// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Unicode characters manipulation (`char` type) use cast::transmute; use option::{None, Option, Some}; use iter::{Iterator, range_step}; use str::StrSlice; use unicode::{derived_property, property, general_category, decompose}; use to_str::ToStr; use str; #[cfg(test)] use str::OwnedStr; #[cfg(not(test))] use cmp::{Eq, Ord}; #[cfg(not(test))] use default::Default; // UTF-8 ranges and tags for encoding characters static TAG_CONT: uint = 128u; static MAX_ONE_B: uint = 128u; static TAG_TWO_B: uint = 192u; static MAX_TWO_B: uint = 2048u; static TAG_THREE_B: uint = 224u; static MAX_THREE_B: uint = 65536u; static TAG_FOUR_B: uint = 240u; /* Lu Uppercase_Letter an uppercase letter Ll Lowercase_Letter a lowercase letter Lt Titlecase_Letter a digraphic character, with first part uppercase Lm Modifier_Letter a modifier letter Lo Other_Letter other letters, including syllables and ideographs Mn Nonspacing_Mark a nonspacing combining mark (zero advance width) Mc Spacing_Mark a spacing combining mark (positive advance width) Me Enclosing_Mark an enclosing combining mark Nd Decimal_Number a decimal digit Nl Letter_Number a letterlike numeric character No Other_Number a numeric character of other type Pc Connector_Punctuation a connecting punctuation mark, like a tie Pd Dash_Punctuation a dash or hyphen punctuation mark Ps Open_Punctuation an opening punctuation mark (of a pair) Pe Close_Punctuation a closing punctuation mark (of a pair) Pi Initial_Punctuation an initial quotation mark Pf Final_Punctuation a final quotation mark Po Other_Punctuation a punctuation mark of other type Sm Math_Symbol a symbol of primarily mathematical use Sc Currency_Symbol a currency sign Sk Modifier_Symbol a non-letterlike modifier symbol So Other_Symbol a symbol of other type Zs Space_Separator a space character (of various non-zero widths) Zl Line_Separator U+2028 LINE SEPARATOR only Zp Paragraph_Separator U+2029 PARAGRAPH SEPARATOR only Cc Control a C0 or C1 control code Cf Format a format control character Cs Surrogate a surrogate code point Co Private_Use a private-use character Cn Unassigned a reserved unassigned code point or a noncharacter */ /// The highest valid code point pub static MAX: char = '\U0010ffff'; /// Convert from `u32` to a character. pub fn from_u32(i: u32) -> Option { // catch out-of-bounds and surrogates if (i > MAX as u32) || (i >= 0xD800 && i <= 0xDFFF) { None } else { Some(unsafe { transmute(i) }) } } /// Returns whether the specified character is considered a unicode alphabetic /// character pub fn is_alphabetic(c: char) -> bool { derived_property::Alphabetic(c) } #[allow(missing_doc)] pub fn is_XID_start(c: char) -> bool { derived_property::XID_Start(c) } #[allow(missing_doc)] pub fn is_XID_continue(c: char) -> bool { derived_property::XID_Continue(c) } /// /// Indicates whether a character is in lower case, defined /// in terms of the Unicode Derived Core Property 'Lowercase'. /// #[inline] pub fn is_lowercase(c: char) -> bool { derived_property::Lowercase(c) } /// /// Indicates whether a character is in upper case, defined /// in terms of the Unicode Derived Core Property 'Uppercase'. /// #[inline] pub fn is_uppercase(c: char) -> bool { derived_property::Uppercase(c) } /// /// Indicates whether a character is whitespace. Whitespace is defined in /// terms of the Unicode Property 'White_Space'. /// #[inline] pub fn is_whitespace(c: char) -> bool { // As an optimization ASCII whitespace characters are checked separately c == ' ' || ('\x09' <= c && c <= '\x0d') || property::White_Space(c) } /// /// Indicates whether a character is alphanumeric. Alphanumericness is /// defined in terms of the Unicode General Categories 'Nd', 'Nl', 'No' /// and the Derived Core Property 'Alphabetic'. /// #[inline] pub fn is_alphanumeric(c: char) -> bool { derived_property::Alphabetic(c) || general_category::Nd(c) || general_category::Nl(c) || general_category::No(c) } /// /// Indicates whether a character is a control character. Control /// characters are defined in terms of the Unicode General Category /// 'Cc'. /// #[inline] pub fn is_control(c: char) -> bool { general_category::Cc(c) } /// Indicates whether the character is numeric (Nd, Nl, or No) #[inline] pub fn is_digit(c: char) -> bool { general_category::Nd(c) || general_category::Nl(c) || general_category::No(c) } /// /// Checks if a character parses as a numeric digit in the given radix. /// Compared to `is_digit()`, this function only recognizes the /// characters `0-9`, `a-z` and `A-Z`. /// /// # Return value /// /// Returns `true` if `c` is a valid digit under `radix`, and `false` /// otherwise. /// /// # Failure /// /// Fails if given a `radix` > 36. /// /// # Note /// /// This just wraps `to_digit()`. /// #[inline] pub fn is_digit_radix(c: char, radix: uint) -> bool { match to_digit(c, radix) { Some(_) => true, None => false, } } /// /// Convert a char to the corresponding digit. /// /// # Return value /// /// If `c` is between '0' and '9', the corresponding value /// between 0 and 9. If `c` is 'a' or 'A', 10. If `c` is /// 'b' or 'B', 11, etc. Returns none if the char does not /// refer to a digit in the given radix. /// /// # Failure /// /// Fails if given a `radix` outside the range `[0..36]`. /// #[inline] pub fn to_digit(c: char, radix: uint) -> Option { if radix > 36 { fail!("to_digit: radix {} is too high (maximum 36)", radix); } let val = match c { '0' .. '9' => c as uint - ('0' as uint), 'a' .. 'z' => c as uint + 10u - ('a' as uint), 'A' .. 'Z' => c as uint + 10u - ('A' as uint), _ => return None, }; if val < radix { Some(val) } else { None } } /// /// Converts a number to the character representing it. /// /// # Return value /// /// Returns `Some(char)` if `num` represents one digit under `radix`, /// using one character of `0-9` or `a-z`, or `None` if it doesn't. /// /// # Failure /// /// Fails if given an `radix` > 36. /// #[inline] pub fn from_digit(num: uint, radix: uint) -> Option { if radix > 36 { fail!("from_digit: radix {} is to high (maximum 36)", num); } if num < radix { unsafe { if num < 10 { Some(transmute(('0' as uint + num) as u32)) } else { Some(transmute(('a' as uint + num - 10u) as u32)) } } } else { None } } // Constants from Unicode 6.2.0 Section 3.12 Conjoining Jamo Behavior static S_BASE: uint = 0xAC00; static L_BASE: uint = 0x1100; static V_BASE: uint = 0x1161; static T_BASE: uint = 0x11A7; static L_COUNT: uint = 19; static V_COUNT: uint = 21; static T_COUNT: uint = 28; static N_COUNT: uint = (V_COUNT * T_COUNT); static S_COUNT: uint = (L_COUNT * N_COUNT); // Decompose a precomposed Hangul syllable fn decompose_hangul(s: char, f: |char|) { let si = s as uint - S_BASE; let li = si / N_COUNT; unsafe { f(transmute((L_BASE + li) as u32)); let vi = (si % N_COUNT) / T_COUNT; f(transmute((V_BASE + vi) as u32)); let ti = si % T_COUNT; if ti > 0 { f(transmute((T_BASE + ti) as u32)); } } } /// Returns the canonical decomposition of a character. pub fn decompose_canonical(c: char, f: |char|) { if (c as uint) < S_BASE || (c as uint) >= (S_BASE + S_COUNT) { decompose::canonical(c, f); } else { decompose_hangul(c, f); } } /// Returns the compatibility decomposition of a character. pub fn decompose_compatible(c: char, f: |char|) { if (c as uint) < S_BASE || (c as uint) >= (S_BASE + S_COUNT) { decompose::compatibility(c, f); } else { decompose_hangul(c, f); } } /// /// Return the hexadecimal unicode escape of a char. /// /// The rules are as follows: /// /// - chars in [0,0xff] get 2-digit escapes: `\\xNN` /// - chars in [0x100,0xffff] get 4-digit escapes: `\\uNNNN` /// - chars above 0x10000 get 8-digit escapes: `\\UNNNNNNNN` /// pub fn escape_unicode(c: char, f: |char|) { // avoid calling str::to_str_radix because we don't really need to allocate // here. f('\\'); let pad = match () { _ if c <= '\xff' => { f('x'); 2 } _ if c <= '\uffff' => { f('u'); 4 } _ => { f('U'); 8 } }; for offset in range_step::(4 * (pad - 1), -1, -4) { unsafe { match ((c as i32) >> offset) & 0xf { i @ 0 .. 9 => { f(transmute('0' as i32 + i)); } i => { f(transmute('a' as i32 + (i - 10))); } } } } } /// /// Return a 'default' ASCII and C++11-like char-literal escape of a char. /// /// The default is chosen with a bias toward producing literals that are /// legal in a variety of languages, including C++11 and similar C-family /// languages. The exact rules are: /// /// - Tab, CR and LF are escaped as '\t', '\r' and '\n' respectively. /// - Single-quote, double-quote and backslash chars are backslash-escaped. /// - Any other chars in the range [0x20,0x7e] are not escaped. /// - Any other chars are given hex unicode escapes; see `escape_unicode`. /// pub fn escape_default(c: char, f: |char|) { match c { '\t' => { f('\\'); f('t'); } '\r' => { f('\\'); f('r'); } '\n' => { f('\\'); f('n'); } '\\' => { f('\\'); f('\\'); } '\'' => { f('\\'); f('\''); } '"' => { f('\\'); f('"'); } '\x20' .. '\x7e' => { f(c); } _ => c.escape_unicode(f), } } /// Returns the amount of bytes this character would need if encoded in utf8 pub fn len_utf8_bytes(c: char) -> uint { static MAX_ONE_B: uint = 128u; static MAX_TWO_B: uint = 2048u; static MAX_THREE_B: uint = 65536u; static MAX_FOUR_B: uint = 2097152u; let code = c as uint; match () { _ if code < MAX_ONE_B => 1u, _ if code < MAX_TWO_B => 2u, _ if code < MAX_THREE_B => 3u, _ if code < MAX_FOUR_B => 4u, _ => fail!("invalid character!"), } } impl ToStr for char { #[inline] fn to_str(&self) -> ~str { str::from_char(*self) } } #[allow(missing_doc)] pub trait Char { fn is_alphabetic(&self) -> bool; fn is_XID_start(&self) -> bool; fn is_XID_continue(&self) -> bool; fn is_lowercase(&self) -> bool; fn is_uppercase(&self) -> bool; fn is_whitespace(&self) -> bool; fn is_alphanumeric(&self) -> bool; fn is_control(&self) -> bool; fn is_digit(&self) -> bool; fn is_digit_radix(&self, radix: uint) -> bool; fn to_digit(&self, radix: uint) -> Option; fn from_digit(num: uint, radix: uint) -> Option; fn escape_unicode(&self, f: |char|); fn escape_default(&self, f: |char|); fn len_utf8_bytes(&self) -> uint; /// Encodes this character as utf-8 into the provided byte-buffer. The /// buffer must be at least 4 bytes long or a runtime failure will occur. /// /// This will then return the number of characters written to the slice. fn encode_utf8(&self, dst: &mut [u8]) -> uint; } impl Char for char { fn is_alphabetic(&self) -> bool { is_alphabetic(*self) } fn is_XID_start(&self) -> bool { is_XID_start(*self) } fn is_XID_continue(&self) -> bool { is_XID_continue(*self) } fn is_lowercase(&self) -> bool { is_lowercase(*self) } fn is_uppercase(&self) -> bool { is_uppercase(*self) } fn is_whitespace(&self) -> bool { is_whitespace(*self) } fn is_alphanumeric(&self) -> bool { is_alphanumeric(*self) } fn is_control(&self) -> bool { is_control(*self) } fn is_digit(&self) -> bool { is_digit(*self) } fn is_digit_radix(&self, radix: uint) -> bool { is_digit_radix(*self, radix) } fn to_digit(&self, radix: uint) -> Option { to_digit(*self, radix) } fn from_digit(num: uint, radix: uint) -> Option { from_digit(num, radix) } fn escape_unicode(&self, f: |char|) { escape_unicode(*self, f) } fn escape_default(&self, f: |char|) { escape_default(*self, f) } fn len_utf8_bytes(&self) -> uint { len_utf8_bytes(*self) } fn encode_utf8<'a>(&self, dst: &'a mut [u8]) -> uint { let code = *self as uint; if code < MAX_ONE_B { dst[0] = code as u8; return 1; } else if code < MAX_TWO_B { dst[0] = (code >> 6u & 31u | TAG_TWO_B) as u8; dst[1] = (code & 63u | TAG_CONT) as u8; return 2; } else if code < MAX_THREE_B { dst[0] = (code >> 12u & 15u | TAG_THREE_B) as u8; dst[1] = (code >> 6u & 63u | TAG_CONT) as u8; dst[2] = (code & 63u | TAG_CONT) as u8; return 3; } else { dst[0] = (code >> 18u & 7u | TAG_FOUR_B) as u8; dst[1] = (code >> 12u & 63u | TAG_CONT) as u8; dst[2] = (code >> 6u & 63u | TAG_CONT) as u8; dst[3] = (code & 63u | TAG_CONT) as u8; return 4; } } } #[cfg(not(test))] impl Eq for char { #[inline] fn eq(&self, other: &char) -> bool { (*self) == (*other) } } #[cfg(not(test))] impl Ord for char { #[inline] fn lt(&self, other: &char) -> bool { *self < *other } } #[cfg(not(test))] impl Default for char { #[inline] fn default() -> char { '\x00' } } #[test] fn test_is_lowercase() { assert!('a'.is_lowercase()); assert!('ö'.is_lowercase()); assert!('ß'.is_lowercase()); assert!(!'Ü'.is_lowercase()); assert!(!'P'.is_lowercase()); } #[test] fn test_is_uppercase() { assert!(!'h'.is_uppercase()); assert!(!'ä'.is_uppercase()); assert!(!'ß'.is_uppercase()); assert!('Ö'.is_uppercase()); assert!('T'.is_uppercase()); } #[test] fn test_is_whitespace() { assert!(' '.is_whitespace()); assert!('\u2007'.is_whitespace()); assert!('\t'.is_whitespace()); assert!('\n'.is_whitespace()); assert!(!'a'.is_whitespace()); assert!(!'_'.is_whitespace()); assert!(!'\u0000'.is_whitespace()); } #[test] fn test_to_digit() { assert_eq!('0'.to_digit(10u), Some(0u)); assert_eq!('1'.to_digit(2u), Some(1u)); assert_eq!('2'.to_digit(3u), Some(2u)); assert_eq!('9'.to_digit(10u), Some(9u)); assert_eq!('a'.to_digit(16u), Some(10u)); assert_eq!('A'.to_digit(16u), Some(10u)); assert_eq!('b'.to_digit(16u), Some(11u)); assert_eq!('B'.to_digit(16u), Some(11u)); assert_eq!('z'.to_digit(36u), Some(35u)); assert_eq!('Z'.to_digit(36u), Some(35u)); assert_eq!(' '.to_digit(10u), None); assert_eq!('$'.to_digit(36u), None); } #[test] fn test_is_control() { assert!('\u0000'.is_control()); assert!('\u0003'.is_control()); assert!('\u0006'.is_control()); assert!('\u0009'.is_control()); assert!('\u007f'.is_control()); assert!('\u0092'.is_control()); assert!(!'\u0020'.is_control()); assert!(!'\u0055'.is_control()); assert!(!'\u0068'.is_control()); } #[test] fn test_is_digit() { assert!('2'.is_digit()); assert!('7'.is_digit()); assert!(!'c'.is_digit()); assert!(!'i'.is_digit()); assert!(!'z'.is_digit()); assert!(!'Q'.is_digit()); } #[test] fn test_escape_default() { fn string(c: char) -> ~str { let mut result = ~""; escape_default(c, |c| { result.push_char(c); }); return result; } assert_eq!(string('\n'), ~"\\n"); assert_eq!(string('\r'), ~"\\r"); assert_eq!(string('\''), ~"\\'"); assert_eq!(string('"'), ~"\\\""); assert_eq!(string(' '), ~" "); assert_eq!(string('a'), ~"a"); assert_eq!(string('~'), ~"~"); assert_eq!(string('\x00'), ~"\\x00"); assert_eq!(string('\x1f'), ~"\\x1f"); assert_eq!(string('\x7f'), ~"\\x7f"); assert_eq!(string('\xff'), ~"\\xff"); assert_eq!(string('\u011b'), ~"\\u011b"); assert_eq!(string('\U0001d4b6'), ~"\\U0001d4b6"); } #[test] fn test_escape_unicode() { fn string(c: char) -> ~str { let mut result = ~""; escape_unicode(c, |c| { result.push_char(c); }); return result; } assert_eq!(string('\x00'), ~"\\x00"); assert_eq!(string('\n'), ~"\\x0a"); assert_eq!(string(' '), ~"\\x20"); assert_eq!(string('a'), ~"\\x61"); assert_eq!(string('\u011b'), ~"\\u011b"); assert_eq!(string('\U0001d4b6'), ~"\\U0001d4b6"); } #[test] fn test_to_str() { let s = 't'.to_str(); assert_eq!(s, ~"t"); }