//! Optional values. //! //! Type [`Option`] represents an optional value: every [`Option`] //! is either [`Some`] and contains a value, or [`None`], and //! does not. [`Option`] types are very common in Rust code, as //! they have a number of uses: //! //! * Initial values //! * Return values for functions that are not defined //! over their entire input range (partial functions) //! * Return value for otherwise reporting simple errors, where [`None`] is //! returned on error //! * Optional struct fields //! * Struct fields that can be loaned or "taken" //! * Optional function arguments //! * Nullable pointers //! * Swapping things out of difficult situations //! //! [`Option`]s are commonly paired with pattern matching to query the presence //! of a value and take action, always accounting for the [`None`] case. //! //! ``` //! fn divide(numerator: f64, denominator: f64) -> Option { //! if denominator == 0.0 { //! None //! } else { //! Some(numerator / denominator) //! } //! } //! //! // The return value of the function is an option //! let result = divide(2.0, 3.0); //! //! // Pattern match to retrieve the value //! match result { //! // The division was valid //! Some(x) => println!("Result: {x}"), //! // The division was invalid //! None => println!("Cannot divide by 0"), //! } //! ``` //! // // FIXME: Show how `Option` is used in practice, with lots of methods // //! # Options and pointers ("nullable" pointers) //! //! Rust's pointer types must always point to a valid location; there are //! no "null" references. Instead, Rust has *optional* pointers, like //! the optional owned box, [Option]<[Box\]>. //! //! [Box\]: ../../std/boxed/struct.Box.html //! //! The following example uses [`Option`] to create an optional box of //! [`i32`]. Notice that in order to use the inner [`i32`] value, the //! `check_optional` function first needs to use pattern matching to //! determine whether the box has a value (i.e., it is [`Some(...)`][`Some`]) or //! not ([`None`]). //! //! ``` //! let optional = None; //! check_optional(optional); //! //! let optional = Some(Box::new(9000)); //! check_optional(optional); //! //! fn check_optional(optional: Option>) { //! match optional { //! Some(p) => println!("has value {p}"), //! None => println!("has no value"), //! } //! } //! ``` //! //! # The question mark operator, `?` //! //! Similar to the [`Result`] type, when writing code that calls many functions that return the //! [`Option`] type, handling `Some`/`None` can be tedious. The question mark //! operator, [`?`], hides some of the boilerplate of propagating values //! up the call stack. //! //! It replaces this: //! //! ``` //! # #![allow(dead_code)] //! fn add_last_numbers(stack: &mut Vec) -> Option { //! let a = stack.pop(); //! let b = stack.pop(); //! //! match (a, b) { //! (Some(x), Some(y)) => Some(x + y), //! _ => None, //! } //! } //! //! ``` //! //! With this: //! //! ``` //! # #![allow(dead_code)] //! fn add_last_numbers(stack: &mut Vec) -> Option { //! Some(stack.pop()? + stack.pop()?) //! } //! ``` //! //! *It's much nicer!* //! //! Ending the expression with [`?`] will result in the [`Some`]'s unwrapped value, unless the //! result is [`None`], in which case [`None`] is returned early from the enclosing function. //! //! [`?`] can be used in functions that return [`Option`] because of the //! early return of [`None`] that it provides. //! //! [`?`]: crate::ops::Try //! [`Some`]: Some //! [`None`]: None //! //! # Representation //! //! Rust guarantees to optimize the following types `T` such that //! [`Option`] has the same size and alignment as `T`: //! //! * [`Box`] //! * `&U` //! * `&mut U` //! * `fn`, `extern "C" fn`[^extern_fn] //! * [`num::NonZero*`] //! * [`ptr::NonNull`] //! * `#[repr(transparent)]` struct around one of the types in this list. //! //! [^extern_fn]: this remains true for any other ABI: `extern "abi" fn` (_e.g._, `extern "system" fn`) //! //! [`Box`]: ../../std/boxed/struct.Box.html //! [`num::NonZero*`]: crate::num //! [`ptr::NonNull`]: crate::ptr::NonNull //! //! This is called the "null pointer optimization" or NPO. //! //! It is further guaranteed that, for the cases above, one can //! [`mem::transmute`] from all valid values of `T` to `Option` and //! from `Some::(_)` to `T` (but transmuting `None::` to `T` //! is undefined behaviour). //! //! # Method overview //! //! In addition to working with pattern matching, [`Option`] provides a wide //! variety of different methods. //! //! ## Querying the variant //! //! The [`is_some`] and [`is_none`] methods return [`true`] if the [`Option`] //! is [`Some`] or [`None`], respectively. //! //! [`is_none`]: Option::is_none //! [`is_some`]: Option::is_some //! //! ## Adapters for working with references //! //! * [`as_ref`] converts from [&][][Option]\ to [Option]<[&]T> //! * [`as_mut`] converts from [&mut] [Option]\ to [Option]<[&mut] T> //! * [`as_deref`] converts from [&][][Option]\ to //! [Option]<[&]T::[Target]> //! * [`as_deref_mut`] converts from [&mut] [Option]\ to //! [Option]<[&mut] T::[Target]> //! * [`as_pin_ref`] converts from [Pin]<[&][][Option]\> to //! [Option]<[Pin]<[&]T>> //! * [`as_pin_mut`] converts from [Pin]<[&mut] [Option]\> to //! [Option]<[Pin]<[&mut] T>> //! //! [&]: reference "shared reference" //! [&mut]: reference "mutable reference" //! [Target]: Deref::Target "ops::Deref::Target" //! [`as_deref`]: Option::as_deref //! [`as_deref_mut`]: Option::as_deref_mut //! [`as_mut`]: Option::as_mut //! [`as_pin_mut`]: Option::as_pin_mut //! [`as_pin_ref`]: Option::as_pin_ref //! [`as_ref`]: Option::as_ref //! //! ## Extracting the contained value //! //! These methods extract the contained value in an [`Option`] when it //! is the [`Some`] variant. If the [`Option`] is [`None`]: //! //! * [`expect`] panics with a provided custom message //! * [`unwrap`] panics with a generic message //! * [`unwrap_or`] returns the provided default value //! * [`unwrap_or_default`] returns the default value of the type `T` //! (which must implement the [`Default`] trait) //! * [`unwrap_or_else`] returns the result of evaluating the provided //! function //! //! [`expect`]: Option::expect //! [`unwrap`]: Option::unwrap //! [`unwrap_or`]: Option::unwrap_or //! [`unwrap_or_default`]: Option::unwrap_or_default //! [`unwrap_or_else`]: Option::unwrap_or_else //! //! ## Transforming contained values //! //! These methods transform [`Option`] to [`Result`]: //! //! * [`ok_or`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to //! [`Err(err)`] using the provided default `err` value //! * [`ok_or_else`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to //! a value of [`Err`] using the provided function //! * [`transpose`] transposes an [`Option`] of a [`Result`] into a //! [`Result`] of an [`Option`] //! //! [`Err(err)`]: Err //! [`Ok(v)`]: Ok //! [`Some(v)`]: Some //! [`ok_or`]: Option::ok_or //! [`ok_or_else`]: Option::ok_or_else //! [`transpose`]: Option::transpose //! //! These methods transform the [`Some`] variant: //! //! * [`filter`] calls the provided predicate function on the contained //! value `t` if the [`Option`] is [`Some(t)`], and returns [`Some(t)`] //! if the function returns `true`; otherwise, returns [`None`] //! * [`flatten`] removes one level of nesting from an //! [`Option>`] //! * [`map`] transforms [`Option`] to [`Option`] by applying the //! provided function to the contained value of [`Some`] and leaving //! [`None`] values unchanged //! //! [`Some(t)`]: Some //! [`filter`]: Option::filter //! [`flatten`]: Option::flatten //! [`map`]: Option::map //! //! These methods transform [`Option`] to a value of a possibly //! different type `U`: //! //! * [`map_or`] applies the provided function to the contained value of //! [`Some`], or returns the provided default value if the [`Option`] is //! [`None`] //! * [`map_or_else`] applies the provided function to the contained value //! of [`Some`], or returns the result of evaluating the provided //! fallback function if the [`Option`] is [`None`] //! //! [`map_or`]: Option::map_or //! [`map_or_else`]: Option::map_or_else //! //! These methods combine the [`Some`] variants of two [`Option`] values: //! //! * [`zip`] returns [`Some((s, o))`] if `self` is [`Some(s)`] and the //! provided [`Option`] value is [`Some(o)`]; otherwise, returns [`None`] //! * [`zip_with`] calls the provided function `f` and returns //! [`Some(f(s, o))`] if `self` is [`Some(s)`] and the provided //! [`Option`] value is [`Some(o)`]; otherwise, returns [`None`] //! //! [`Some(f(s, o))`]: Some //! [`Some(o)`]: Some //! [`Some(s)`]: Some //! [`Some((s, o))`]: Some //! [`zip`]: Option::zip //! [`zip_with`]: Option::zip_with //! //! ## Boolean operators //! //! These methods treat the [`Option`] as a boolean value, where [`Some`] //! acts like [`true`] and [`None`] acts like [`false`]. There are two //! categories of these methods: ones that take an [`Option`] as input, and //! ones that take a function as input (to be lazily evaluated). //! //! The [`and`], [`or`], and [`xor`] methods take another [`Option`] as //! input, and produce an [`Option`] as output. Only the [`and`] method can //! produce an [`Option`] value having a different inner type `U` than //! [`Option`]. //! //! | method | self | input | output | //! |---------|-----------|-----------|-----------| //! | [`and`] | `None` | (ignored) | `None` | //! | [`and`] | `Some(x)` | `None` | `None` | //! | [`and`] | `Some(x)` | `Some(y)` | `Some(y)` | //! | [`or`] | `None` | `None` | `None` | //! | [`or`] | `None` | `Some(y)` | `Some(y)` | //! | [`or`] | `Some(x)` | (ignored) | `Some(x)` | //! | [`xor`] | `None` | `None` | `None` | //! | [`xor`] | `None` | `Some(y)` | `Some(y)` | //! | [`xor`] | `Some(x)` | `None` | `Some(x)` | //! | [`xor`] | `Some(x)` | `Some(y)` | `None` | //! //! [`and`]: Option::and //! [`or`]: Option::or //! [`xor`]: Option::xor //! //! The [`and_then`] and [`or_else`] methods take a function as input, and //! only evaluate the function when they need to produce a new value. Only //! the [`and_then`] method can produce an [`Option`] value having a //! different inner type `U` than [`Option`]. //! //! | method | self | function input | function result | output | //! |--------------|-----------|----------------|-----------------|-----------| //! | [`and_then`] | `None` | (not provided) | (not evaluated) | `None` | //! | [`and_then`] | `Some(x)` | `x` | `None` | `None` | //! | [`and_then`] | `Some(x)` | `x` | `Some(y)` | `Some(y)` | //! | [`or_else`] | `None` | (not provided) | `None` | `None` | //! | [`or_else`] | `None` | (not provided) | `Some(y)` | `Some(y)` | //! | [`or_else`] | `Some(x)` | (not provided) | (not evaluated) | `Some(x)` | //! //! [`and_then`]: Option::and_then //! [`or_else`]: Option::or_else //! //! This is an example of using methods like [`and_then`] and [`or`] in a //! pipeline of method calls. Early stages of the pipeline pass failure //! values ([`None`]) through unchanged, and continue processing on //! success values ([`Some`]). Toward the end, [`or`] substitutes an error //! message if it receives [`None`]. //! //! ``` //! # use std::collections::BTreeMap; //! let mut bt = BTreeMap::new(); //! bt.insert(20u8, "foo"); //! bt.insert(42u8, "bar"); //! let res = [0u8, 1, 11, 200, 22] //! .into_iter() //! .map(|x| { //! // `checked_sub()` returns `None` on error //! x.checked_sub(1) //! // same with `checked_mul()` //! .and_then(|x| x.checked_mul(2)) //! // `BTreeMap::get` returns `None` on error //! .and_then(|x| bt.get(&x)) //! // Substitute an error message if we have `None` so far //! .or(Some(&"error!")) //! .copied() //! // Won't panic because we unconditionally used `Some` above //! .unwrap() //! }) //! .collect::>(); //! assert_eq!(res, ["error!", "error!", "foo", "error!", "bar"]); //! ``` //! //! ## Comparison operators //! //! If `T` implements [`PartialOrd`] then [`Option`] will derive its //! [`PartialOrd`] implementation. With this order, [`None`] compares as //! less than any [`Some`], and two [`Some`] compare the same way as their //! contained values would in `T`. If `T` also implements //! [`Ord`], then so does [`Option`]. //! //! ``` //! assert!(None < Some(0)); //! assert!(Some(0) < Some(1)); //! ``` //! //! ## Iterating over `Option` //! //! An [`Option`] can be iterated over. This can be helpful if you need an //! iterator that is conditionally empty. The iterator will either produce //! a single value (when the [`Option`] is [`Some`]), or produce no values //! (when the [`Option`] is [`None`]). For example, [`into_iter`] acts like //! [`once(v)`] if the [`Option`] is [`Some(v)`], and like [`empty()`] if //! the [`Option`] is [`None`]. //! //! [`Some(v)`]: Some //! [`empty()`]: crate::iter::empty //! [`once(v)`]: crate::iter::once //! //! Iterators over [`Option`] come in three types: //! //! * [`into_iter`] consumes the [`Option`] and produces the contained //! value //! * [`iter`] produces an immutable reference of type `&T` to the //! contained value //! * [`iter_mut`] produces a mutable reference of type `&mut T` to the //! contained value //! //! [`into_iter`]: Option::into_iter //! [`iter`]: Option::iter //! [`iter_mut`]: Option::iter_mut //! //! An iterator over [`Option`] can be useful when chaining iterators, for //! example, to conditionally insert items. (It's not always necessary to //! explicitly call an iterator constructor: many [`Iterator`] methods that //! accept other iterators will also accept iterable types that implement //! [`IntoIterator`], which includes [`Option`].) //! //! ``` //! let yep = Some(42); //! let nope = None; //! // chain() already calls into_iter(), so we don't have to do so //! let nums: Vec = (0..4).chain(yep).chain(4..8).collect(); //! assert_eq!(nums, [0, 1, 2, 3, 42, 4, 5, 6, 7]); //! let nums: Vec = (0..4).chain(nope).chain(4..8).collect(); //! assert_eq!(nums, [0, 1, 2, 3, 4, 5, 6, 7]); //! ``` //! //! One reason to chain iterators in this way is that a function returning //! `impl Iterator` must have all possible return values be of the same //! concrete type. Chaining an iterated [`Option`] can help with that. //! //! ``` //! fn make_iter(do_insert: bool) -> impl Iterator { //! // Explicit returns to illustrate return types matching //! match do_insert { //! true => return (0..4).chain(Some(42)).chain(4..8), //! false => return (0..4).chain(None).chain(4..8), //! } //! } //! println!("{:?}", make_iter(true).collect::>()); //! println!("{:?}", make_iter(false).collect::>()); //! ``` //! //! If we try to do the same thing, but using [`once()`] and [`empty()`], //! we can't return `impl Iterator` anymore because the concrete types of //! the return values differ. //! //! [`empty()`]: crate::iter::empty //! [`once()`]: crate::iter::once //! //! ```compile_fail,E0308 //! # use std::iter::{empty, once}; //! // This won't compile because all possible returns from the function //! // must have the same concrete type. //! fn make_iter(do_insert: bool) -> impl Iterator { //! // Explicit returns to illustrate return types not matching //! match do_insert { //! true => return (0..4).chain(once(42)).chain(4..8), //! false => return (0..4).chain(empty()).chain(4..8), //! } //! } //! ``` //! //! ## Collecting into `Option` //! //! [`Option`] implements the [`FromIterator`][impl-FromIterator] trait, //! which allows an iterator over [`Option`] values to be collected into an //! [`Option`] of a collection of each contained value of the original //! [`Option`] values, or [`None`] if any of the elements was [`None`]. //! //! [impl-FromIterator]: Option#impl-FromIterator%3COption%3CA%3E%3E-for-Option%3CV%3E //! //! ``` //! let v = [Some(2), Some(4), None, Some(8)]; //! let res: Option> = v.into_iter().collect(); //! assert_eq!(res, None); //! let v = [Some(2), Some(4), Some(8)]; //! let res: Option> = v.into_iter().collect(); //! assert_eq!(res, Some(vec![2, 4, 8])); //! ``` //! //! [`Option`] also implements the [`Product`][impl-Product] and //! [`Sum`][impl-Sum] traits, allowing an iterator over [`Option`] values //! to provide the [`product`][Iterator::product] and //! [`sum`][Iterator::sum] methods. //! //! [impl-Product]: Option#impl-Product%3COption%3CU%3E%3E-for-Option%3CT%3E //! [impl-Sum]: Option#impl-Sum%3COption%3CU%3E%3E-for-Option%3CT%3E //! //! ``` //! let v = [None, Some(1), Some(2), Some(3)]; //! let res: Option = v.into_iter().sum(); //! assert_eq!(res, None); //! let v = [Some(1), Some(2), Some(21)]; //! let res: Option = v.into_iter().product(); //! assert_eq!(res, Some(42)); //! ``` //! //! ## Modifying an [`Option`] in-place //! //! These methods return a mutable reference to the contained value of an //! [`Option`]: //! //! * [`insert`] inserts a value, dropping any old contents //! * [`get_or_insert`] gets the current value, inserting a provided //! default value if it is [`None`] //! * [`get_or_insert_default`] gets the current value, inserting the //! default value of type `T` (which must implement [`Default`]) if it is //! [`None`] //! * [`get_or_insert_with`] gets the current value, inserting a default //! computed by the provided function if it is [`None`] //! //! [`get_or_insert`]: Option::get_or_insert //! [`get_or_insert_default`]: Option::get_or_insert_default //! [`get_or_insert_with`]: Option::get_or_insert_with //! [`insert`]: Option::insert //! //! These methods transfer ownership of the contained value of an //! [`Option`]: //! //! * [`take`] takes ownership of the contained value of an [`Option`], if //! any, replacing the [`Option`] with [`None`] //! * [`replace`] takes ownership of the contained value of an [`Option`], //! if any, replacing the [`Option`] with a [`Some`] containing the //! provided value //! //! [`replace`]: Option::replace //! [`take`]: Option::take //! //! # Examples //! //! Basic pattern matching on [`Option`]: //! //! ``` //! let msg = Some("howdy"); //! //! // Take a reference to the contained string //! if let Some(m) = &msg { //! println!("{}", *m); //! } //! //! // Remove the contained string, destroying the Option //! let unwrapped_msg = msg.unwrap_or("default message"); //! ``` //! //! Initialize a result to [`None`] before a loop: //! //! ``` //! enum Kingdom { Plant(u32, &'static str), Animal(u32, &'static str) } //! //! // A list of data to search through. //! let all_the_big_things = [ //! Kingdom::Plant(250, "redwood"), //! Kingdom::Plant(230, "noble fir"), //! Kingdom::Plant(229, "sugar pine"), //! Kingdom::Animal(25, "blue whale"), //! Kingdom::Animal(19, "fin whale"), //! Kingdom::Animal(15, "north pacific right whale"), //! ]; //! //! // We're going to search for the name of the biggest animal, //! // but to start with we've just got `None`. //! let mut name_of_biggest_animal = None; //! let mut size_of_biggest_animal = 0; //! for big_thing in &all_the_big_things { //! match *big_thing { //! Kingdom::Animal(size, name) if size > size_of_biggest_animal => { //! // Now we've found the name of some big animal //! size_of_biggest_animal = size; //! name_of_biggest_animal = Some(name); //! } //! Kingdom::Animal(..) | Kingdom::Plant(..) => () //! } //! } //! //! match name_of_biggest_animal { //! Some(name) => println!("the biggest animal is {name}"), //! None => println!("there are no animals :("), //! } //! ``` #![stable(feature = "rust1", since = "1.0.0")] use crate::iter::{self, FromIterator, FusedIterator, TrustedLen}; use crate::panicking::{panic, panic_str}; use crate::pin::Pin; use crate::{ cmp, convert, hint, mem, ops::{self, ControlFlow, Deref, DerefMut}, slice, }; /// The `Option` type. See [the module level documentation](self) for more. #[derive(Copy, PartialOrd, Eq, Ord, Debug, Hash)] #[rustc_diagnostic_item = "Option"] #[lang = "Option"] #[stable(feature = "rust1", since = "1.0.0")] pub enum Option { /// No value. #[lang = "None"] #[stable(feature = "rust1", since = "1.0.0")] None, /// Some value of type `T`. #[lang = "Some"] #[stable(feature = "rust1", since = "1.0.0")] Some(#[stable(feature = "rust1", since = "1.0.0")] T), } ///////////////////////////////////////////////////////////////////////////// // Type implementation ///////////////////////////////////////////////////////////////////////////// impl Option { ///////////////////////////////////////////////////////////////////////// // Querying the contained values ///////////////////////////////////////////////////////////////////////// /// Returns `true` if the option is a [`Some`] value. /// /// # Examples /// /// ``` /// let x: Option = Some(2); /// assert_eq!(x.is_some(), true); /// /// let x: Option = None; /// assert_eq!(x.is_some(), false); /// ``` #[must_use = "if you intended to assert that this has a value, consider `.unwrap()` instead"] #[inline] #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")] pub const fn is_some(&self) -> bool { matches!(*self, Some(_)) } /// Returns `true` if the option is a [`Some`] and the value inside of it matches a predicate. /// /// # Examples /// /// ``` /// let x: Option = Some(2); /// assert_eq!(x.is_some_and(|x| x > 1), true); /// /// let x: Option = Some(0); /// assert_eq!(x.is_some_and(|x| x > 1), false); /// /// let x: Option = None; /// assert_eq!(x.is_some_and(|x| x > 1), false); /// ``` #[must_use] #[inline] #[stable(feature = "is_some_and", since = "1.70.0")] pub fn is_some_and(self, f: impl FnOnce(T) -> bool) -> bool { match self { None => false, Some(x) => f(x), } } /// Returns `true` if the option is a [`None`] value. /// /// # Examples /// /// ``` /// let x: Option = Some(2); /// assert_eq!(x.is_none(), false); /// /// let x: Option = None; /// assert_eq!(x.is_none(), true); /// ``` #[must_use = "if you intended to assert that this doesn't have a value, consider \ `.and_then(|_| panic!(\"`Option` had a value when expected `None`\"))` instead"] #[inline] #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")] pub const fn is_none(&self) -> bool { !self.is_some() } ///////////////////////////////////////////////////////////////////////// // Adapter for working with references ///////////////////////////////////////////////////////////////////////// /// Converts from `&Option` to `Option<&T>`. /// /// # Examples /// /// Calculates the length of an Option<[String]> as an Option<[usize]> /// without moving the [`String`]. The [`map`] method takes the `self` argument by value, /// consuming the original, so this technique uses `as_ref` to first take an `Option` to a /// reference to the value inside the original. /// /// [`map`]: Option::map /// [String]: ../../std/string/struct.String.html "String" /// [`String`]: ../../std/string/struct.String.html "String" /// /// ``` /// let text: Option = Some("Hello, world!".to_string()); /// // First, cast `Option` to `Option<&String>` with `as_ref`, /// // then consume *that* with `map`, leaving `text` on the stack. /// let text_length: Option = text.as_ref().map(|s| s.len()); /// println!("still can print text: {text:?}"); /// ``` #[inline] #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")] #[stable(feature = "rust1", since = "1.0.0")] pub const fn as_ref(&self) -> Option<&T> { match *self { Some(ref x) => Some(x), None => None, } } /// Converts from `&mut Option` to `Option<&mut T>`. /// /// # Examples /// /// ``` /// let mut x = Some(2); /// match x.as_mut() { /// Some(v) => *v = 42, /// None => {}, /// } /// assert_eq!(x, Some(42)); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_unstable(feature = "const_option", issue = "67441")] pub const fn as_mut(&mut self) -> Option<&mut T> { match *self { Some(ref mut x) => Some(x), None => None, } } /// Converts from [Pin]<[&]Option\> to Option<[Pin]<[&]T>>. /// /// [&]: reference "shared reference" #[inline] #[must_use] #[stable(feature = "pin", since = "1.33.0")] #[rustc_const_unstable(feature = "const_option_ext", issue = "91930")] pub const fn as_pin_ref(self: Pin<&Self>) -> Option> { match Pin::get_ref(self).as_ref() { // SAFETY: `x` is guaranteed to be pinned because it comes from `self` // which is pinned. Some(x) => unsafe { Some(Pin::new_unchecked(x)) }, None => None, } } /// Converts from [Pin]<[&mut] Option\> to Option<[Pin]<[&mut] T>>. /// /// [&mut]: reference "mutable reference" #[inline] #[must_use] #[stable(feature = "pin", since = "1.33.0")] #[rustc_const_unstable(feature = "const_option_ext", issue = "91930")] pub const fn as_pin_mut(self: Pin<&mut Self>) -> Option> { // SAFETY: `get_unchecked_mut` is never used to move the `Option` inside `self`. // `x` is guaranteed to be pinned because it comes from `self` which is pinned. unsafe { match Pin::get_unchecked_mut(self).as_mut() { Some(x) => Some(Pin::new_unchecked(x)), None => None, } } } /// Returns a slice of the contained value, if any. If this is `None`, an /// empty slice is returned. This can be useful to have a single type of /// iterator over an `Option` or slice. /// /// Note: Should you have an `Option<&T>` and wish to get a slice of `T`, /// you can unpack it via `opt.map_or(&[], std::slice::from_ref)`. /// /// # Examples /// /// ```rust /// assert_eq!( /// [Some(1234).as_slice(), None.as_slice()], /// [&[1234][..], &[][..]], /// ); /// ``` /// /// The inverse of this function is (discounting /// borrowing) [`[_]::first`](slice::first): /// /// ```rust /// for i in [Some(1234_u16), None] { /// assert_eq!(i.as_ref(), i.as_slice().first()); /// } /// ``` #[inline] #[must_use] #[stable(feature = "option_as_slice", since = "CURRENT_RUSTC_VERSION")] pub fn as_slice(&self) -> &[T] { // SAFETY: When the `Option` is `Some`, we're using the actual pointer // to the payload, with a length of 1, so this is equivalent to // `slice::from_ref`, and thus is safe. // When the `Option` is `None`, the length used is 0, so to be safe it // just needs to be aligned, which it is because `&self` is aligned and // the offset used is a multiple of alignment. // // In the new version, the intrinsic always returns a pointer to an // in-bounds and correctly aligned position for a `T` (even if in the // `None` case it's just padding). unsafe { slice::from_raw_parts( crate::intrinsics::option_payload_ptr(crate::ptr::from_ref(self)), usize::from(self.is_some()), ) } } /// Returns a mutable slice of the contained value, if any. If this is /// `None`, an empty slice is returned. This can be useful to have a /// single type of iterator over an `Option` or slice. /// /// Note: Should you have an `Option<&mut T>` instead of a /// `&mut Option`, which this method takes, you can obtain a mutable /// slice via `opt.map_or(&mut [], std::slice::from_mut)`. /// /// # Examples /// /// ```rust /// assert_eq!( /// [Some(1234).as_mut_slice(), None.as_mut_slice()], /// [&mut [1234][..], &mut [][..]], /// ); /// ``` /// /// The result is a mutable slice of zero or one items that points into /// our original `Option`: /// /// ```rust /// let mut x = Some(1234); /// x.as_mut_slice()[0] += 1; /// assert_eq!(x, Some(1235)); /// ``` /// /// The inverse of this method (discounting borrowing) /// is [`[_]::first_mut`](slice::first_mut): /// /// ```rust /// assert_eq!(Some(123).as_mut_slice().first_mut(), Some(&mut 123)) /// ``` #[inline] #[must_use] #[stable(feature = "option_as_slice", since = "CURRENT_RUSTC_VERSION")] pub fn as_mut_slice(&mut self) -> &mut [T] { // SAFETY: When the `Option` is `Some`, we're using the actual pointer // to the payload, with a length of 1, so this is equivalent to // `slice::from_mut`, and thus is safe. // When the `Option` is `None`, the length used is 0, so to be safe it // just needs to be aligned, which it is because `&self` is aligned and // the offset used is a multiple of alignment. // // In the new version, the intrinsic creates a `*const T` from a // mutable reference so it is safe to cast back to a mutable pointer // here. As with `as_slice`, the intrinsic always returns a pointer to // an in-bounds and correctly aligned position for a `T` (even if in // the `None` case it's just padding). unsafe { slice::from_raw_parts_mut( crate::intrinsics::option_payload_ptr(crate::ptr::from_mut(self).cast_const()) .cast_mut(), usize::from(self.is_some()), ) } } ///////////////////////////////////////////////////////////////////////// // Getting to contained values ///////////////////////////////////////////////////////////////////////// /// Returns the contained [`Some`] value, consuming the `self` value. /// /// # Panics /// /// Panics if the value is a [`None`] with a custom panic message provided by /// `msg`. /// /// # Examples /// /// ``` /// let x = Some("value"); /// assert_eq!(x.expect("fruits are healthy"), "value"); /// ``` /// /// ```should_panic /// let x: Option<&str> = None; /// x.expect("fruits are healthy"); // panics with `fruits are healthy` /// ``` /// /// # Recommended Message Style /// /// We recommend that `expect` messages are used to describe the reason you /// _expect_ the `Option` should be `Some`. /// /// ```should_panic /// # let slice: &[u8] = &[]; /// let item = slice.get(0) /// .expect("slice should not be empty"); /// ``` /// /// **Hint**: If you're having trouble remembering how to phrase expect /// error messages remember to focus on the word "should" as in "env /// variable should be set by blah" or "the given binary should be available /// and executable by the current user". /// /// For more detail on expect message styles and the reasoning behind our /// recommendation please refer to the section on ["Common Message /// Styles"](../../std/error/index.html#common-message-styles) in the [`std::error`](../../std/error/index.html) module docs. #[inline] #[track_caller] #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_unstable(feature = "const_option", issue = "67441")] pub const fn expect(self, msg: &str) -> T { match self { Some(val) => val, None => expect_failed(msg), } } /// Returns the contained [`Some`] value, consuming the `self` value. /// /// Because this function may panic, its use is generally discouraged. /// Instead, prefer to use pattern matching and handle the [`None`] /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or /// [`unwrap_or_default`]. /// /// [`unwrap_or`]: Option::unwrap_or /// [`unwrap_or_else`]: Option::unwrap_or_else /// [`unwrap_or_default`]: Option::unwrap_or_default /// /// # Panics /// /// Panics if the self value equals [`None`]. /// /// # Examples /// /// ``` /// let x = Some("air"); /// assert_eq!(x.unwrap(), "air"); /// ``` /// /// ```should_panic /// let x: Option<&str> = None; /// assert_eq!(x.unwrap(), "air"); // fails /// ``` #[inline] #[track_caller] #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_unstable(feature = "const_option", issue = "67441")] pub const fn unwrap(self) -> T { match self { Some(val) => val, None => panic("called `Option::unwrap()` on a `None` value"), } } /// Returns the contained [`Some`] value or a provided default. /// /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing /// the result of a function call, it is recommended to use [`unwrap_or_else`], /// which is lazily evaluated. /// /// [`unwrap_or_else`]: Option::unwrap_or_else /// /// # Examples /// /// ``` /// assert_eq!(Some("car").unwrap_or("bike"), "car"); /// assert_eq!(None.unwrap_or("bike"), "bike"); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn unwrap_or(self, default: T) -> T { match self { Some(x) => x, None => default, } } /// Returns the contained [`Some`] value or computes it from a closure. /// /// # Examples /// /// ``` /// let k = 10; /// assert_eq!(Some(4).unwrap_or_else(|| 2 * k), 4); /// assert_eq!(None.unwrap_or_else(|| 2 * k), 20); /// ``` #[inline] #[track_caller] #[stable(feature = "rust1", since = "1.0.0")] pub fn unwrap_or_else(self, f: F) -> T where F: FnOnce() -> T, { match self { Some(x) => x, None => f(), } } /// Returns the contained [`Some`] value or a default. /// /// Consumes the `self` argument then, if [`Some`], returns the contained /// value, otherwise if [`None`], returns the [default value] for that /// type. /// /// # Examples /// /// ``` /// let x: Option = None; /// let y: Option = Some(12); /// /// assert_eq!(x.unwrap_or_default(), 0); /// assert_eq!(y.unwrap_or_default(), 12); /// ``` /// /// [default value]: Default::default /// [`parse`]: str::parse /// [`FromStr`]: crate::str::FromStr #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn unwrap_or_default(self) -> T where T: Default, { match self { Some(x) => x, None => T::default(), } } /// Returns the contained [`Some`] value, consuming the `self` value, /// without checking that the value is not [`None`]. /// /// # Safety /// /// Calling this method on [`None`] is *[undefined behavior]*. /// /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html /// /// # Examples /// /// ``` /// let x = Some("air"); /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air"); /// ``` /// /// ```no_run /// let x: Option<&str> = None; /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air"); // Undefined behavior! /// ``` #[inline] #[track_caller] #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")] #[rustc_const_unstable(feature = "const_option_ext", issue = "91930")] pub const unsafe fn unwrap_unchecked(self) -> T { debug_assert!(self.is_some()); match self { Some(val) => val, // SAFETY: the safety contract must be upheld by the caller. None => unsafe { hint::unreachable_unchecked() }, } } ///////////////////////////////////////////////////////////////////////// // Transforming contained values ///////////////////////////////////////////////////////////////////////// /// Maps an `Option` to `Option` by applying a function to a contained value (if `Some`) or returns `None` (if `None`). /// /// # Examples /// /// Calculates the length of an Option<[String]> as an /// Option<[usize]>, consuming the original: /// /// [String]: ../../std/string/struct.String.html "String" /// ``` /// let maybe_some_string = Some(String::from("Hello, World!")); /// // `Option::map` takes self *by value*, consuming `maybe_some_string` /// let maybe_some_len = maybe_some_string.map(|s| s.len()); /// assert_eq!(maybe_some_len, Some(13)); /// /// let x: Option<&str> = None; /// assert_eq!(x.map(|s| s.len()), None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn map(self, f: F) -> Option where F: FnOnce(T) -> U, { match self { Some(x) => Some(f(x)), None => None, } } /// Calls the provided closure with a reference to the contained value (if [`Some`]). /// /// # Examples /// /// ``` /// #![feature(result_option_inspect)] /// /// let v = vec![1, 2, 3, 4, 5]; /// /// // prints "got: 4" /// let x: Option<&usize> = v.get(3).inspect(|x| println!("got: {x}")); /// /// // prints nothing /// let x: Option<&usize> = v.get(5).inspect(|x| println!("got: {x}")); /// ``` #[inline] #[unstable(feature = "result_option_inspect", issue = "91345")] pub fn inspect(self, f: F) -> Self where F: FnOnce(&T), { if let Some(ref x) = self { f(x); } self } /// Returns the provided default result (if none), /// or applies a function to the contained value (if any). /// /// Arguments passed to `map_or` are eagerly evaluated; if you are passing /// the result of a function call, it is recommended to use [`map_or_else`], /// which is lazily evaluated. /// /// [`map_or_else`]: Option::map_or_else /// /// # Examples /// /// ``` /// let x = Some("foo"); /// assert_eq!(x.map_or(42, |v| v.len()), 3); /// /// let x: Option<&str> = None; /// assert_eq!(x.map_or(42, |v| v.len()), 42); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] #[must_use = "if you don't need the returned value, use `if let` instead"] pub fn map_or(self, default: U, f: F) -> U where F: FnOnce(T) -> U, { match self { Some(t) => f(t), None => default, } } /// Computes a default function result (if none), or /// applies a different function to the contained value (if any). /// /// # Basic examples /// /// ``` /// let k = 21; /// /// let x = Some("foo"); /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 3); /// /// let x: Option<&str> = None; /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 42); /// ``` /// /// # Handling a Result-based fallback /// /// A somewhat common occurrence when dealing with optional values /// in combination with [`Result`] is the case where one wants to invoke /// a fallible fallback if the option is not present. This example /// parses a command line argument (if present), or the contents of a file to /// an integer. However, unlike accessing the command line argument, reading /// the file is fallible, so it must be wrapped with `Ok`. /// /// ```no_run /// # fn main() -> Result<(), Box> { /// let v: u64 = std::env::args() /// .nth(1) /// .map_or_else(|| std::fs::read_to_string("/etc/someconfig.conf"), Ok)? /// .parse()?; /// # Ok(()) /// # } /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn map_or_else(self, default: D, f: F) -> U where D: FnOnce() -> U, F: FnOnce(T) -> U, { match self { Some(t) => f(t), None => default(), } } /// Transforms the `Option` into a [`Result`], mapping [`Some(v)`] to /// [`Ok(v)`] and [`None`] to [`Err(err)`]. /// /// Arguments passed to `ok_or` are eagerly evaluated; if you are passing the /// result of a function call, it is recommended to use [`ok_or_else`], which is /// lazily evaluated. /// /// [`Ok(v)`]: Ok /// [`Err(err)`]: Err /// [`Some(v)`]: Some /// [`ok_or_else`]: Option::ok_or_else /// /// # Examples /// /// ``` /// let x = Some("foo"); /// assert_eq!(x.ok_or(0), Ok("foo")); /// /// let x: Option<&str> = None; /// assert_eq!(x.ok_or(0), Err(0)); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn ok_or(self, err: E) -> Result { match self { Some(v) => Ok(v), None => Err(err), } } /// Transforms the `Option` into a [`Result`], mapping [`Some(v)`] to /// [`Ok(v)`] and [`None`] to [`Err(err())`]. /// /// [`Ok(v)`]: Ok /// [`Err(err())`]: Err /// [`Some(v)`]: Some /// /// # Examples /// /// ``` /// let x = Some("foo"); /// assert_eq!(x.ok_or_else(|| 0), Ok("foo")); /// /// let x: Option<&str> = None; /// assert_eq!(x.ok_or_else(|| 0), Err(0)); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn ok_or_else(self, err: F) -> Result where F: FnOnce() -> E, { match self { Some(v) => Ok(v), None => Err(err()), } } /// Converts from `Option` (or `&Option`) to `Option<&T::Target>`. /// /// Leaves the original Option in-place, creating a new one with a reference /// to the original one, additionally coercing the contents via [`Deref`]. /// /// # Examples /// /// ``` /// let x: Option = Some("hey".to_owned()); /// assert_eq!(x.as_deref(), Some("hey")); /// /// let x: Option = None; /// assert_eq!(x.as_deref(), None); /// ``` #[inline] #[stable(feature = "option_deref", since = "1.40.0")] pub fn as_deref(&self) -> Option<&T::Target> where T: Deref, { match self.as_ref() { Some(t) => Some(t.deref()), None => None, } } /// Converts from `Option` (or `&mut Option`) to `Option<&mut T::Target>`. /// /// Leaves the original `Option` in-place, creating a new one containing a mutable reference to /// the inner type's [`Deref::Target`] type. /// /// # Examples /// /// ``` /// let mut x: Option = Some("hey".to_owned()); /// assert_eq!(x.as_deref_mut().map(|x| { /// x.make_ascii_uppercase(); /// x /// }), Some("HEY".to_owned().as_mut_str())); /// ``` #[inline] #[stable(feature = "option_deref", since = "1.40.0")] pub fn as_deref_mut(&mut self) -> Option<&mut T::Target> where T: DerefMut, { match self.as_mut() { Some(t) => Some(t.deref_mut()), None => None, } } ///////////////////////////////////////////////////////////////////////// // Iterator constructors ///////////////////////////////////////////////////////////////////////// /// Returns an iterator over the possibly contained value. /// /// # Examples /// /// ``` /// let x = Some(4); /// assert_eq!(x.iter().next(), Some(&4)); /// /// let x: Option = None; /// assert_eq!(x.iter().next(), None); /// ``` #[inline] #[rustc_const_unstable(feature = "const_option", issue = "67441")] #[stable(feature = "rust1", since = "1.0.0")] pub const fn iter(&self) -> Iter<'_, T> { Iter { inner: Item { opt: self.as_ref() } } } /// Returns a mutable iterator over the possibly contained value. /// /// # Examples /// /// ``` /// let mut x = Some(4); /// match x.iter_mut().next() { /// Some(v) => *v = 42, /// None => {}, /// } /// assert_eq!(x, Some(42)); /// /// let mut x: Option = None; /// assert_eq!(x.iter_mut().next(), None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn iter_mut(&mut self) -> IterMut<'_, T> { IterMut { inner: Item { opt: self.as_mut() } } } ///////////////////////////////////////////////////////////////////////// // Boolean operations on the values, eager and lazy ///////////////////////////////////////////////////////////////////////// /// Returns [`None`] if the option is [`None`], otherwise returns `optb`. /// /// Arguments passed to `and` are eagerly evaluated; if you are passing the /// result of a function call, it is recommended to use [`and_then`], which is /// lazily evaluated. /// /// [`and_then`]: Option::and_then /// /// # Examples /// /// ``` /// let x = Some(2); /// let y: Option<&str> = None; /// assert_eq!(x.and(y), None); /// /// let x: Option = None; /// let y = Some("foo"); /// assert_eq!(x.and(y), None); /// /// let x = Some(2); /// let y = Some("foo"); /// assert_eq!(x.and(y), Some("foo")); /// /// let x: Option = None; /// let y: Option<&str> = None; /// assert_eq!(x.and(y), None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn and(self, optb: Option) -> Option { match self { Some(_) => optb, None => None, } } /// Returns [`None`] if the option is [`None`], otherwise calls `f` with the /// wrapped value and returns the result. /// /// Some languages call this operation flatmap. /// /// # Examples /// /// ``` /// fn sq_then_to_string(x: u32) -> Option { /// x.checked_mul(x).map(|sq| sq.to_string()) /// } /// /// assert_eq!(Some(2).and_then(sq_then_to_string), Some(4.to_string())); /// assert_eq!(Some(1_000_000).and_then(sq_then_to_string), None); // overflowed! /// assert_eq!(None.and_then(sq_then_to_string), None); /// ``` /// /// Often used to chain fallible operations that may return [`None`]. /// /// ``` /// let arr_2d = [["A0", "A1"], ["B0", "B1"]]; /// /// let item_0_1 = arr_2d.get(0).and_then(|row| row.get(1)); /// assert_eq!(item_0_1, Some(&"A1")); /// /// let item_2_0 = arr_2d.get(2).and_then(|row| row.get(0)); /// assert_eq!(item_2_0, None); /// ``` #[doc(alias = "flatmap")] #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn and_then(self, f: F) -> Option where F: FnOnce(T) -> Option, { match self { Some(x) => f(x), None => None, } } /// Returns [`None`] if the option is [`None`], otherwise calls `predicate` /// with the wrapped value and returns: /// /// - [`Some(t)`] if `predicate` returns `true` (where `t` is the wrapped /// value), and /// - [`None`] if `predicate` returns `false`. /// /// This function works similar to [`Iterator::filter()`]. You can imagine /// the `Option` being an iterator over one or zero elements. `filter()` /// lets you decide which elements to keep. /// /// # Examples /// /// ```rust /// fn is_even(n: &i32) -> bool { /// n % 2 == 0 /// } /// /// assert_eq!(None.filter(is_even), None); /// assert_eq!(Some(3).filter(is_even), None); /// assert_eq!(Some(4).filter(is_even), Some(4)); /// ``` /// /// [`Some(t)`]: Some #[inline] #[stable(feature = "option_filter", since = "1.27.0")] pub fn filter

(self, predicate: P) -> Self where P: FnOnce(&T) -> bool, { if let Some(x) = self { if predicate(&x) { return Some(x); } } None } /// Returns the option if it contains a value, otherwise returns `optb`. /// /// Arguments passed to `or` are eagerly evaluated; if you are passing the /// result of a function call, it is recommended to use [`or_else`], which is /// lazily evaluated. /// /// [`or_else`]: Option::or_else /// /// # Examples /// /// ``` /// let x = Some(2); /// let y = None; /// assert_eq!(x.or(y), Some(2)); /// /// let x = None; /// let y = Some(100); /// assert_eq!(x.or(y), Some(100)); /// /// let x = Some(2); /// let y = Some(100); /// assert_eq!(x.or(y), Some(2)); /// /// let x: Option = None; /// let y = None; /// assert_eq!(x.or(y), None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn or(self, optb: Option) -> Option { match self { x @ Some(_) => x, None => optb, } } /// Returns the option if it contains a value, otherwise calls `f` and /// returns the result. /// /// # Examples /// /// ``` /// fn nobody() -> Option<&'static str> { None } /// fn vikings() -> Option<&'static str> { Some("vikings") } /// /// assert_eq!(Some("barbarians").or_else(vikings), Some("barbarians")); /// assert_eq!(None.or_else(vikings), Some("vikings")); /// assert_eq!(None.or_else(nobody), None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn or_else(self, f: F) -> Option where F: FnOnce() -> Option, { match self { x @ Some(_) => x, None => f(), } } /// Returns [`Some`] if exactly one of `self`, `optb` is [`Some`], otherwise returns [`None`]. /// /// # Examples /// /// ``` /// let x = Some(2); /// let y: Option = None; /// assert_eq!(x.xor(y), Some(2)); /// /// let x: Option = None; /// let y = Some(2); /// assert_eq!(x.xor(y), Some(2)); /// /// let x = Some(2); /// let y = Some(2); /// assert_eq!(x.xor(y), None); /// /// let x: Option = None; /// let y: Option = None; /// assert_eq!(x.xor(y), None); /// ``` #[inline] #[stable(feature = "option_xor", since = "1.37.0")] pub fn xor(self, optb: Option) -> Option { match (self, optb) { (a @ Some(_), None) => a, (None, b @ Some(_)) => b, _ => None, } } ///////////////////////////////////////////////////////////////////////// // Entry-like operations to insert a value and return a reference ///////////////////////////////////////////////////////////////////////// /// Inserts `value` into the option, then returns a mutable reference to it. /// /// If the option already contains a value, the old value is dropped. /// /// See also [`Option::get_or_insert`], which doesn't update the value if /// the option already contains [`Some`]. /// /// # Example /// /// ``` /// let mut opt = None; /// let val = opt.insert(1); /// assert_eq!(*val, 1); /// assert_eq!(opt.unwrap(), 1); /// let val = opt.insert(2); /// assert_eq!(*val, 2); /// *val = 3; /// assert_eq!(opt.unwrap(), 3); /// ``` #[must_use = "if you intended to set a value, consider assignment instead"] #[inline] #[stable(feature = "option_insert", since = "1.53.0")] pub fn insert(&mut self, value: T) -> &mut T { *self = Some(value); // SAFETY: the code above just filled the option unsafe { self.as_mut().unwrap_unchecked() } } /// Inserts `value` into the option if it is [`None`], then /// returns a mutable reference to the contained value. /// /// See also [`Option::insert`], which updates the value even if /// the option already contains [`Some`]. /// /// # Examples /// /// ``` /// let mut x = None; /// /// { /// let y: &mut u32 = x.get_or_insert(5); /// assert_eq!(y, &5); /// /// *y = 7; /// } /// /// assert_eq!(x, Some(7)); /// ``` #[inline] #[stable(feature = "option_entry", since = "1.20.0")] pub fn get_or_insert(&mut self, value: T) -> &mut T { if let None = *self { *self = Some(value); } // SAFETY: a `None` variant for `self` would have been replaced by a `Some` // variant in the code above. unsafe { self.as_mut().unwrap_unchecked() } } /// Inserts the default value into the option if it is [`None`], then /// returns a mutable reference to the contained value. /// /// # Examples /// /// ``` /// #![feature(option_get_or_insert_default)] /// /// let mut x = None; /// /// { /// let y: &mut u32 = x.get_or_insert_default(); /// assert_eq!(y, &0); /// /// *y = 7; /// } /// /// assert_eq!(x, Some(7)); /// ``` #[inline] #[unstable(feature = "option_get_or_insert_default", issue = "82901")] pub fn get_or_insert_default(&mut self) -> &mut T where T: Default, { self.get_or_insert_with(T::default) } /// Inserts a value computed from `f` into the option if it is [`None`], /// then returns a mutable reference to the contained value. /// /// # Examples /// /// ``` /// let mut x = None; /// /// { /// let y: &mut u32 = x.get_or_insert_with(|| 5); /// assert_eq!(y, &5); /// /// *y = 7; /// } /// /// assert_eq!(x, Some(7)); /// ``` #[inline] #[stable(feature = "option_entry", since = "1.20.0")] pub fn get_or_insert_with(&mut self, f: F) -> &mut T where F: FnOnce() -> T, { if let None = self { *self = Some(f()); } // SAFETY: a `None` variant for `self` would have been replaced by a `Some` // variant in the code above. unsafe { self.as_mut().unwrap_unchecked() } } ///////////////////////////////////////////////////////////////////////// // Misc ///////////////////////////////////////////////////////////////////////// /// Takes the value out of the option, leaving a [`None`] in its place. /// /// # Examples /// /// ``` /// let mut x = Some(2); /// let y = x.take(); /// assert_eq!(x, None); /// assert_eq!(y, Some(2)); /// /// let mut x: Option = None; /// let y = x.take(); /// assert_eq!(x, None); /// assert_eq!(y, None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_unstable(feature = "const_option", issue = "67441")] pub const fn take(&mut self) -> Option { // FIXME replace `mem::replace` by `mem::take` when the latter is const ready mem::replace(self, None) } /// Takes the value out of the option, but only if the predicate evaluates to /// `true` on a mutable reference to the value. /// /// In other words, replaces `self` with `None` if the predicate returns `true`. /// This method operates similar to [`Option::take`] but conditional. /// /// # Examples /// /// ``` /// #![feature(option_take_if)] /// /// let mut x = Some(42); /// /// let prev = x.take_if(|v| if *v == 42 { /// *v += 1; /// false /// } else { /// false /// }); /// assert_eq!(x, Some(43)); /// assert_eq!(prev, None); /// /// let prev = x.take_if(|v| *v == 43); /// assert_eq!(x, None); /// assert_eq!(prev, Some(43)); /// ``` #[inline] #[unstable(feature = "option_take_if", issue = "98934")] pub fn take_if

(&mut self, predicate: P) -> Option where P: FnOnce(&mut T) -> bool, { if self.as_mut().map_or(false, predicate) { self.take() } else { None } } /// Replaces the actual value in the option by the value given in parameter, /// returning the old value if present, /// leaving a [`Some`] in its place without deinitializing either one. /// /// # Examples /// /// ``` /// let mut x = Some(2); /// let old = x.replace(5); /// assert_eq!(x, Some(5)); /// assert_eq!(old, Some(2)); /// /// let mut x = None; /// let old = x.replace(3); /// assert_eq!(x, Some(3)); /// assert_eq!(old, None); /// ``` #[inline] #[rustc_const_unstable(feature = "const_option", issue = "67441")] #[stable(feature = "option_replace", since = "1.31.0")] pub const fn replace(&mut self, value: T) -> Option { mem::replace(self, Some(value)) } /// Zips `self` with another `Option`. /// /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some((s, o))`. /// Otherwise, `None` is returned. /// /// # Examples /// /// ``` /// let x = Some(1); /// let y = Some("hi"); /// let z = None::; /// /// assert_eq!(x.zip(y), Some((1, "hi"))); /// assert_eq!(x.zip(z), None); /// ``` #[stable(feature = "option_zip_option", since = "1.46.0")] pub fn zip(self, other: Option) -> Option<(T, U)> { match (self, other) { (Some(a), Some(b)) => Some((a, b)), _ => None, } } /// Zips `self` and another `Option` with function `f`. /// /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`. /// Otherwise, `None` is returned. /// /// # Examples /// /// ``` /// #![feature(option_zip)] /// /// #[derive(Debug, PartialEq)] /// struct Point { /// x: f64, /// y: f64, /// } /// /// impl Point { /// fn new(x: f64, y: f64) -> Self { /// Self { x, y } /// } /// } /// /// let x = Some(17.5); /// let y = Some(42.7); /// /// assert_eq!(x.zip_with(y, Point::new), Some(Point { x: 17.5, y: 42.7 })); /// assert_eq!(x.zip_with(None, Point::new), None); /// ``` #[unstable(feature = "option_zip", issue = "70086")] pub fn zip_with(self, other: Option, f: F) -> Option where F: FnOnce(T, U) -> R, { match (self, other) { (Some(a), Some(b)) => Some(f(a, b)), _ => None, } } } impl Option<(T, U)> { /// Unzips an option containing a tuple of two options. /// /// If `self` is `Some((a, b))` this method returns `(Some(a), Some(b))`. /// Otherwise, `(None, None)` is returned. /// /// # Examples /// /// ``` /// let x = Some((1, "hi")); /// let y = None::<(u8, u32)>; /// /// assert_eq!(x.unzip(), (Some(1), Some("hi"))); /// assert_eq!(y.unzip(), (None, None)); /// ``` #[inline] #[stable(feature = "unzip_option", since = "1.66.0")] pub fn unzip(self) -> (Option, Option) { match self { Some((a, b)) => (Some(a), Some(b)), None => (None, None), } } } impl Option<&T> { /// Maps an `Option<&T>` to an `Option` by copying the contents of the /// option. /// /// # Examples /// /// ``` /// let x = 12; /// let opt_x = Some(&x); /// assert_eq!(opt_x, Some(&12)); /// let copied = opt_x.copied(); /// assert_eq!(copied, Some(12)); /// ``` #[must_use = "`self` will be dropped if the result is not used"] #[stable(feature = "copied", since = "1.35.0")] #[rustc_const_unstable(feature = "const_option", issue = "67441")] pub const fn copied(self) -> Option where T: Copy, { // FIXME: this implementation, which sidesteps using `Option::map` since it's not const // ready yet, should be reverted when possible to avoid code repetition match self { Some(&v) => Some(v), None => None, } } /// Maps an `Option<&T>` to an `Option` by cloning the contents of the /// option. /// /// # Examples /// /// ``` /// let x = 12; /// let opt_x = Some(&x); /// assert_eq!(opt_x, Some(&12)); /// let cloned = opt_x.cloned(); /// assert_eq!(cloned, Some(12)); /// ``` #[must_use = "`self` will be dropped if the result is not used"] #[stable(feature = "rust1", since = "1.0.0")] pub fn cloned(self) -> Option where T: Clone, { match self { Some(t) => Some(t.clone()), None => None, } } } impl Option<&mut T> { /// Maps an `Option<&mut T>` to an `Option` by copying the contents of the /// option. /// /// # Examples /// /// ``` /// let mut x = 12; /// let opt_x = Some(&mut x); /// assert_eq!(opt_x, Some(&mut 12)); /// let copied = opt_x.copied(); /// assert_eq!(copied, Some(12)); /// ``` #[must_use = "`self` will be dropped if the result is not used"] #[stable(feature = "copied", since = "1.35.0")] #[rustc_const_unstable(feature = "const_option_ext", issue = "91930")] pub const fn copied(self) -> Option where T: Copy, { match self { Some(&mut t) => Some(t), None => None, } } /// Maps an `Option<&mut T>` to an `Option` by cloning the contents of the /// option. /// /// # Examples /// /// ``` /// let mut x = 12; /// let opt_x = Some(&mut x); /// assert_eq!(opt_x, Some(&mut 12)); /// let cloned = opt_x.cloned(); /// assert_eq!(cloned, Some(12)); /// ``` #[must_use = "`self` will be dropped if the result is not used"] #[stable(since = "1.26.0", feature = "option_ref_mut_cloned")] pub fn cloned(self) -> Option where T: Clone, { match self { Some(t) => Some(t.clone()), None => None, } } } impl Option> { /// Transposes an `Option` of a [`Result`] into a [`Result`] of an `Option`. /// /// [`None`] will be mapped to [Ok]\([None]). /// [Some]\([Ok]\(\_)) and [Some]\([Err]\(\_)) will be mapped to /// [Ok]\([Some]\(\_)) and [Err]\(\_). /// /// # Examples /// /// ``` /// #[derive(Debug, Eq, PartialEq)] /// struct SomeErr; /// /// let x: Result, SomeErr> = Ok(Some(5)); /// let y: Option> = Some(Ok(5)); /// assert_eq!(x, y.transpose()); /// ``` #[inline] #[stable(feature = "transpose_result", since = "1.33.0")] #[rustc_const_unstable(feature = "const_option", issue = "67441")] pub const fn transpose(self) -> Result, E> { match self { Some(Ok(x)) => Ok(Some(x)), Some(Err(e)) => Err(e), None => Ok(None), } } } // This is a separate function to reduce the code size of .expect() itself. #[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))] #[cfg_attr(feature = "panic_immediate_abort", inline)] #[cold] #[track_caller] #[rustc_const_unstable(feature = "const_option", issue = "67441")] const fn expect_failed(msg: &str) -> ! { panic_str(msg) } ///////////////////////////////////////////////////////////////////////////// // Trait implementations ///////////////////////////////////////////////////////////////////////////// #[stable(feature = "rust1", since = "1.0.0")] impl Clone for Option where T: Clone, { #[inline] fn clone(&self) -> Self { match self { Some(x) => Some(x.clone()), None => None, } } #[inline] fn clone_from(&mut self, source: &Self) { match (self, source) { (Some(to), Some(from)) => to.clone_from(from), (to, from) => *to = from.clone(), } } } #[stable(feature = "rust1", since = "1.0.0")] impl Default for Option { /// Returns [`None`][Option::None]. /// /// # Examples /// /// ``` /// let opt: Option = Option::default(); /// assert!(opt.is_none()); /// ``` #[inline] fn default() -> Option { None } } #[stable(feature = "rust1", since = "1.0.0")] impl IntoIterator for Option { type Item = T; type IntoIter = IntoIter; /// Returns a consuming iterator over the possibly contained value. /// /// # Examples /// /// ``` /// let x = Some("string"); /// let v: Vec<&str> = x.into_iter().collect(); /// assert_eq!(v, ["string"]); /// /// let x = None; /// let v: Vec<&str> = x.into_iter().collect(); /// assert!(v.is_empty()); /// ``` #[inline] fn into_iter(self) -> IntoIter { IntoIter { inner: Item { opt: self } } } } #[stable(since = "1.4.0", feature = "option_iter")] impl<'a, T> IntoIterator for &'a Option { type Item = &'a T; type IntoIter = Iter<'a, T>; fn into_iter(self) -> Iter<'a, T> { self.iter() } } #[stable(since = "1.4.0", feature = "option_iter")] impl<'a, T> IntoIterator for &'a mut Option { type Item = &'a mut T; type IntoIter = IterMut<'a, T>; fn into_iter(self) -> IterMut<'a, T> { self.iter_mut() } } #[stable(since = "1.12.0", feature = "option_from")] impl From for Option { /// Moves `val` into a new [`Some`]. /// /// # Examples /// /// ``` /// let o: Option = Option::from(67); /// /// assert_eq!(Some(67), o); /// ``` fn from(val: T) -> Option { Some(val) } } #[stable(feature = "option_ref_from_ref_option", since = "1.30.0")] impl<'a, T> From<&'a Option> for Option<&'a T> { /// Converts from `&Option` to `Option<&T>`. /// /// # Examples /// /// Converts an [Option]<[String]> into an [Option]<[usize]>, preserving /// the original. The [`map`] method takes the `self` argument by value, consuming the original, /// so this technique uses `from` to first take an [`Option`] to a reference /// to the value inside the original. /// /// [`map`]: Option::map /// [String]: ../../std/string/struct.String.html "String" /// /// ``` /// let s: Option = Some(String::from("Hello, Rustaceans!")); /// let o: Option = Option::from(&s).map(|ss: &String| ss.len()); /// /// println!("Can still print s: {s:?}"); /// /// assert_eq!(o, Some(18)); /// ``` fn from(o: &'a Option) -> Option<&'a T> { o.as_ref() } } #[stable(feature = "option_ref_from_ref_option", since = "1.30.0")] impl<'a, T> From<&'a mut Option> for Option<&'a mut T> { /// Converts from `&mut Option` to `Option<&mut T>` /// /// # Examples /// /// ``` /// let mut s = Some(String::from("Hello")); /// let o: Option<&mut String> = Option::from(&mut s); /// /// match o { /// Some(t) => *t = String::from("Hello, Rustaceans!"), /// None => (), /// } /// /// assert_eq!(s, Some(String::from("Hello, Rustaceans!"))); /// ``` fn from(o: &'a mut Option) -> Option<&'a mut T> { o.as_mut() } } #[stable(feature = "rust1", since = "1.0.0")] impl crate::marker::StructuralPartialEq for Option {} #[stable(feature = "rust1", since = "1.0.0")] impl PartialEq for Option { #[inline] fn eq(&self, other: &Self) -> bool { SpecOptionPartialEq::eq(self, other) } } /// This specialization trait is a workaround for LLVM not currently (2023-01) /// being able to optimize this itself, even though Alive confirms that it would /// be legal to do so: /// /// Once that's fixed, `Option` should go back to deriving `PartialEq`, as /// it used to do before . #[unstable(feature = "spec_option_partial_eq", issue = "none", reason = "exposed only for rustc")] #[doc(hidden)] pub trait SpecOptionPartialEq: Sized { fn eq(l: &Option, other: &Option) -> bool; } #[unstable(feature = "spec_option_partial_eq", issue = "none", reason = "exposed only for rustc")] impl SpecOptionPartialEq for T { #[inline] default fn eq(l: &Option, r: &Option) -> bool { match (l, r) { (Some(l), Some(r)) => *l == *r, (None, None) => true, _ => false, } } } macro_rules! non_zero_option { ( $( #[$stability: meta] $NZ:ty; )+ ) => { $( #[$stability] impl SpecOptionPartialEq for $NZ { #[inline] fn eq(l: &Option, r: &Option) -> bool { l.map(Self::get).unwrap_or(0) == r.map(Self::get).unwrap_or(0) } } )+ }; } non_zero_option! { #[stable(feature = "nonzero", since = "1.28.0")] crate::num::NonZeroU8; #[stable(feature = "nonzero", since = "1.28.0")] crate::num::NonZeroU16; #[stable(feature = "nonzero", since = "1.28.0")] crate::num::NonZeroU32; #[stable(feature = "nonzero", since = "1.28.0")] crate::num::NonZeroU64; #[stable(feature = "nonzero", since = "1.28.0")] crate::num::NonZeroU128; #[stable(feature = "nonzero", since = "1.28.0")] crate::num::NonZeroUsize; #[stable(feature = "signed_nonzero", since = "1.34.0")] crate::num::NonZeroI8; #[stable(feature = "signed_nonzero", since = "1.34.0")] crate::num::NonZeroI16; #[stable(feature = "signed_nonzero", since = "1.34.0")] crate::num::NonZeroI32; #[stable(feature = "signed_nonzero", since = "1.34.0")] crate::num::NonZeroI64; #[stable(feature = "signed_nonzero", since = "1.34.0")] crate::num::NonZeroI128; #[stable(feature = "signed_nonzero", since = "1.34.0")] crate::num::NonZeroIsize; } #[stable(feature = "nonnull", since = "1.25.0")] impl SpecOptionPartialEq for crate::ptr::NonNull { #[inline] fn eq(l: &Option, r: &Option) -> bool { l.map(Self::as_ptr).unwrap_or_else(|| crate::ptr::null_mut()) == r.map(Self::as_ptr).unwrap_or_else(|| crate::ptr::null_mut()) } } #[stable(feature = "rust1", since = "1.0.0")] impl SpecOptionPartialEq for cmp::Ordering { #[inline] fn eq(l: &Option, r: &Option) -> bool { l.map_or(2, |x| x as i8) == r.map_or(2, |x| x as i8) } } ///////////////////////////////////////////////////////////////////////////// // The Option Iterators ///////////////////////////////////////////////////////////////////////////// #[derive(Clone, Debug)] struct Item { opt: Option, } impl Iterator for Item { type Item = A; #[inline] fn next(&mut self) -> Option { self.opt.take() } #[inline] fn size_hint(&self) -> (usize, Option) { match self.opt { Some(_) => (1, Some(1)), None => (0, Some(0)), } } } impl DoubleEndedIterator for Item { #[inline] fn next_back(&mut self) -> Option { self.opt.take() } } impl ExactSizeIterator for Item {} impl FusedIterator for Item {} unsafe impl TrustedLen for Item {} /// An iterator over a reference to the [`Some`] variant of an [`Option`]. /// /// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none. /// /// This `struct` is created by the [`Option::iter`] function. #[stable(feature = "rust1", since = "1.0.0")] #[derive(Debug)] pub struct Iter<'a, A: 'a> { inner: Item<&'a A>, } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, A> Iterator for Iter<'a, A> { type Item = &'a A; #[inline] fn next(&mut self) -> Option<&'a A> { self.inner.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.inner.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, A> DoubleEndedIterator for Iter<'a, A> { #[inline] fn next_back(&mut self) -> Option<&'a A> { self.inner.next_back() } } #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for Iter<'_, A> {} #[stable(feature = "fused", since = "1.26.0")] impl FusedIterator for Iter<'_, A> {} #[unstable(feature = "trusted_len", issue = "37572")] unsafe impl TrustedLen for Iter<'_, A> {} #[stable(feature = "rust1", since = "1.0.0")] impl Clone for Iter<'_, A> { #[inline] fn clone(&self) -> Self { Iter { inner: self.inner.clone() } } } /// An iterator over a mutable reference to the [`Some`] variant of an [`Option`]. /// /// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none. /// /// This `struct` is created by the [`Option::iter_mut`] function. #[stable(feature = "rust1", since = "1.0.0")] #[derive(Debug)] pub struct IterMut<'a, A: 'a> { inner: Item<&'a mut A>, } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, A> Iterator for IterMut<'a, A> { type Item = &'a mut A; #[inline] fn next(&mut self) -> Option<&'a mut A> { self.inner.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.inner.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, A> DoubleEndedIterator for IterMut<'a, A> { #[inline] fn next_back(&mut self) -> Option<&'a mut A> { self.inner.next_back() } } #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for IterMut<'_, A> {} #[stable(feature = "fused", since = "1.26.0")] impl FusedIterator for IterMut<'_, A> {} #[unstable(feature = "trusted_len", issue = "37572")] unsafe impl TrustedLen for IterMut<'_, A> {} /// An iterator over the value in [`Some`] variant of an [`Option`]. /// /// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none. /// /// This `struct` is created by the [`Option::into_iter`] function. #[derive(Clone, Debug)] #[stable(feature = "rust1", since = "1.0.0")] pub struct IntoIter { inner: Item, } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for IntoIter { type Item = A; #[inline] fn next(&mut self) -> Option { self.inner.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.inner.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl DoubleEndedIterator for IntoIter { #[inline] fn next_back(&mut self) -> Option { self.inner.next_back() } } #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for IntoIter {} #[stable(feature = "fused", since = "1.26.0")] impl FusedIterator for IntoIter {} #[unstable(feature = "trusted_len", issue = "37572")] unsafe impl TrustedLen for IntoIter {} ///////////////////////////////////////////////////////////////////////////// // FromIterator ///////////////////////////////////////////////////////////////////////////// #[stable(feature = "rust1", since = "1.0.0")] impl> FromIterator> for Option { /// Takes each element in the [`Iterator`]: if it is [`None`][Option::None], /// no further elements are taken, and the [`None`][Option::None] is /// returned. Should no [`None`][Option::None] occur, a container of type /// `V` containing the values of each [`Option`] is returned. /// /// # Examples /// /// Here is an example which increments every integer in a vector. /// We use the checked variant of `add` that returns `None` when the /// calculation would result in an overflow. /// /// ``` /// let items = vec![0_u16, 1, 2]; /// /// let res: Option> = items /// .iter() /// .map(|x| x.checked_add(1)) /// .collect(); /// /// assert_eq!(res, Some(vec![1, 2, 3])); /// ``` /// /// As you can see, this will return the expected, valid items. /// /// Here is another example that tries to subtract one from another list /// of integers, this time checking for underflow: /// /// ``` /// let items = vec![2_u16, 1, 0]; /// /// let res: Option> = items /// .iter() /// .map(|x| x.checked_sub(1)) /// .collect(); /// /// assert_eq!(res, None); /// ``` /// /// Since the last element is zero, it would underflow. Thus, the resulting /// value is `None`. /// /// Here is a variation on the previous example, showing that no /// further elements are taken from `iter` after the first `None`. /// /// ``` /// let items = vec![3_u16, 2, 1, 10]; /// /// let mut shared = 0; /// /// let res: Option> = items /// .iter() /// .map(|x| { shared += x; x.checked_sub(2) }) /// .collect(); /// /// assert_eq!(res, None); /// assert_eq!(shared, 6); /// ``` /// /// Since the third element caused an underflow, no further elements were taken, /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16. #[inline] fn from_iter>>(iter: I) -> Option { // FIXME(#11084): This could be replaced with Iterator::scan when this // performance bug is closed. iter::try_process(iter.into_iter(), |i| i.collect()) } } #[unstable(feature = "try_trait_v2", issue = "84277")] impl ops::Try for Option { type Output = T; type Residual = Option; #[inline] fn from_output(output: Self::Output) -> Self { Some(output) } #[inline] fn branch(self) -> ControlFlow { match self { Some(v) => ControlFlow::Continue(v), None => ControlFlow::Break(None), } } } #[unstable(feature = "try_trait_v2", issue = "84277")] impl ops::FromResidual for Option { #[inline] fn from_residual(residual: Option) -> Self { match residual { None => None, } } } #[unstable(feature = "try_trait_v2_yeet", issue = "96374")] impl ops::FromResidual> for Option { #[inline] fn from_residual(ops::Yeet(()): ops::Yeet<()>) -> Self { None } } #[unstable(feature = "try_trait_v2_residual", issue = "91285")] impl ops::Residual for Option { type TryType = Option; } impl Option> { /// Converts from `Option>` to `Option`. /// /// # Examples /// /// Basic usage: /// /// ``` /// let x: Option> = Some(Some(6)); /// assert_eq!(Some(6), x.flatten()); /// /// let x: Option> = Some(None); /// assert_eq!(None, x.flatten()); /// /// let x: Option> = None; /// assert_eq!(None, x.flatten()); /// ``` /// /// Flattening only removes one level of nesting at a time: /// /// ``` /// let x: Option>> = Some(Some(Some(6))); /// assert_eq!(Some(Some(6)), x.flatten()); /// assert_eq!(Some(6), x.flatten().flatten()); /// ``` #[inline] #[stable(feature = "option_flattening", since = "1.40.0")] #[rustc_const_unstable(feature = "const_option", issue = "67441")] pub const fn flatten(self) -> Option { match self { Some(inner) => inner, None => None, } } }