// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use middle::freevars::freevar_entry; use middle::freevars; use middle::pat_util; use middle::ty; use middle::typeck; use util::ppaux::{Repr, ty_to_str}; use syntax::ast::*; use syntax::attr::attrs_contains_name; use syntax::codemap::span; use syntax::print::pprust::expr_to_str; use syntax::{visit, ast_util}; // Kind analysis pass. // // There are several kinds defined by various operations. The most restrictive // kind is noncopyable. The noncopyable kind can be extended with any number // of the following attributes. // // send: Things that can be sent on channels or included in spawned closures. // copy: Things that can be copied. // const: Things thare are deeply immutable. They are guaranteed never to // change, and can be safely shared without copying between tasks. // owned: Things that do not contain borrowed pointers. // // Send includes scalar types as well as classes and unique types containing // only sendable types. // // Copy includes boxes, closure and unique types containing copyable types. // // Const include scalar types, things without non-const fields, and pointers // to const things. // // This pass ensures that type parameters are only instantiated with types // whose kinds are equal or less general than the way the type parameter was // annotated (with the `send`, `copy` or `const` keyword). // // It also verifies that noncopyable kinds are not copied. Sendability is not // applied, since none of our language primitives send. Instead, the sending // primitives in the stdlib are explicitly annotated to only take sendable // types. pub static try_adding: &'static str = "Try adding a move"; pub struct Context { tcx: ty::ctxt, method_map: typeck::method_map, current_item: node_id } pub fn check_crate(tcx: ty::ctxt, method_map: typeck::method_map, crate: @crate) { let ctx = Context { tcx: tcx, method_map: method_map, current_item: -1 }; let visit = visit::mk_vt(@visit::Visitor { visit_arm: check_arm, visit_expr: check_expr, visit_fn: check_fn, visit_ty: check_ty, visit_item: check_item, visit_block: check_block, .. *visit::default_visitor() }); visit::visit_crate(crate, ctx, visit); tcx.sess.abort_if_errors(); } type check_fn = @fn(Context, @freevar_entry); fn check_struct_safe_for_destructor(cx: Context, span: span, struct_did: def_id) { let struct_tpt = ty::lookup_item_type(cx.tcx, struct_did); if !struct_tpt.generics.has_type_params() { let struct_ty = ty::mk_struct(cx.tcx, struct_did, ty::substs { self_r: None, self_ty: None, tps: ~[] }); if !ty::type_is_owned(cx.tcx, struct_ty) { cx.tcx.sess.span_err(span, "cannot implement a destructor on a struct \ that is not Owned"); cx.tcx.sess.span_note(span, "use \"#[unsafe_destructor]\" on the \ implementation to force the compiler to \ allow this"); } } else { cx.tcx.sess.span_err(span, "cannot implement a destructor on a struct \ with type parameters"); cx.tcx.sess.span_note(span, "use \"#[unsafe_destructor]\" on the \ implementation to force the compiler to \ allow this"); } } fn check_block(block: &blk, cx: Context, visitor: visit::vt) { visit::visit_block(block, cx, visitor); } fn check_item(item: @item, cx: Context, visitor: visit::vt) { // If this is a destructor, check kinds. if !attrs_contains_name(item.attrs, "unsafe_destructor") { match item.node { item_impl(_, Some(trait_ref), self_type, _) => { match cx.tcx.def_map.find(&trait_ref.ref_id) { None => cx.tcx.sess.bug(~"trait ref not in def map!"), Some(&trait_def) => { let trait_def_id = ast_util::def_id_of_def(trait_def); if cx.tcx.lang_items.drop_trait() == trait_def_id { // Yes, it's a destructor. match self_type.node { ty_path(_, path_node_id) => { let struct_def = cx.tcx.def_map.get_copy( &path_node_id); let struct_did = ast_util::def_id_of_def(struct_def); check_struct_safe_for_destructor( cx, self_type.span, struct_did); } _ => { cx.tcx.sess.span_bug(self_type.span, "the self type for \ the Drop trait \ impl is not a \ path"); } } } } } } _ => {} } } let cx = Context { current_item: item.id, ..cx }; visit::visit_item(item, cx, visitor); } // Yields the appropriate function to check the kind of closed over // variables. `id` is the node_id for some expression that creates the // closure. fn with_appropriate_checker(cx: Context, id: node_id, b: &fn(check_fn)) { fn check_for_uniq(cx: Context, fv: @freevar_entry) { // all captured data must be owned, regardless of whether it is // moved in or copied in. let id = ast_util::def_id_of_def(fv.def).node; let var_t = ty::node_id_to_type(cx.tcx, id); if !check_owned(cx, var_t, fv.span) { return; } // check that only immutable variables are implicitly copied in check_imm_free_var(cx, fv.def, fv.span); } fn check_for_box(cx: Context, fv: @freevar_entry) { // all captured data must be owned let id = ast_util::def_id_of_def(fv.def).node; let var_t = ty::node_id_to_type(cx.tcx, id); if !check_durable(cx.tcx, var_t, fv.span) { return; } // check that only immutable variables are implicitly copied in check_imm_free_var(cx, fv.def, fv.span); } fn check_for_block(_cx: Context, _fv: @freevar_entry) { // no restrictions } fn check_for_bare(cx: Context, fv: @freevar_entry) { cx.tcx.sess.span_err( fv.span, "attempted dynamic environment capture"); } let fty = ty::node_id_to_type(cx.tcx, id); match ty::get(fty).sty { ty::ty_closure(ty::ClosureTy {sigil: OwnedSigil, _}) => { b(check_for_uniq) } ty::ty_closure(ty::ClosureTy {sigil: ManagedSigil, _}) => { b(check_for_box) } ty::ty_closure(ty::ClosureTy {sigil: BorrowedSigil, _}) => { b(check_for_block) } ty::ty_bare_fn(_) => { b(check_for_bare) } ref s => { cx.tcx.sess.bug( fmt!("expect fn type in kind checker, not %?", s)); } } } // Check that the free variables used in a shared/sendable closure conform // to the copy/move kind bounds. Then recursively check the function body. fn check_fn( fk: &visit::fn_kind, decl: &fn_decl, body: &blk, sp: span, fn_id: node_id, cx: Context, v: visit::vt) { // Check kinds on free variables: do with_appropriate_checker(cx, fn_id) |chk| { for vec::each(*freevars::get_freevars(cx.tcx, fn_id)) |fv| { chk(cx, *fv); } } visit::visit_fn(fk, decl, body, sp, fn_id, cx, v); } fn check_arm(a: &arm, cx: Context, v: visit::vt) { for a.pats.each |p| { do pat_util::pat_bindings(cx.tcx.def_map, *p) |mode, id, span, _pth| { if mode == bind_by_copy { let t = ty::node_id_to_type(cx.tcx, id); let reason = "consider binding with `ref` or `move` instead"; check_copy(cx, t, span, reason); } } } visit::visit_arm(a, cx, v); } pub fn check_expr(e: @expr, cx: Context, v: visit::vt) { debug!("kind::check_expr(%s)", expr_to_str(e, cx.tcx.sess.intr())); // Handle any kind bounds on type parameters let type_parameter_id = match e.node { expr_index(*)|expr_assign_op(*)| expr_unary(*)|expr_binary(*)|expr_method_call(*) => e.callee_id, _ => e.id }; for cx.tcx.node_type_substs.find(&type_parameter_id).each |ts| { let type_param_defs = match e.node { expr_path(_) => { let did = ast_util::def_id_of_def(cx.tcx.def_map.get_copy(&e.id)); ty::lookup_item_type(cx.tcx, did).generics.type_param_defs } _ => { // Type substitutions should only occur on paths and // method calls, so this needs to be a method call. // Even though the callee_id may have been the id with // node_type_substs, e.id is correct here. ty::method_call_type_param_defs(cx.tcx, cx.method_map, e.id).expect( ~"non path/method call expr has type substs??") } }; if ts.len() != type_param_defs.len() { // Fail earlier to make debugging easier fail!(fmt!("internal error: in kind::check_expr, length \ mismatch between actual and declared bounds: actual = \ %s, declared = %s", ts.repr(cx.tcx), type_param_defs.repr(cx.tcx))); } for vec::each2(**ts, *type_param_defs) |&ty, type_param_def| { check_bounds(cx, type_parameter_id, e.span, ty, type_param_def) } } match e.node { expr_cast(source, _) => { check_cast_for_escaping_regions(cx, source, e); check_kind_bounds_of_cast(cx, source, e); } expr_copy(expr) => { // Note: This is the only place where we must check whether the // argument is copyable. This is not because this is the only // kind of expression that may copy things, but rather because all // other copies will have been converted to moves by by the // `moves` pass if the value is not copyable. check_copy(cx, ty::expr_ty(cx.tcx, expr), expr.span, "explicit copy requires a copyable argument"); } expr_repeat(element, count_expr, _) => { let count = ty::eval_repeat_count(cx.tcx, count_expr); if count > 1 { let element_ty = ty::expr_ty(cx.tcx, element); check_copy(cx, element_ty, element.span, "repeated element will be copied"); } } _ => {} } visit::visit_expr(e, cx, v); } fn check_ty(aty: @Ty, cx: Context, v: visit::vt) { match aty.node { ty_path(_, id) => { for cx.tcx.node_type_substs.find(&id).each |ts| { let did = ast_util::def_id_of_def(cx.tcx.def_map.get_copy(&id)); let type_param_defs = ty::lookup_item_type(cx.tcx, did).generics.type_param_defs; for vec::each2(**ts, *type_param_defs) |&ty, type_param_def| { check_bounds(cx, aty.id, aty.span, ty, type_param_def) } } } _ => {} } visit::visit_ty(aty, cx, v); } pub fn check_bounds(cx: Context, _type_parameter_id: node_id, sp: span, ty: ty::t, type_param_def: &ty::TypeParameterDef) { let kind = ty::type_contents(cx.tcx, ty); let mut missing = ~[]; for type_param_def.bounds.each |bound| { match *bound { ty::bound_trait(_) => { /* Not our job, checking in typeck */ } ty::bound_copy => { if !kind.is_copy(cx.tcx) { missing.push("Copy"); } } ty::bound_durable => { if !kind.is_durable(cx.tcx) { missing.push("'static"); } } ty::bound_owned => { if !kind.is_owned(cx.tcx) { missing.push("Owned"); } } ty::bound_const => { if !kind.is_const(cx.tcx) { missing.push("Const"); } } } } if !missing.is_empty() { cx.tcx.sess.span_err( sp, fmt!("instantiating a type parameter with an incompatible type \ `%s`, which does not fulfill `%s`", ty_to_str(cx.tcx, ty), str::connect_slices(missing, " "))); } } fn is_nullary_variant(cx: Context, ex: @expr) -> bool { match ex.node { expr_path(_) => { match cx.tcx.def_map.get_copy(&ex.id) { def_variant(edid, vdid) => { vec::len(ty::enum_variant_with_id(cx.tcx, edid, vdid).args) == 0u } _ => false } } _ => false } } fn check_imm_free_var(cx: Context, def: def, sp: span) { match def { def_local(_, is_mutbl) => { if is_mutbl { cx.tcx.sess.span_err( sp, "mutable variables cannot be implicitly captured"); } } def_arg(*) => { /* ok */ } def_upvar(_, def1, _, _) => { check_imm_free_var(cx, *def1, sp); } def_binding(*) | def_self(*) => { /*ok*/ } _ => { cx.tcx.sess.span_bug( sp, fmt!("unknown def for free variable: %?", def)); } } } fn check_copy(cx: Context, ty: ty::t, sp: span, reason: &str) { debug!("type_contents(%s)=%s", ty_to_str(cx.tcx, ty), ty::type_contents(cx.tcx, ty).to_str()); if !ty::type_is_copyable(cx.tcx, ty) { cx.tcx.sess.span_err( sp, fmt!("copying a value of non-copyable type `%s`", ty_to_str(cx.tcx, ty))); cx.tcx.sess.span_note(sp, fmt!("%s", reason)); } } pub fn check_owned(cx: Context, ty: ty::t, sp: span) -> bool { if !ty::type_is_owned(cx.tcx, ty) { cx.tcx.sess.span_err( sp, fmt!("value has non-owned type `%s`", ty_to_str(cx.tcx, ty))); false } else { true } } // note: also used from middle::typeck::regionck! pub fn check_durable(tcx: ty::ctxt, ty: ty::t, sp: span) -> bool { if !ty::type_is_durable(tcx, ty) { match ty::get(ty).sty { ty::ty_param(*) => { tcx.sess.span_err(sp, "value may contain borrowed \ pointers; use `'static` bound"); } _ => { tcx.sess.span_err(sp, "value may contain borrowed \ pointers"); } } false } else { true } } /// This is rather subtle. When we are casting a value to a instantiated /// trait like `a as trait<'r>`, regionck already ensures that any borrowed /// pointers that appear in the type of `a` are bounded by `'r` (ed.: rem /// FIXME(#5723)). However, it is possible that there are *type parameters* /// in the type of `a`, and those *type parameters* may have borrowed pointers /// within them. We have to guarantee that the regions which appear in those /// type parameters are not obscured. /// /// Therefore, we ensure that one of three conditions holds: /// /// (1) The trait instance cannot escape the current fn. This is /// guaranteed if the region bound `&r` is some scope within the fn /// itself. This case is safe because whatever borrowed pointers are /// found within the type parameter, they must enclose the fn body /// itself. /// /// (2) The type parameter appears in the type of the trait. For /// example, if the type parameter is `T` and the trait type is /// `deque`, then whatever borrowed ptrs may appear in `T` also /// appear in `deque`. /// /// (3) The type parameter is owned (and therefore does not contain /// borrowed ptrs). /// /// FIXME(#5723)---This code should probably move into regionck. pub fn check_cast_for_escaping_regions( cx: Context, source: @expr, target: @expr) { // Determine what type we are casting to; if it is not an trait, then no // worries. let target_ty = ty::expr_ty(cx.tcx, target); match ty::get(target_ty).sty { ty::ty_trait(*) => {} _ => { return; } } // Collect up the regions that appear in the target type. We want to // ensure that these lifetimes are shorter than all lifetimes that are in // the source type. See test `src/test/compile-fail/regions-trait-2.rs` let mut target_regions = ~[]; ty::walk_regions_and_ty( cx.tcx, target_ty, |r| { if !r.is_bound() { target_regions.push(r); } }, |_| true); // Check, based on the region associated with the trait, whether it can // possibly escape the enclosing fn item (note that all type parameters // must have been declared on the enclosing fn item). if target_regions.any(|r| is_re_scope(*r)) { return; /* case (1) */ } // Assuming the trait instance can escape, then ensure that each parameter // either appears in the trait type or is owned. let target_params = ty::param_tys_in_type(target_ty); let source_ty = ty::expr_ty(cx.tcx, source); ty::walk_regions_and_ty( cx.tcx, source_ty, |_r| { // FIXME(#5723) --- turn this check on once &Objects are usable // // if !target_regions.any(|t_r| is_subregion_of(cx, *t_r, r)) { // cx.tcx.sess.span_err( // source.span, // fmt!("source contains borrowed pointer with lifetime \ // not found in the target type `%s`", // ty_to_str(cx.tcx, target_ty))); // note_and_explain_region( // cx.tcx, "source data is only valid for ", r, ""); // } }, |ty| { match ty::get(ty).sty { ty::ty_param(source_param) => { if target_params.contains(&source_param) { /* case (2) */ } else { check_durable(cx.tcx, ty, source.span); /* case (3) */ } } _ => {} } true }); fn is_re_scope(r: ty::Region) -> bool { match r { ty::re_scope(*) => true, _ => false } } fn is_subregion_of(cx: Context, r_sub: ty::Region, r_sup: ty::Region) -> bool { cx.tcx.region_maps.is_subregion_of(r_sub, r_sup) } } /// Ensures that values placed into a ~Trait are copyable and sendable. pub fn check_kind_bounds_of_cast(cx: Context, source: @expr, target: @expr) { let target_ty = ty::expr_ty(cx.tcx, target); match ty::get(target_ty).sty { ty::ty_trait(_, _, ty::UniqTraitStore, _) => { let source_ty = ty::expr_ty(cx.tcx, source); if !ty::type_is_owned(cx.tcx, source_ty) { cx.tcx.sess.span_err( target.span, "uniquely-owned trait objects must be sendable"); } } _ => {} // Nothing to do. } }