//! This module is concerned with finding methods that a given type provides. //! For details about how this works in rustc, see the method lookup page in the //! [rustc guide](https://rust-lang.github.io/rustc-guide/method-lookup.html) //! and the corresponding code mostly in librustc_typeck/check/method/probe.rs. use std::sync::Arc; use rustc_hash::FxHashMap; use crate::{ HirDatabase, Module, Crate, Name, Function, Trait, ids::TraitId, impl_block::{ImplId, ImplBlock, ImplItem}, ty::{Ty, TypeCtor}, nameres::CrateModuleId, resolve::Resolver, traits::TraitItem }; /// This is used as a key for indexing impls. #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] pub enum TyFingerprint { Apply(TypeCtor), } impl TyFingerprint { /// Creates a TyFingerprint for looking up an impl. Only certain types can /// have impls: if we have some `struct S`, we can have an `impl S`, but not /// `impl &S`. Hence, this will return `None` for reference types and such. fn for_impl(ty: &Ty) -> Option { match ty { Ty::Apply(a_ty) => Some(TyFingerprint::Apply(a_ty.ctor)), _ => None, } } } #[derive(Debug, PartialEq, Eq)] pub struct CrateImplBlocks { /// To make sense of the CrateModuleIds, we need the source root. krate: Crate, impls: FxHashMap>, impls_by_trait: FxHashMap>, } impl CrateImplBlocks { pub fn lookup_impl_blocks<'a>(&'a self, ty: &Ty) -> impl Iterator + 'a { let fingerprint = TyFingerprint::for_impl(ty); fingerprint.and_then(|f| self.impls.get(&f)).into_iter().flat_map(|i| i.iter()).map( move |(module_id, impl_id)| { let module = Module { krate: self.krate, module_id: *module_id }; ImplBlock::from_id(module, *impl_id) }, ) } pub fn lookup_impl_blocks_for_trait<'a>( &'a self, tr: &Trait, ) -> impl Iterator + 'a { let id = tr.id; self.impls_by_trait.get(&id).into_iter().flat_map(|i| i.iter()).map( move |(module_id, impl_id)| { let module = Module { krate: self.krate, module_id: *module_id }; ImplBlock::from_id(module, *impl_id) }, ) } fn collect_recursive(&mut self, db: &impl HirDatabase, module: &Module) { let module_impl_blocks = db.impls_in_module(module.clone()); for (impl_id, _) in module_impl_blocks.impls.iter() { let impl_block = ImplBlock::from_id(module_impl_blocks.module, impl_id); let target_ty = impl_block.target_ty(db); if let Some(tr) = impl_block.target_trait(db) { self.impls_by_trait .entry(tr.id) .or_insert_with(Vec::new) .push((module.module_id, impl_id)); } else { if let Some(target_ty_fp) = TyFingerprint::for_impl(&target_ty) { self.impls .entry(target_ty_fp) .or_insert_with(Vec::new) .push((module.module_id, impl_id)); } } } for child in module.children(db) { self.collect_recursive(db, &child); } } pub(crate) fn impls_in_crate_query( db: &impl HirDatabase, krate: Crate, ) -> Arc { let mut crate_impl_blocks = CrateImplBlocks { krate, impls: FxHashMap::default(), impls_by_trait: FxHashMap::default(), }; if let Some(module) = krate.root_module(db) { crate_impl_blocks.collect_recursive(db, &module); } Arc::new(crate_impl_blocks) } } fn def_crate(db: &impl HirDatabase, ty: &Ty) -> Option { match ty { Ty::Apply(a_ty) => match a_ty.ctor { TypeCtor::Adt(def_id) => def_id.krate(db), _ => None, }, _ => None, } } impl Ty { /// Look up the method with the given name, returning the actual autoderefed /// receiver type (but without autoref applied yet). pub fn lookup_method( self, db: &impl HirDatabase, name: &Name, resolver: &Resolver, ) -> Option<(Ty, Function)> { // FIXME: what has priority, an inherent method that needs autoderefs or a trait method? let inherent_method = self.clone().iterate_methods(db, |ty, f| { let sig = f.signature(db); if sig.name() == name && sig.has_self_param() { Some((ty.clone(), f)) } else { None } }); inherent_method.or_else(|| self.lookup_trait_method(db, name, resolver)) } fn lookup_trait_method( self, db: &impl HirDatabase, name: &Name, resolver: &Resolver, ) -> Option<(Ty, Function)> { let mut candidates = Vec::new(); for t in resolver.traits_in_scope() { let data = t.trait_data(db); for item in data.items() { match item { &TraitItem::Function(m) => { let sig = m.signature(db); if sig.name() == name && sig.has_self_param() { candidates.push((t, m)); } } _ => {} } } } // FIXME the implements check may result in other obligations or unifying variables? candidates.retain(|(_t, _m)| /* self implements t */ true); // FIXME what happens if there are still multiple potential candidates? let (_chosen_trait, chosen_method) = candidates.first()?; Some((self.clone(), *chosen_method)) } // This would be nicer if it just returned an iterator, but that runs into // lifetime problems, because we need to borrow temp `CrateImplBlocks`. pub fn iterate_methods( self, db: &impl HirDatabase, mut callback: impl FnMut(&Ty, Function) -> Option, ) -> Option { // For method calls, rust first does any number of autoderef, and then one // autoref (i.e. when the method takes &self or &mut self). We just ignore // the autoref currently -- when we find a method matching the given name, // we assume it fits. // Also note that when we've got a receiver like &S, even if the method we // find in the end takes &self, we still do the autoderef step (just as // rustc does an autoderef and then autoref again). for derefed_ty in self.autoderef(db) { let krate = match def_crate(db, &derefed_ty) { Some(krate) => krate, None => continue, }; let impls = db.impls_in_crate(krate); for impl_block in impls.lookup_impl_blocks(&derefed_ty) { for item in impl_block.items(db) { match item { ImplItem::Method(f) => { if let Some(result) = callback(&derefed_ty, f) { return Some(result); } } _ => {} } } } } None } // This would be nicer if it just returned an iterator, but that runs into // lifetime problems, because we need to borrow temp `CrateImplBlocks`. pub fn iterate_impl_items( self, db: &impl HirDatabase, mut callback: impl FnMut(ImplItem) -> Option, ) -> Option { let krate = def_crate(db, &self)?; let impls = db.impls_in_crate(krate); for impl_block in impls.lookup_impl_blocks(&self) { for item in impl_block.items(db) { if let Some(result) = callback(item) { return Some(result); } } } None } }