//! Codegen of the [`PointerCoercion::Unsize`] operation. //! //! [`PointerCoercion::Unsize`]: `rustc_middle::ty::adjustment::PointerCoercion::Unsize` use rustc_middle::ty::print::{with_no_trimmed_paths, with_no_visible_paths}; use crate::base::codegen_panic_nounwind; use crate::prelude::*; // Adapted from https://github.com/rust-lang/rust/blob/2a663555ddf36f6b041445894a8c175cd1bc718c/src/librustc_codegen_ssa/base.rs#L159-L307 /// Retrieve the information we are losing (making dynamic) in an unsizing /// adjustment. /// /// The `old_info` argument is a bit funny. It is intended for use /// in an upcast, where the new vtable for an object will be derived /// from the old one. pub(crate) fn unsized_info<'tcx>( fx: &mut FunctionCx<'_, '_, 'tcx>, source: Ty<'tcx>, target: Ty<'tcx>, old_info: Option, ) -> Value { let (source, target) = fx.tcx.struct_lockstep_tails_erasing_lifetimes(source, target, ParamEnv::reveal_all()); match (&source.kind(), &target.kind()) { (&ty::Array(_, len), &ty::Slice(_)) => fx .bcx .ins() .iconst(fx.pointer_type, len.eval_target_usize(fx.tcx, ParamEnv::reveal_all()) as i64), (&ty::Dynamic(data_a, _, src_dyn_kind), &ty::Dynamic(data_b, _, target_dyn_kind)) if src_dyn_kind == target_dyn_kind => { let old_info = old_info.expect("unsized_info: missing old info for trait upcasting coercion"); if data_a.principal_def_id() == data_b.principal_def_id() { // A NOP cast that doesn't actually change anything, should be allowed even with invalid vtables. return old_info; } // trait upcasting coercion let vptr_entry_idx = fx.tcx.vtable_trait_upcasting_coercion_new_vptr_slot((source, target)); if let Some(entry_idx) = vptr_entry_idx { let entry_idx = u32::try_from(entry_idx).unwrap(); let entry_offset = entry_idx * fx.pointer_type.bytes(); let vptr_ptr = Pointer::new(old_info).offset_i64(fx, entry_offset.into()).load( fx, fx.pointer_type, crate::vtable::vtable_memflags(), ); vptr_ptr } else { old_info } } (_, ty::Dynamic(data, ..)) => crate::vtable::get_vtable(fx, source, data.principal()), _ => bug!("unsized_info: invalid unsizing {:?} -> {:?}", source, target), } } /// Coerce `src` to `dst_ty`. fn unsize_ptr<'tcx>( fx: &mut FunctionCx<'_, '_, 'tcx>, src: Value, src_layout: TyAndLayout<'tcx>, dst_layout: TyAndLayout<'tcx>, old_info: Option, ) -> (Value, Value) { match (&src_layout.ty.kind(), &dst_layout.ty.kind()) { (&ty::Ref(_, a, _), &ty::Ref(_, b, _)) | (&ty::Ref(_, a, _), &ty::RawPtr(b, _)) | (&ty::RawPtr(a, _), &ty::RawPtr(b, _)) => (src, unsized_info(fx, *a, *b, old_info)), (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => { assert_eq!(def_a, def_b); if src_layout == dst_layout { return (src, old_info.unwrap()); } let mut result = None; for i in 0..src_layout.fields.count() { let src_f = src_layout.field(fx, i); assert_eq!(src_layout.fields.offset(i).bytes(), 0); assert_eq!(dst_layout.fields.offset(i).bytes(), 0); if src_f.is_1zst() { // We are looking for the one non-1-ZST field; this is not it. continue; } assert_eq!(src_layout.size, src_f.size); let dst_f = dst_layout.field(fx, i); assert_ne!(src_f.ty, dst_f.ty); assert_eq!(result, None); result = Some(unsize_ptr(fx, src, src_f, dst_f, old_info)); } result.unwrap() } _ => bug!("unsize_ptr: called on bad types"), } } /// Coerces `src` to `dst_ty` which is guaranteed to be a `dyn*` type. pub(crate) fn cast_to_dyn_star<'tcx>( fx: &mut FunctionCx<'_, '_, 'tcx>, src: Value, src_ty_and_layout: TyAndLayout<'tcx>, dst_ty: Ty<'tcx>, old_info: Option, ) -> (Value, Value) { assert!( matches!(dst_ty.kind(), ty::Dynamic(_, _, ty::DynStar)), "destination type must be a dyn*" ); (src, unsized_info(fx, src_ty_and_layout.ty, dst_ty, old_info)) } /// Coerce `src`, which is a reference to a value of type `src_ty`, /// to a value of type `dst_ty` and store the result in `dst` pub(crate) fn coerce_unsized_into<'tcx>( fx: &mut FunctionCx<'_, '_, 'tcx>, src: CValue<'tcx>, dst: CPlace<'tcx>, ) { let src_ty = src.layout().ty; let dst_ty = dst.layout().ty; let mut coerce_ptr = || { let (base, info) = if fx.layout_of(src.layout().ty.builtin_deref(true).unwrap()).is_unsized() { let (old_base, old_info) = src.load_scalar_pair(fx); unsize_ptr(fx, old_base, src.layout(), dst.layout(), Some(old_info)) } else { let base = src.load_scalar(fx); unsize_ptr(fx, base, src.layout(), dst.layout(), None) }; dst.write_cvalue(fx, CValue::by_val_pair(base, info, dst.layout())); }; match (&src_ty.kind(), &dst_ty.kind()) { (&ty::Ref(..), &ty::Ref(..)) | (&ty::Ref(..), &ty::RawPtr(..)) | (&ty::RawPtr(..), &ty::RawPtr(..)) => coerce_ptr(), (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => { assert_eq!(def_a, def_b); for i in 0..def_a.variant(FIRST_VARIANT).fields.len() { let src_f = src.value_field(fx, FieldIdx::new(i)); let dst_f = dst.place_field(fx, FieldIdx::new(i)); if dst_f.layout().is_zst() { // No data here, nothing to copy/coerce. continue; } if src_f.layout().ty == dst_f.layout().ty { dst_f.write_cvalue(fx, src_f); } else { coerce_unsized_into(fx, src_f, dst_f); } } } _ => bug!("coerce_unsized_into: invalid coercion {:?} -> {:?}", src_ty, dst_ty), } } pub(crate) fn coerce_dyn_star<'tcx>( fx: &mut FunctionCx<'_, '_, 'tcx>, src: CValue<'tcx>, dst: CPlace<'tcx>, ) { let (data, extra) = if let ty::Dynamic(_, _, ty::DynStar) = src.layout().ty.kind() { let (data, vtable) = src.load_scalar_pair(fx); (data, Some(vtable)) } else { let data = src.load_scalar(fx); (data, None) }; let (data, vtable) = cast_to_dyn_star(fx, data, src.layout(), dst.layout().ty, extra); dst.write_cvalue(fx, CValue::by_val_pair(data, vtable, dst.layout())); } // Adapted from https://github.com/rust-lang/rust/blob/2a663555ddf36f6b041445894a8c175cd1bc718c/src/librustc_codegen_ssa/glue.rs pub(crate) fn size_and_align_of<'tcx>( fx: &mut FunctionCx<'_, '_, 'tcx>, layout: TyAndLayout<'tcx>, info: Option, ) -> (Value, Value) { if layout.is_sized() { return ( fx.bcx.ins().iconst(fx.pointer_type, layout.size.bytes() as i64), fx.bcx.ins().iconst(fx.pointer_type, layout.align.abi.bytes() as i64), ); } let ty = layout.ty; match ty.kind() { ty::Dynamic(..) => { // load size/align from vtable ( crate::vtable::size_of_obj(fx, info.unwrap()), crate::vtable::min_align_of_obj(fx, info.unwrap()), ) } ty::Slice(_) | ty::Str => { let unit = layout.field(fx, 0); // The info in this case is the length of the str, so the size is that // times the unit size. ( fx.bcx.ins().imul_imm(info.unwrap(), unit.size.bytes() as i64), fx.bcx.ins().iconst(fx.pointer_type, unit.align.abi.bytes() as i64), ) } ty::Foreign(_) => { let trap_block = fx.bcx.create_block(); let true_ = fx.bcx.ins().iconst(types::I8, 1); let next_block = fx.bcx.create_block(); fx.bcx.ins().brif(true_, trap_block, &[], next_block, &[]); fx.bcx.seal_block(trap_block); fx.bcx.seal_block(next_block); fx.bcx.switch_to_block(trap_block); // `extern` type. We cannot compute the size, so panic. let msg_str = with_no_visible_paths!({ with_no_trimmed_paths!({ format!("attempted to compute the size or alignment of extern type `{ty}`") }) }); codegen_panic_nounwind(fx, &msg_str, None); fx.bcx.switch_to_block(next_block); // This function does not return so we can now return whatever we want. let size = fx.bcx.ins().iconst(fx.pointer_type, 42); let align = fx.bcx.ins().iconst(fx.pointer_type, 42); (size, align) } ty::Adt(..) | ty::Tuple(..) => { // First get the size of all statically known fields. // Don't use size_of because it also rounds up to alignment, which we // want to avoid, as the unsized field's alignment could be smaller. assert!(!layout.ty.is_simd()); let i = layout.fields.count() - 1; let unsized_offset_unadjusted = layout.fields.offset(i).bytes(); let unsized_offset_unadjusted = fx.bcx.ins().iconst(fx.pointer_type, unsized_offset_unadjusted as i64); let sized_align = layout.align.abi.bytes(); let sized_align = fx.bcx.ins().iconst(fx.pointer_type, sized_align as i64); // Recurse to get the size of the dynamically sized field (must be // the last field). let field_layout = layout.field(fx, i); let (unsized_size, mut unsized_align) = size_and_align_of(fx, field_layout, info); // # First compute the dynamic alignment // For packed types, we need to cap the alignment. if let ty::Adt(def, _) = ty.kind() { if let Some(packed) = def.repr().pack { if packed.bytes() == 1 { // We know this will be capped to 1. unsized_align = fx.bcx.ins().iconst(fx.pointer_type, 1); } else { // We have to dynamically compute `min(unsized_align, packed)`. let packed = fx.bcx.ins().iconst(fx.pointer_type, packed.bytes() as i64); let cmp = fx.bcx.ins().icmp(IntCC::UnsignedLessThan, unsized_align, packed); unsized_align = fx.bcx.ins().select(cmp, unsized_align, packed); } } } // Choose max of two known alignments (combined value must // be aligned according to more restrictive of the two). let cmp = fx.bcx.ins().icmp(IntCC::UnsignedGreaterThan, sized_align, unsized_align); let full_align = fx.bcx.ins().select(cmp, sized_align, unsized_align); // # Then compute the dynamic size // The full formula for the size would be: // let unsized_offset_adjusted = unsized_offset_unadjusted.align_to(unsized_align); // let full_size = (unsized_offset_adjusted + unsized_size).align_to(full_align); // However, `unsized_size` is a multiple of `unsized_align`. // Therefore, we can equivalently do the `align_to(unsized_align)` *after* adding `unsized_size`: // let full_size = (unsized_offset_unadjusted + unsized_size).align_to(unsized_align).align_to(full_align); // Furthermore, `align >= unsized_align`, and therefore we only need to do: // let full_size = (unsized_offset_unadjusted + unsized_size).align_to(full_align); let full_size = fx.bcx.ins().iadd(unsized_offset_unadjusted, unsized_size); // Issue #27023: must add any necessary padding to `size` // (to make it a multiple of `align`) before returning it. // // Namely, the returned size should be, in C notation: // // `size + ((size & (align-1)) ? align : 0)` // // emulated via the semi-standard fast bit trick: // // `(size + (align-1)) & -align` let addend = fx.bcx.ins().iadd_imm(full_align, -1); let add = fx.bcx.ins().iadd(full_size, addend); let neg = fx.bcx.ins().ineg(full_align); let full_size = fx.bcx.ins().band(add, neg); (full_size, full_align) } _ => bug!("size_and_align_of_dst: {ty} not supported"), } }