use clippy_utils::diagnostics::span_lint; use clippy_utils::ty::is_interior_mut_ty; use clippy_utils::{def_path_def_ids, trait_ref_of_method}; use rustc_data_structures::fx::FxHashSet; use rustc_hir as hir; use rustc_lint::{LateContext, LateLintPass}; use rustc_middle::ty::{Adt, Ty}; use rustc_session::impl_lint_pass; use rustc_span::def_id::LocalDefId; use rustc_span::symbol::sym; use rustc_span::Span; use std::iter; declare_clippy_lint! { /// ### What it does /// Checks for sets/maps with mutable key types. /// /// ### Why is this bad? /// All of `HashMap`, `HashSet`, `BTreeMap` and /// `BtreeSet` rely on either the hash or the order of keys be unchanging, /// so having types with interior mutability is a bad idea. /// /// ### Known problems /// /// #### False Positives /// It's correct to use a struct that contains interior mutability as a key, when its /// implementation of `Hash` or `Ord` doesn't access any of the interior mutable types. /// However, this lint is unable to recognize this, so it will often cause false positives in /// theses cases. The `bytes` crate is a great example of this. /// /// #### False Negatives /// For custom `struct`s/`enum`s, this lint is unable to check for interior mutability behind /// indirection. For example, `struct BadKey<'a>(&'a Cell)` will be seen as immutable /// and cause a false negative if its implementation of `Hash`/`Ord` accesses the `Cell`. /// /// This lint does check a few cases for indirection. Firstly, using some standard library /// types (`Option`, `Result`, `Box`, `Rc`, `Arc`, `Vec`, `VecDeque`, `BTreeMap` and /// `BTreeSet`) directly as keys (e.g. in `HashMap>, ()>`) **will** trigger the /// lint, because the impls of `Hash`/`Ord` for these types directly call `Hash`/`Ord` on their /// contained type. /// /// Secondly, the implementations of `Hash` and `Ord` for raw pointers (`*const T` or `*mut T`) /// apply only to the **address** of the contained value. Therefore, interior mutability /// behind raw pointers (e.g. in `HashSet<*mut Cell>`) can't impact the value of `Hash` /// or `Ord`, and therefore will not trigger this link. For more info, see issue /// [#6745](https://github.com/rust-lang/rust-clippy/issues/6745). /// /// ### Example /// ```no_run /// use std::cmp::{PartialEq, Eq}; /// use std::collections::HashSet; /// use std::hash::{Hash, Hasher}; /// use std::sync::atomic::AtomicUsize; ///# #[allow(unused)] /// /// struct Bad(AtomicUsize); /// impl PartialEq for Bad { /// fn eq(&self, rhs: &Self) -> bool { /// .. /// ; unimplemented!(); /// } /// } /// /// impl Eq for Bad {} /// /// impl Hash for Bad { /// fn hash(&self, h: &mut H) { /// .. /// ; unimplemented!(); /// } /// } /// /// fn main() { /// let _: HashSet = HashSet::new(); /// } /// ``` #[clippy::version = "1.42.0"] pub MUTABLE_KEY_TYPE, suspicious, "Check for mutable `Map`/`Set` key type" } #[derive(Clone)] pub struct MutableKeyType { ignore_interior_mutability: Vec, ignore_mut_def_ids: FxHashSet, } impl_lint_pass!(MutableKeyType => [ MUTABLE_KEY_TYPE ]); impl<'tcx> LateLintPass<'tcx> for MutableKeyType { fn check_crate(&mut self, cx: &LateContext<'tcx>) { self.ignore_mut_def_ids.clear(); let mut path = Vec::new(); for ty in &self.ignore_interior_mutability { path.extend(ty.split("::")); for id in def_path_def_ids(cx, &path[..]) { self.ignore_mut_def_ids.insert(id); } path.clear(); } } fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) { if let hir::ItemKind::Fn(ref sig, ..) = item.kind { self.check_sig(cx, item.owner_id.def_id, sig.decl); } } fn check_impl_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::ImplItem<'tcx>) { if let hir::ImplItemKind::Fn(ref sig, ..) = item.kind { if trait_ref_of_method(cx, item.owner_id.def_id).is_none() { self.check_sig(cx, item.owner_id.def_id, sig.decl); } } } fn check_trait_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::TraitItem<'tcx>) { if let hir::TraitItemKind::Fn(ref sig, ..) = item.kind { self.check_sig(cx, item.owner_id.def_id, sig.decl); } } fn check_local(&mut self, cx: &LateContext<'_>, local: &hir::Local<'_>) { if let hir::PatKind::Wild = local.pat.kind { return; } self.check_ty_(cx, local.span, cx.typeck_results().pat_ty(local.pat)); } } impl MutableKeyType { pub fn new(ignore_interior_mutability: Vec) -> Self { Self { ignore_interior_mutability, ignore_mut_def_ids: FxHashSet::default(), } } fn check_sig(&self, cx: &LateContext<'_>, fn_def_id: LocalDefId, decl: &hir::FnDecl<'_>) { let fn_sig = cx.tcx.fn_sig(fn_def_id).instantiate_identity(); for (hir_ty, ty) in iter::zip(decl.inputs, fn_sig.inputs().skip_binder()) { self.check_ty_(cx, hir_ty.span, *ty); } self.check_ty_( cx, decl.output.span(), cx.tcx.instantiate_bound_regions_with_erased(fn_sig.output()), ); } // We want to lint 1. sets or maps with 2. not immutable key types and 3. no unerased // generics (because the compiler cannot ensure immutability for unknown types). fn check_ty_<'tcx>(&self, cx: &LateContext<'tcx>, span: Span, ty: Ty<'tcx>) { let ty = ty.peel_refs(); if let Adt(def, args) = ty.kind() { let is_keyed_type = [sym::HashMap, sym::BTreeMap, sym::HashSet, sym::BTreeSet] .iter() .any(|diag_item| cx.tcx.is_diagnostic_item(*diag_item, def.did())); if !is_keyed_type { return; } let subst_ty = args.type_at(0); // Determines if a type contains interior mutability which would affect its implementation of // [`Hash`] or [`Ord`]. if is_interior_mut_ty(cx, subst_ty) && !matches!(subst_ty.ty_adt_def(), Some(adt) if self.ignore_mut_def_ids.contains(&adt.did())) { span_lint(cx, MUTABLE_KEY_TYPE, span, "mutable key type"); } } } }