler); alt (result) { case (ures_ok(?rty)) { _vec.push[@ty.t](result_tps, rty); } case (_) { ret result; } } i += 1u; } ret ures_ok(mk_tag(expected_id, result_tps)); } case (_) { /* fall through */ } } ret ures_err(terr_mismatch, expected, actual); } case (ty.ty_box(?expected_mt)) { alt (actual.struct) { case (ty.ty_box(?actual_mt)) { auto mut; alt (unify_mut(expected_mt.mut, actual_mt.mut)) { case (none[ast.mutability]) { ret ures_err(terr_box_mutability, expected, actual); } case (some[ast.mutability](?m)) { mut = m; } } auto result = unify_step(bindings, expected_mt.ty, actual_mt.ty, handler); alt (result) { case (ures_ok(?result_sub)) { auto mt = rec(ty=result_sub, mut=mut); ret ures_ok(mk_box(mt)); } case (_) { ret result; } } } case (_) { ret ures_err(terr_mismatch, expected, actual); } } } case (ty.ty_vec(?expected_mt)) { alt (actual.struct) { case (ty.ty_vec(?actual_mt)) { auto mut; alt (unify_mut(expected_mt.mut, actual_mt.mut)) { case (none[ast.mutability]) { ret ures_err(terr_vec_mutability, expected, actual); } case (some[ast.mutability](?m)) { mut = m; } } auto result = unify_step(bindings, expected_mt.ty, actual_mt.ty, handler); alt (result) { case (ures_ok(?result_sub)) { auto mt = rec(ty=result_sub, mut=mut); ret ures_ok(mk_vec(mt)); } case (_) { ret result; } } } case (_) { ret ures_err(terr_mismatch, expected, actual); } } } case (ty.ty_port(?expected_sub)) { alt (actual.struct) { case (ty.ty_port(?actual_sub)) { auto result = unify_step(bindings, expected_sub, actual_sub, handler); alt (result) { case (ures_ok(?result_sub)) { ret ures_ok(mk_port(result_sub)); } case (_) { ret result; } } } case (_) { ret ures_err(terr_mismatch, expected, actual); } } } case (ty.ty_chan(?expected_sub)) { alt (actual.struct) { case (ty.ty_chan(?actual_sub)) { auto result = unify_step(bindings, expected_sub, actual_sub, handler); alt (result) { case (ures_ok(?result_sub)) { ret ures_ok(mk_chan(result_sub)); } case (_) { ret result; } } } case (_) { ret ures_err(terr_mismatch, expected, actual); } } } case (ty.ty_tup(?expected_elems)) { alt (actual.struct) { case (ty.ty_tup(?actual_elems)) { auto expected_len = _vec.len[ty.mt](expected_elems); auto actual_len = _vec.len[ty.mt](actual_elems); if (expected_len != actual_len) { auto err = terr_tuple_size(expected_len, actual_len); ret ures_err(err, expected, actual); } // TODO: implement an iterator that can iterate over // two arrays simultaneously. let vec[ty.mt] result_elems = vec(); auto i = 0u; while (i < expected_len) { auto expected_elem = expected_elems.(i); auto actual_elem = actual_elems.(i); auto mut; alt (unify_mut(expected_elem.mut, actual_elem.mut)) { case (none[ast.mutability]) { auto err = terr_tuple_mutability; ret ures_err(err, expected, actual); } case (some[ast.mutability](?m)) { mut = m; } } auto result = unify_step(bindings, expected_elem.ty, actual_elem.ty, handler); alt (result) { case (ures_ok(?rty)) { auto mt = rec(ty=rty, mut=mut); result_elems += vec(mt); } case (_) { ret result; } } i += 1u; } ret ures_ok(mk_tup(result_elems)); } case (_) { ret ures_err(terr_mismatch, expected, actual); } } } case (ty.ty_rec(?expected_fields)) { alt (actual.struct) { case (ty.ty_rec(?actual_fields)) { auto expected_len = _vec.len[field](expected_fields); auto actual_len = _vec.len[field](actual_fields); if (expected_len != actual_len) { auto err = terr_record_size(expected_len, actual_len); ret ures_err(err, expected, actual); } // TODO: implement an iterator that can iterate over // two arrays simultaneously. let vec[field] result_fields = vec(); auto i = 0u; while (i < expected_len) { auto expected_field = expected_fields.(i); auto actual_field = actual_fields.(i); auto mut; alt (unify_mut(expected_field.mt.mut, actual_field.mt.mut)) { case (none[ast.mutability]) { ret ures_err(terr_record_mutability, expected, actual); } case (some[ast.mutability](?m)) { mut = m; } } if (!_str.eq(expected_field.ident, actual_field.ident)) { auto err = terr_record_fields(expected_field.ident, actual_field.ident); ret ures_err(err, expected, actual); } auto result = unify_step(bindings, expected_field.mt.ty, actual_field.mt.ty, handler); alt (result) { case (ures_ok(?rty)) { auto mt = rec(ty=rty, mut=mut); _vec.push[field] (result_fields, rec(mt=mt with expected_field)); } case (_) { ret result; } } i += 1u; } ret ures_ok(mk_rec(result_fields)); } case (_) { ret ures_err(terr_mismatch, expected, actual); } } } case (ty.ty_fn(?ep, ?expected_inputs, ?expected_output)) { alt (actual.struct) { case (ty.ty_fn(?ap, ?actual_inputs, ?actual_output)) { ret unify_fn(bindings, ep, ap, expected, actual, handler, expected_inputs, expected_output, actual_inputs, actual_output); } case (_) { ret ures_err(terr_mismatch, expected, actual); } } } case (ty.ty_native_fn(?e_abi, ?expected_inputs, ?expected_output)) { alt (actual.struct) { case (ty.ty_native_fn(?a_abi, ?actual_inputs, ?actual_output)) { ret unify_native_fn(bindings, e_abi, a_abi, expected, actual, handler, expected_inputs, expected_output, actual_inputs, actual_output); } case (_) { ret ures_err(terr_mismatch, expected, actual); } } } case (ty.ty_obj(?expected_meths)) { alt (actual.struct) { case (ty.ty_obj(?actual_meths)) { ret unify_obj(bindings, expected, actual, handler, expected_meths, actual_meths); } case (_) { ret ures_err(terr_mismatch, expected, actual); } } } case (ty.ty_var(?expected_id)) { // Add a binding. auto expected_n = get_or_create_set(bindings, expected_id); auto vlen = _vec.len[mutable vec[@t]](bindings.types); if (expected_n < vlen) { bindings.types.(expected_n) += vec(actual); } else { check (expected_n == vlen); bindings.types += vec(mutable vec(actual)); } ret ures_ok(expected); } case (ty.ty_local(?expected_id)) { auto result_ty; alt (handler.resolve_local(expected_id)) { case (none[@ty.t]) { result_ty = actual; } case (some[@ty.t](?expected_ty)) { auto result = unify_step(bindings, expected_ty, actual, handler); alt (result) { case (ures_ok(?rty)) { result_ty = rty; } case (_) { ret result; } } } } handler.record_local(expected_id, result_ty); ret ures_ok(result_ty); } case (ty.ty_bound_param(?expected_id)) { ret handler.record_param(expected_id, actual); } } // TODO: remove me once match-exhaustiveness checking works fail; } // Performs type binding substitution. fn substitute(var_bindings bindings, vec[@t] set_types, @t typ) -> @t { fn substituter(var_bindings bindings, vec[@t] types, @t typ) -> @t { alt (typ.struct) { case (ty_var(?id)) { alt (bindings.var_ids.find(id)) { case (some[uint](?n)) { auto root = UFind.find(bindings.sets, n); ret types.(root); } case (none[uint]) { ret typ; } } } case (_) { ret typ; } } } auto f = bind substituter(bindings, set_types, _); ret fold_ty(f, typ); } fn unify_sets(&var_bindings bindings) -> vec[@t] { let vec[@t] throwaway = vec(); let vec[mutable vec[@t]] set_types = vec(mutable throwaway); _vec.pop[mutable vec[@t]](set_types); // FIXME: botch for (UFind.node node in bindings.sets.nodes) { let vec[@t] v = vec(); set_types += vec(mutable v); } auto i = 0u; while (i < _vec.len[mutable vec[@t]](set_types)) { auto root = UFind.find(bindings.sets, i); set_types.(root) += bindings.types.(i); i += 1u; } let vec[@t] result = vec(); for (vec[@t] types in set_types) { if (_vec.len[@t](types) > 1u) { log_err "unification of > 1 types in a type set is " + "unimplemented"; fail; } result += vec(types.(0)); } ret result; } let vec[@t] throwaway = vec(); let vec[mutable vec[@t]] types = vec(mutable throwaway); _vec.pop[mutable vec[@t]](types); // FIXME: botch auto bindings = rec(sets=UFind.make(), var_ids=common.new_int_hash[uint](), mutable types=types); auto ures = unify_step(bindings, expected, actual, handler); alt (ures) { case (ures_ok(?t)) { auto set_types = unify_sets(bindings); auto t2 = substitute(bindings, set_types, t); ret ures_ok(t2); } case (_) { ret ures; } } fail; // not reached } fn type_err_to_str(&ty.type_err err) -> str { alt (err) { case (terr_mismatch) { ret "types differ"; } case (terr_box_mutability) { ret "boxed values differ in mutability"; } case (terr_vec_mutability) { ret "vectors differ in mutability"; } case (terr_tuple_size(?e_sz, ?a_sz)) { ret "expected a tuple with " + _uint.to_str(e_sz, 10u) + " elements but found one with " + _uint.to_str(a_sz, 10u) + " elements"; } case (terr_tuple_mutability) { ret "tuple elements differ in mutability"; } case (terr_record_size(?e_sz, ?a_sz)) { ret "expected a record with " + _uint.to_str(e_sz, 10u) + " fields but found one with " + _uint.to_str(a_sz, 10u) + " fields"; } case (terr_record_mutability) { ret "record elements differ in mutability"; } case (terr_record_fields(?e_fld, ?a_fld)) { ret "expected a record with field '" + e_fld + "' but found one with field '" + a_fld + "'"; } case (terr_arg_count) { ret "incorrect number of function parameters"; } case (terr_meth_count) { ret "incorrect number of object methods"; } case (terr_obj_meths(?e_meth, ?a_meth)) { ret "expected an obj with method '" + e_meth + "' but found one with method '" + a_meth + "'"; } } } // Performs bound type parameter replacement using the supplied mapping from // parameter IDs to types. fn substitute_type_params(vec[@t] bindings, @t typ) -> @t { fn replacer(vec[@t] bindings, @t typ) -> @t { alt (typ.struct) { case (ty_bound_param(?param_index)) { ret bindings.(param_index); } case (_) { ret typ; } } } auto f = bind replacer(bindings, _); ret fold_ty(f, typ); } // Converts type parameters in a type to bound type parameters. fn bind_params_in_type(@t typ) -> @t { fn binder(@t typ) -> @t { alt (typ.struct) { case (ty_bound_param(?index)) { log_err "bind_params_in_type() called on type that already " + "has bound params in it"; fail; } case (ty_param(?index)) { ret mk_bound_param(index); } case (_) { ret typ; } } } auto f = binder; ret fold_ty(f, typ); } fn def_has_ty_params(&ast.def def) -> bool { alt (def) { case (ast.def_fn(_)) { ret true; } case (ast.def_obj(_)) { ret true; } case (ast.def_obj_field(_)) { ret false; } case (ast.def_mod(_)) { ret false; } case (ast.def_const(_)) { ret false; } case (ast.def_arg(_)) { ret false; } case (ast.def_local(_)) { ret false; } case (ast.def_variant(_, _)) { ret true; } case (ast.def_ty(_)) { ret false; } case (ast.def_ty_arg(_)) { ret false; } case (ast.def_binding(_)) { ret false; } case (ast.def_use(_)) { ret false; } case (ast.def_native_ty(_)) { ret false; } case (ast.def_native_fn(_)) { ret true; } } } // If the given item is in an external crate, looks up its type and adds it to // the type cache. Returns the type parameters and type. fn lookup_item_type(session.session sess, &type_cache cache, ast.def_id did) -> ty_param_count_and_ty { if (did._0 == sess.get_targ_crate_num()) { // The item is in this crate. The caller should have added it to the // type cache already; we simply return it. check (cache.contains_key(did)); ret cache.get(did); } if (cache.contains_key(did)) { ret cache.get(did); } auto tyt = creader.get_type(sess, did); cache.insert(did, tyt); ret tyt; } // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // compile-command: "make -k -C $RBUILD 2>&1 | sed -e 's/\\/x\\//x:\\//g'"; // End: