use clippy_config::msrvs::{self, Msrv}; use clippy_config::Conf; use clippy_utils::diagnostics::span_lint_and_sugg; use clippy_utils::source::snippet_with_applicability; use clippy_utils::{is_in_const_context, is_integer_literal, SpanlessEq}; use rustc_errors::Applicability; use rustc_hir::{BinOpKind, Expr, ExprKind, QPath, TyKind}; use rustc_lint::{LateContext, LateLintPass, LintContext}; use rustc_middle::lint::in_external_macro; use rustc_session::impl_lint_pass; declare_clippy_lint! { /// ### What it does /// Checks for explicit bounds checking when casting. /// /// ### Why is this bad? /// Reduces the readability of statements & is error prone. /// /// ### Example /// ```no_run /// # let foo: u32 = 5; /// foo <= i32::MAX as u32; /// ``` /// /// Use instead: /// ```no_run /// # let foo = 1; /// # #[allow(unused)] /// i32::try_from(foo).is_ok(); /// ``` #[clippy::version = "1.37.0"] pub CHECKED_CONVERSIONS, pedantic, "`try_from` could replace manual bounds checking when casting" } pub struct CheckedConversions { msrv: Msrv, } impl CheckedConversions { pub fn new(conf: &'static Conf) -> Self { Self { msrv: conf.msrv.clone(), } } } impl_lint_pass!(CheckedConversions => [CHECKED_CONVERSIONS]); impl<'tcx> LateLintPass<'tcx> for CheckedConversions { fn check_expr(&mut self, cx: &LateContext<'_>, item: &Expr<'_>) { if let ExprKind::Binary(op, lhs, rhs) = item.kind && let (lt1, gt1, op2) = match op.node { BinOpKind::Le => (lhs, rhs, None), BinOpKind::Ge => (rhs, lhs, None), BinOpKind::And if let ExprKind::Binary(op1, lhs1, rhs1) = lhs.kind && let ExprKind::Binary(op2, lhs2, rhs2) = rhs.kind && let Some((lt1, gt1)) = read_le_ge(op1.node, lhs1, rhs1) && let Some((lt2, gt2)) = read_le_ge(op2.node, lhs2, rhs2) => { (lt1, gt1, Some((lt2, gt2))) }, _ => return, } && !in_external_macro(cx.sess(), item.span) && !is_in_const_context(cx) && self.msrv.meets(msrvs::TRY_FROM) && let Some(cv) = match op2 { // todo: check for case signed -> larger unsigned == only x >= 0 None => check_upper_bound(lt1, gt1).filter(|cv| cv.cvt == ConversionType::FromUnsigned), Some((lt2, gt2)) => { let upper_lower = |lt1, gt1, lt2, gt2| { check_upper_bound(lt1, gt1) .zip(check_lower_bound(lt2, gt2)) .and_then(|(l, r)| l.combine(r, cx)) }; upper_lower(lt1, gt1, lt2, gt2).or_else(|| upper_lower(lt2, gt2, lt1, gt1)) }, } && let Some(to_type) = cv.to_type { let mut applicability = Applicability::MachineApplicable; let snippet = snippet_with_applicability(cx, cv.expr_to_cast.span, "_", &mut applicability); span_lint_and_sugg( cx, CHECKED_CONVERSIONS, item.span, "checked cast can be simplified", "try", format!("{to_type}::try_from({snippet}).is_ok()"), applicability, ); } } extract_msrv_attr!(LateContext); } /// Contains the result of a tried conversion check #[derive(Clone, Debug)] struct Conversion<'a> { cvt: ConversionType, expr_to_cast: &'a Expr<'a>, to_type: Option<&'a str>, } /// The kind of conversion that is checked #[derive(Copy, Clone, Debug, PartialEq, Eq)] enum ConversionType { SignedToUnsigned, SignedToSigned, FromUnsigned, } /// Attempts to read either `<=` or `>=` with a normalized operand order. fn read_le_ge<'tcx>( op: BinOpKind, lhs: &'tcx Expr<'tcx>, rhs: &'tcx Expr<'tcx>, ) -> Option<(&'tcx Expr<'tcx>, &'tcx Expr<'tcx>)> { match op { BinOpKind::Le => Some((lhs, rhs)), BinOpKind::Ge => Some((rhs, lhs)), _ => None, } } impl<'a> Conversion<'a> { /// Combine multiple conversions if the are compatible pub fn combine(self, other: Self, cx: &LateContext<'_>) -> Option> { if self.is_compatible(&other, cx) { // Prefer a Conversion that contains a type-constraint Some(if self.to_type.is_some() { self } else { other }) } else { None } } /// Checks if two conversions are compatible /// same type of conversion, same 'castee' and same 'to type' pub fn is_compatible(&self, other: &Self, cx: &LateContext<'_>) -> bool { (self.cvt == other.cvt) && (SpanlessEq::new(cx).eq_expr(self.expr_to_cast, other.expr_to_cast)) && (self.has_compatible_to_type(other)) } /// Checks if the to-type is the same (if there is a type constraint) fn has_compatible_to_type(&self, other: &Self) -> bool { match (self.to_type, other.to_type) { (Some(l), Some(r)) => l == r, _ => true, } } /// Try to construct a new conversion if the conversion type is valid fn try_new(expr_to_cast: &'a Expr<'_>, from_type: &str, to_type: &'a str) -> Option> { ConversionType::try_new(from_type, to_type).map(|cvt| Conversion { cvt, expr_to_cast, to_type: Some(to_type), }) } /// Construct a new conversion without type constraint fn new_any(expr_to_cast: &'a Expr<'_>) -> Conversion<'a> { Conversion { cvt: ConversionType::SignedToUnsigned, expr_to_cast, to_type: None, } } } impl ConversionType { /// Creates a conversion type if the type is allowed & conversion is valid #[must_use] fn try_new(from: &str, to: &str) -> Option { if UINTS.contains(&from) { Some(Self::FromUnsigned) } else if SINTS.contains(&from) { if UINTS.contains(&to) { Some(Self::SignedToUnsigned) } else if SINTS.contains(&to) { Some(Self::SignedToSigned) } else { None } } else { None } } } /// Check for `expr <= (to_type::MAX as from_type)` fn check_upper_bound<'tcx>(lt: &'tcx Expr<'tcx>, gt: &'tcx Expr<'tcx>) -> Option> { if let Some((from, to)) = get_types_from_cast(gt, INTS, "max_value", "MAX") { Conversion::try_new(lt, from, to) } else { None } } /// Check for `expr >= 0|(to_type::MIN as from_type)` fn check_lower_bound<'tcx>(lt: &'tcx Expr<'tcx>, gt: &'tcx Expr<'tcx>) -> Option> { check_lower_bound_zero(gt, lt).or_else(|| check_lower_bound_min(gt, lt)) } /// Check for `expr >= 0` fn check_lower_bound_zero<'a>(candidate: &'a Expr<'_>, check: &'a Expr<'_>) -> Option> { is_integer_literal(check, 0).then(|| Conversion::new_any(candidate)) } /// Check for `expr >= (to_type::MIN as from_type)` fn check_lower_bound_min<'a>(candidate: &'a Expr<'_>, check: &'a Expr<'_>) -> Option> { if let Some((from, to)) = get_types_from_cast(check, SINTS, "min_value", "MIN") { Conversion::try_new(candidate, from, to) } else { None } } /// Tries to extract the from- and to-type from a cast expression fn get_types_from_cast<'a>( expr: &'a Expr<'_>, types: &'a [&str], func: &'a str, assoc_const: &'a str, ) -> Option<(&'a str, &'a str)> { // `to_type::max_value() as from_type` // or `to_type::MAX as from_type` let call_from_cast: Option<(&Expr<'_>, &str)> = if let ExprKind::Cast(limit, from_type) = &expr.kind // to_type::max_value(), from_type && let TyKind::Path(ref from_type_path) = &from_type.kind && let Some(from_sym) = int_ty_to_sym(from_type_path) { Some((limit, from_sym)) } else { None }; // `from_type::from(to_type::max_value())` let limit_from: Option<(&Expr<'_>, &str)> = call_from_cast.or_else(|| { if let ExprKind::Call(from_func, [limit]) = &expr.kind // `from_type::from, to_type::max_value()` // `from_type::from` && let ExprKind::Path(ref path) = &from_func.kind && let Some(from_sym) = get_implementing_type(path, INTS, "from") { Some((limit, from_sym)) } else { None } }); if let Some((limit, from_type)) = limit_from { match limit.kind { // `from_type::from(_)` ExprKind::Call(path, _) => { if let ExprKind::Path(ref path) = path.kind { // `to_type` if let Some(to_type) = get_implementing_type(path, types, func) { return Some((from_type, to_type)); } } }, // `to_type::MAX` ExprKind::Path(ref path) => { if let Some(to_type) = get_implementing_type(path, types, assoc_const) { return Some((from_type, to_type)); } }, _ => {}, } }; None } /// Gets the type which implements the called function fn get_implementing_type<'a>(path: &QPath<'_>, candidates: &'a [&str], function: &str) -> Option<&'a str> { if let QPath::TypeRelative(ty, path) = &path && path.ident.name.as_str() == function && let TyKind::Path(QPath::Resolved(None, tp)) = &ty.kind && let [int] = tp.segments { let name = int.ident.name.as_str(); candidates.iter().find(|c| &name == *c).copied() } else { None } } /// Gets the type as a string, if it is a supported integer fn int_ty_to_sym<'tcx>(path: &QPath<'_>) -> Option<&'tcx str> { if let QPath::Resolved(_, path) = *path && let [ty] = path.segments { let name = ty.ident.name.as_str(); INTS.iter().find(|c| &name == *c).copied() } else { None } } // Constants const UINTS: &[&str] = &["u8", "u16", "u32", "u64", "usize"]; const SINTS: &[&str] = &["i8", "i16", "i32", "i64", "isize"]; const INTS: &[&str] = &["u8", "u16", "u32", "u64", "usize", "i8", "i16", "i32", "i64", "isize"];