// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! # Standalone Tests for the Inference Module use driver; use rustc::dep_graph::DepGraph; use rustc_lint; use rustc_resolve::MakeGlobMap; use rustc::middle::lang_items; use rustc::middle::free_region::FreeRegionMap; use rustc::middle::region::{self, CodeExtent}; use rustc::middle::region::CodeExtentData; use rustc::middle::resolve_lifetime; use rustc::middle::stability; use rustc::ty::subst::{Kind, Subst, Substs}; use rustc::traits::Reveal; use rustc::ty::{self, Ty, TyCtxt, TypeFoldable}; use rustc::infer::{self, InferOk, InferResult, TypeOrigin}; use rustc_metadata::cstore::CStore; use rustc::hir::map as hir_map; use rustc::session::{self, config}; use std::iter; use std::rc::Rc; use syntax::ast; use syntax::abi::Abi; use syntax::codemap::CodeMap; use errors; use errors::emitter::Emitter; use errors::{Level, DiagnosticBuilder}; use syntax::parse::token; use syntax::feature_gate::UnstableFeatures; use syntax_pos::DUMMY_SP; use rustc::hir; struct Env<'a, 'gcx: 'a+'tcx, 'tcx: 'a> { infcx: &'a infer::InferCtxt<'a, 'gcx, 'tcx>, } struct RH<'a> { id: ast::NodeId, sub: &'a [RH<'a>], } const EMPTY_SOURCE_STR: &'static str = "#![feature(no_core)] #![no_core]"; struct ExpectErrorEmitter { messages: Vec, } fn remove_message(e: &mut ExpectErrorEmitter, msg: &str, lvl: Level) { match lvl { Level::Bug | Level::Fatal | Level::Error => {} _ => { return; } } debug!("Error: {}", msg); match e.messages.iter().position(|m| msg.contains(m)) { Some(i) => { e.messages.remove(i); } None => { debug!("Unexpected error: {} Expected: {:?}", msg, e.messages); panic!("Unexpected error: {} Expected: {:?}", msg, e.messages); } } } impl Emitter for ExpectErrorEmitter { fn emit(&mut self, db: &DiagnosticBuilder) { remove_message(self, &db.message, db.level); for child in &db.children { remove_message(self, &child.message, child.level); } } } fn errors(msgs: &[&str]) -> (Box, usize) { let v = msgs.iter().map(|m| m.to_string()).collect(); (box ExpectErrorEmitter { messages: v } as Box, msgs.len()) } fn test_env(source_string: &str, (emitter, expected_err_count): (Box, usize), body: F) where F: FnOnce(Env) { let mut options = config::basic_options(); options.debugging_opts.verbose = true; options.unstable_features = UnstableFeatures::Allow; let diagnostic_handler = errors::Handler::with_emitter(true, false, emitter); let dep_graph = DepGraph::new(false); let _ignore = dep_graph.in_ignore(); let cstore = Rc::new(CStore::new(&dep_graph)); let sess = session::build_session_(options, &dep_graph, None, diagnostic_handler, Rc::new(CodeMap::new()), cstore.clone()); rustc_lint::register_builtins(&mut sess.lint_store.borrow_mut(), Some(&sess)); let krate_config = Vec::new(); let input = config::Input::Str { name: driver::anon_src(), input: source_string.to_string(), }; let krate = driver::phase_1_parse_input(&sess, krate_config, &input).unwrap(); let driver::ExpansionResult { defs, resolutions, mut hir_forest, .. } = { driver::phase_2_configure_and_expand( &sess, &cstore, krate, None, "test", None, MakeGlobMap::No, |_| Ok(()), ).expect("phase 2 aborted") }; let _ignore = dep_graph.in_ignore(); let arenas = ty::CtxtArenas::new(); let ast_map = hir_map::map_crate(&mut hir_forest, defs); // run just enough stuff to build a tcx: let lang_items = lang_items::collect_language_items(&sess, &ast_map); let named_region_map = resolve_lifetime::krate(&sess, &ast_map, &resolutions.def_map); let region_map = region::resolve_crate(&sess, &ast_map); let index = stability::Index::new(&ast_map); TyCtxt::create_and_enter(&sess, &arenas, resolutions.def_map, resolutions.trait_map, named_region_map.unwrap(), ast_map, resolutions.freevars, resolutions.maybe_unused_trait_imports, region_map, lang_items, index, "test_crate", |tcx| { tcx.infer_ctxt(None, None, Reveal::NotSpecializable).enter(|infcx| { body(Env { infcx: &infcx }); let free_regions = FreeRegionMap::new(); infcx.resolve_regions_and_report_errors(&free_regions, ast::CRATE_NODE_ID); assert_eq!(tcx.sess.err_count(), expected_err_count); }); }); } impl<'a, 'gcx, 'tcx> Env<'a, 'gcx, 'tcx> { pub fn tcx(&self) -> TyCtxt<'a, 'gcx, 'tcx> { self.infcx.tcx } pub fn create_region_hierarchy(&self, rh: &RH, parent: CodeExtent) { let me = self.infcx.tcx.region_maps.intern_node(rh.id, parent); for child_rh in rh.sub { self.create_region_hierarchy(child_rh, me); } } pub fn create_simple_region_hierarchy(&self) { // creates a region hierarchy where 1 is root, 10 and 11 are // children of 1, etc let dscope = self.infcx .tcx .region_maps .intern_code_extent(CodeExtentData::DestructionScope(1), region::ROOT_CODE_EXTENT); self.create_region_hierarchy(&RH { id: 1, sub: &[RH { id: 10, sub: &[] }, RH { id: 11, sub: &[] }], }, dscope); } #[allow(dead_code)] // this seems like it could be useful, even if we don't use it now pub fn lookup_item(&self, names: &[String]) -> ast::NodeId { return match search_mod(self, &self.infcx.tcx.map.krate().module, 0, names) { Some(id) => id, None => { panic!("no item found: `{}`", names.join("::")); } }; fn search_mod(this: &Env, m: &hir::Mod, idx: usize, names: &[String]) -> Option { assert!(idx < names.len()); for item in &m.item_ids { let item = this.infcx.tcx.map.expect_item(item.id); if item.name.to_string() == names[idx] { return search(this, item, idx + 1, names); } } return None; } fn search(this: &Env, it: &hir::Item, idx: usize, names: &[String]) -> Option { if idx == names.len() { return Some(it.id); } return match it.node { hir::ItemUse(..) | hir::ItemExternCrate(..) | hir::ItemConst(..) | hir::ItemStatic(..) | hir::ItemFn(..) | hir::ItemForeignMod(..) | hir::ItemTy(..) => { None } hir::ItemEnum(..) | hir::ItemStruct(..) | hir::ItemUnion(..) | hir::ItemTrait(..) | hir::ItemImpl(..) | hir::ItemDefaultImpl(..) => { None } hir::ItemMod(ref m) => { search_mod(this, m, idx, names) } }; } } pub fn make_subtype(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> bool { match self.infcx.sub_types(true, TypeOrigin::Misc(DUMMY_SP), a, b) { Ok(_) => true, Err(ref e) => panic!("Encountered error: {}", e), } } pub fn is_subtype(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> bool { self.infcx.can_sub_types(a, b).is_ok() } pub fn assert_subtype(&self, a: Ty<'tcx>, b: Ty<'tcx>) { if !self.is_subtype(a, b) { panic!("{} is not a subtype of {}, but it should be", a, b); } } pub fn assert_eq(&self, a: Ty<'tcx>, b: Ty<'tcx>) { self.assert_subtype(a, b); self.assert_subtype(b, a); } pub fn t_fn(&self, input_tys: &[Ty<'tcx>], output_ty: Ty<'tcx>) -> Ty<'tcx> { let input_args = input_tys.iter().cloned().collect(); self.infcx.tcx.mk_fn_ptr(self.infcx.tcx.mk_bare_fn(ty::BareFnTy { unsafety: hir::Unsafety::Normal, abi: Abi::Rust, sig: ty::Binder(ty::FnSig { inputs: input_args, output: output_ty, variadic: false, }), })) } pub fn t_nil(&self) -> Ty<'tcx> { self.infcx.tcx.mk_nil() } pub fn t_pair(&self, ty1: Ty<'tcx>, ty2: Ty<'tcx>) -> Ty<'tcx> { self.infcx.tcx.mk_tup(vec![ty1, ty2]) } pub fn t_param(&self, index: u32) -> Ty<'tcx> { let name = format!("T{}", index); self.infcx.tcx.mk_param(index, token::intern(&name[..])) } pub fn re_early_bound(&self, index: u32, name: &'static str) -> &'tcx ty::Region { let name = token::intern(name); self.infcx.tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion { index: index, name: name, })) } pub fn re_late_bound_with_debruijn(&self, id: u32, debruijn: ty::DebruijnIndex) -> &'tcx ty::Region { self.infcx.tcx.mk_region(ty::ReLateBound(debruijn, ty::BrAnon(id))) } pub fn t_rptr(&self, r: &'tcx ty::Region) -> Ty<'tcx> { self.infcx.tcx.mk_imm_ref(r, self.tcx().types.isize) } pub fn t_rptr_late_bound(&self, id: u32) -> Ty<'tcx> { let r = self.re_late_bound_with_debruijn(id, ty::DebruijnIndex::new(1)); self.infcx.tcx.mk_imm_ref(r, self.tcx().types.isize) } pub fn t_rptr_late_bound_with_debruijn(&self, id: u32, debruijn: ty::DebruijnIndex) -> Ty<'tcx> { let r = self.re_late_bound_with_debruijn(id, debruijn); self.infcx.tcx.mk_imm_ref(r, self.tcx().types.isize) } pub fn t_rptr_scope(&self, id: ast::NodeId) -> Ty<'tcx> { let r = ty::ReScope(self.tcx().region_maps.node_extent(id)); self.infcx.tcx.mk_imm_ref(self.infcx.tcx.mk_region(r), self.tcx().types.isize) } pub fn re_free(&self, nid: ast::NodeId, id: u32) -> &'tcx ty::Region { self.infcx.tcx.mk_region(ty::ReFree(ty::FreeRegion { scope: self.tcx().region_maps.item_extent(nid), bound_region: ty::BrAnon(id), })) } pub fn t_rptr_free(&self, nid: ast::NodeId, id: u32) -> Ty<'tcx> { let r = self.re_free(nid, id); self.infcx.tcx.mk_imm_ref(r, self.tcx().types.isize) } pub fn t_rptr_static(&self) -> Ty<'tcx> { self.infcx.tcx.mk_imm_ref(self.infcx.tcx.mk_region(ty::ReStatic), self.tcx().types.isize) } pub fn t_rptr_empty(&self) -> Ty<'tcx> { self.infcx.tcx.mk_imm_ref(self.infcx.tcx.mk_region(ty::ReEmpty), self.tcx().types.isize) } pub fn dummy_type_trace(&self) -> infer::TypeTrace<'tcx> { infer::TypeTrace::dummy(self.tcx()) } pub fn sub(&self, t1: Ty<'tcx>, t2: Ty<'tcx>) -> InferResult<'tcx, Ty<'tcx>> { let trace = self.dummy_type_trace(); self.infcx.sub(true, trace, &t1, &t2) } pub fn lub(&self, t1: Ty<'tcx>, t2: Ty<'tcx>) -> InferResult<'tcx, Ty<'tcx>> { let trace = self.dummy_type_trace(); self.infcx.lub(true, trace, &t1, &t2) } pub fn glb(&self, t1: Ty<'tcx>, t2: Ty<'tcx>) -> InferResult<'tcx, Ty<'tcx>> { let trace = self.dummy_type_trace(); self.infcx.glb(true, trace, &t1, &t2) } /// Checks that `t1 <: t2` is true (this may register additional /// region checks). pub fn check_sub(&self, t1: Ty<'tcx>, t2: Ty<'tcx>) { match self.sub(t1, t2) { Ok(InferOk { obligations, .. }) => { // FIXME(#32730) once obligations are being propagated, assert the right thing. assert!(obligations.is_empty()); } Err(ref e) => { panic!("unexpected error computing sub({:?},{:?}): {}", t1, t2, e); } } } /// Checks that `t1 <: t2` is false (this may register additional /// region checks). pub fn check_not_sub(&self, t1: Ty<'tcx>, t2: Ty<'tcx>) { match self.sub(t1, t2) { Err(_) => {} Ok(_) => { panic!("unexpected success computing sub({:?},{:?})", t1, t2); } } } /// Checks that `LUB(t1,t2) == t_lub` pub fn check_lub(&self, t1: Ty<'tcx>, t2: Ty<'tcx>, t_lub: Ty<'tcx>) { match self.lub(t1, t2) { Ok(InferOk { obligations, value: t }) => { // FIXME(#32730) once obligations are being propagated, assert the right thing. assert!(obligations.is_empty()); self.assert_eq(t, t_lub); } Err(ref e) => { panic!("unexpected error in LUB: {}", e) } } } /// Checks that `GLB(t1,t2) == t_glb` pub fn check_glb(&self, t1: Ty<'tcx>, t2: Ty<'tcx>, t_glb: Ty<'tcx>) { debug!("check_glb(t1={}, t2={}, t_glb={})", t1, t2, t_glb); match self.glb(t1, t2) { Err(e) => { panic!("unexpected error computing LUB: {:?}", e) } Ok(InferOk { obligations, value: t }) => { // FIXME(#32730) once obligations are being propagated, assert the right thing. assert!(obligations.is_empty()); self.assert_eq(t, t_glb); // sanity check for good measure: self.assert_subtype(t, t1); self.assert_subtype(t, t2); } } } } #[test] fn contravariant_region_ptr_ok() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { env.create_simple_region_hierarchy(); let t_rptr1 = env.t_rptr_scope(1); let t_rptr10 = env.t_rptr_scope(10); env.assert_eq(t_rptr1, t_rptr1); env.assert_eq(t_rptr10, t_rptr10); env.make_subtype(t_rptr1, t_rptr10); }) } #[test] fn contravariant_region_ptr_err() { test_env(EMPTY_SOURCE_STR, errors(&["mismatched types"]), |env| { env.create_simple_region_hierarchy(); let t_rptr1 = env.t_rptr_scope(1); let t_rptr10 = env.t_rptr_scope(10); env.assert_eq(t_rptr1, t_rptr1); env.assert_eq(t_rptr10, t_rptr10); // will cause an error when regions are resolved env.make_subtype(t_rptr10, t_rptr1); }) } #[test] fn sub_free_bound_false() { //! Test that: //! //! fn(&'a isize) <: for<'b> fn(&'b isize) //! //! does NOT hold. test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { env.create_simple_region_hierarchy(); let t_rptr_free1 = env.t_rptr_free(1, 1); let t_rptr_bound1 = env.t_rptr_late_bound(1); env.check_not_sub(env.t_fn(&[t_rptr_free1], env.tcx().types.isize), env.t_fn(&[t_rptr_bound1], env.tcx().types.isize)); }) } #[test] fn sub_bound_free_true() { //! Test that: //! //! for<'a> fn(&'a isize) <: fn(&'b isize) //! //! DOES hold. test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { env.create_simple_region_hierarchy(); let t_rptr_bound1 = env.t_rptr_late_bound(1); let t_rptr_free1 = env.t_rptr_free(1, 1); env.check_sub(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize), env.t_fn(&[t_rptr_free1], env.tcx().types.isize)); }) } #[test] fn sub_free_bound_false_infer() { //! Test that: //! //! fn(_#1) <: for<'b> fn(&'b isize) //! //! does NOT hold for any instantiation of `_#1`. test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { let t_infer1 = env.infcx.next_ty_var(); let t_rptr_bound1 = env.t_rptr_late_bound(1); env.check_not_sub(env.t_fn(&[t_infer1], env.tcx().types.isize), env.t_fn(&[t_rptr_bound1], env.tcx().types.isize)); }) } #[test] fn lub_free_bound_infer() { //! Test result of: //! //! LUB(fn(_#1), for<'b> fn(&'b isize)) //! //! This should yield `fn(&'_ isize)`. We check //! that it yields `fn(&'x isize)` for some free `'x`, //! anyhow. test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { env.create_simple_region_hierarchy(); let t_infer1 = env.infcx.next_ty_var(); let t_rptr_bound1 = env.t_rptr_late_bound(1); let t_rptr_free1 = env.t_rptr_free(1, 1); env.check_lub(env.t_fn(&[t_infer1], env.tcx().types.isize), env.t_fn(&[t_rptr_bound1], env.tcx().types.isize), env.t_fn(&[t_rptr_free1], env.tcx().types.isize)); }); } #[test] fn lub_bound_bound() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { let t_rptr_bound1 = env.t_rptr_late_bound(1); let t_rptr_bound2 = env.t_rptr_late_bound(2); env.check_lub(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize), env.t_fn(&[t_rptr_bound2], env.tcx().types.isize), env.t_fn(&[t_rptr_bound1], env.tcx().types.isize)); }) } #[test] fn lub_bound_free() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { env.create_simple_region_hierarchy(); let t_rptr_bound1 = env.t_rptr_late_bound(1); let t_rptr_free1 = env.t_rptr_free(1, 1); env.check_lub(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize), env.t_fn(&[t_rptr_free1], env.tcx().types.isize), env.t_fn(&[t_rptr_free1], env.tcx().types.isize)); }) } #[test] fn lub_bound_static() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { let t_rptr_bound1 = env.t_rptr_late_bound(1); let t_rptr_static = env.t_rptr_static(); env.check_lub(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize), env.t_fn(&[t_rptr_static], env.tcx().types.isize), env.t_fn(&[t_rptr_static], env.tcx().types.isize)); }) } #[test] fn lub_bound_bound_inverse_order() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { let t_rptr_bound1 = env.t_rptr_late_bound(1); let t_rptr_bound2 = env.t_rptr_late_bound(2); env.check_lub(env.t_fn(&[t_rptr_bound1, t_rptr_bound2], t_rptr_bound1), env.t_fn(&[t_rptr_bound2, t_rptr_bound1], t_rptr_bound1), env.t_fn(&[t_rptr_bound1, t_rptr_bound1], t_rptr_bound1)); }) } #[test] fn lub_free_free() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { env.create_simple_region_hierarchy(); let t_rptr_free1 = env.t_rptr_free(1, 1); let t_rptr_free2 = env.t_rptr_free(1, 2); let t_rptr_static = env.t_rptr_static(); env.check_lub(env.t_fn(&[t_rptr_free1], env.tcx().types.isize), env.t_fn(&[t_rptr_free2], env.tcx().types.isize), env.t_fn(&[t_rptr_static], env.tcx().types.isize)); }) } #[test] fn lub_returning_scope() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { env.create_simple_region_hierarchy(); let t_rptr_scope10 = env.t_rptr_scope(10); let t_rptr_scope11 = env.t_rptr_scope(11); let t_rptr_empty = env.t_rptr_empty(); env.check_lub(env.t_fn(&[t_rptr_scope10], env.tcx().types.isize), env.t_fn(&[t_rptr_scope11], env.tcx().types.isize), env.t_fn(&[t_rptr_empty], env.tcx().types.isize)); }); } #[test] fn glb_free_free_with_common_scope() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { env.create_simple_region_hierarchy(); let t_rptr_free1 = env.t_rptr_free(1, 1); let t_rptr_free2 = env.t_rptr_free(1, 2); let t_rptr_scope = env.t_rptr_scope(1); env.check_glb(env.t_fn(&[t_rptr_free1], env.tcx().types.isize), env.t_fn(&[t_rptr_free2], env.tcx().types.isize), env.t_fn(&[t_rptr_scope], env.tcx().types.isize)); }) } #[test] fn glb_bound_bound() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { let t_rptr_bound1 = env.t_rptr_late_bound(1); let t_rptr_bound2 = env.t_rptr_late_bound(2); env.check_glb(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize), env.t_fn(&[t_rptr_bound2], env.tcx().types.isize), env.t_fn(&[t_rptr_bound1], env.tcx().types.isize)); }) } #[test] fn glb_bound_free() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { env.create_simple_region_hierarchy(); let t_rptr_bound1 = env.t_rptr_late_bound(1); let t_rptr_free1 = env.t_rptr_free(1, 1); env.check_glb(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize), env.t_fn(&[t_rptr_free1], env.tcx().types.isize), env.t_fn(&[t_rptr_bound1], env.tcx().types.isize)); }) } #[test] fn glb_bound_free_infer() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { let t_rptr_bound1 = env.t_rptr_late_bound(1); let t_infer1 = env.infcx.next_ty_var(); // compute GLB(fn(_) -> isize, for<'b> fn(&'b isize) -> isize), // which should yield for<'b> fn(&'b isize) -> isize env.check_glb(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize), env.t_fn(&[t_infer1], env.tcx().types.isize), env.t_fn(&[t_rptr_bound1], env.tcx().types.isize)); // as a side-effect, computing GLB should unify `_` with // `&'_ isize` let t_resolve1 = env.infcx.shallow_resolve(t_infer1); match t_resolve1.sty { ty::TyRef(..) => {} _ => { panic!("t_resolve1={:?}", t_resolve1); } } }) } #[test] fn glb_bound_static() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { let t_rptr_bound1 = env.t_rptr_late_bound(1); let t_rptr_static = env.t_rptr_static(); env.check_glb(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize), env.t_fn(&[t_rptr_static], env.tcx().types.isize), env.t_fn(&[t_rptr_bound1], env.tcx().types.isize)); }) } /// Test substituting a bound region into a function, which introduces another level of binding. /// This requires adjusting the Debruijn index. #[test] fn subst_ty_renumber_bound() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { // Situation: // Theta = [A -> &'a foo] let t_rptr_bound1 = env.t_rptr_late_bound(1); // t_source = fn(A) let t_source = { let t_param = env.t_param(0); env.t_fn(&[t_param], env.t_nil()) }; let substs = Substs::new(env.infcx.tcx, iter::once(Kind::from(t_rptr_bound1))); let t_substituted = t_source.subst(env.infcx.tcx, substs); // t_expected = fn(&'a isize) let t_expected = { let t_ptr_bound2 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(2)); env.t_fn(&[t_ptr_bound2], env.t_nil()) }; debug!("subst_bound: t_source={:?} substs={:?} t_substituted={:?} t_expected={:?}", t_source, substs, t_substituted, t_expected); assert_eq!(t_substituted, t_expected); }) } /// Test substituting a bound region into a function, which introduces another level of binding. /// This requires adjusting the Debruijn index. #[test] fn subst_ty_renumber_some_bounds() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { // Situation: // Theta = [A -> &'a foo] let t_rptr_bound1 = env.t_rptr_late_bound(1); // t_source = (A, fn(A)) let t_source = { let t_param = env.t_param(0); env.t_pair(t_param, env.t_fn(&[t_param], env.t_nil())) }; let substs = Substs::new(env.infcx.tcx, iter::once(Kind::from(t_rptr_bound1))); let t_substituted = t_source.subst(env.infcx.tcx, substs); // t_expected = (&'a isize, fn(&'a isize)) // // but not that the Debruijn index is different in the different cases. let t_expected = { let t_rptr_bound2 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(2)); env.t_pair(t_rptr_bound1, env.t_fn(&[t_rptr_bound2], env.t_nil())) }; debug!("subst_bound: t_source={:?} substs={:?} t_substituted={:?} t_expected={:?}", t_source, substs, t_substituted, t_expected); assert_eq!(t_substituted, t_expected); }) } /// Test that we correctly compute whether a type has escaping regions or not. #[test] fn escaping() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { // Situation: // Theta = [A -> &'a foo] env.create_simple_region_hierarchy(); assert!(!env.t_nil().has_escaping_regions()); let t_rptr_free1 = env.t_rptr_free(1, 1); assert!(!t_rptr_free1.has_escaping_regions()); let t_rptr_bound1 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(1)); assert!(t_rptr_bound1.has_escaping_regions()); let t_rptr_bound2 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(2)); assert!(t_rptr_bound2.has_escaping_regions()); // t_fn = fn(A) let t_param = env.t_param(0); assert!(!t_param.has_escaping_regions()); let t_fn = env.t_fn(&[t_param], env.t_nil()); assert!(!t_fn.has_escaping_regions()); }) } /// Test applying a substitution where the value being substituted for an early-bound region is a /// late-bound region. #[test] fn subst_region_renumber_region() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { let re_bound1 = env.re_late_bound_with_debruijn(1, ty::DebruijnIndex::new(1)); // type t_source<'a> = fn(&'a isize) let t_source = { let re_early = env.re_early_bound(0, "'a"); env.t_fn(&[env.t_rptr(re_early)], env.t_nil()) }; let substs = Substs::new(env.infcx.tcx, iter::once(Kind::from(re_bound1))); let t_substituted = t_source.subst(env.infcx.tcx, substs); // t_expected = fn(&'a isize) // // but not that the Debruijn index is different in the different cases. let t_expected = { let t_rptr_bound2 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(2)); env.t_fn(&[t_rptr_bound2], env.t_nil()) }; debug!("subst_bound: t_source={:?} substs={:?} t_substituted={:?} t_expected={:?}", t_source, substs, t_substituted, t_expected); assert_eq!(t_substituted, t_expected); }) } #[test] fn walk_ty() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { let tcx = env.infcx.tcx; let int_ty = tcx.types.isize; let uint_ty = tcx.types.usize; let tup1_ty = tcx.mk_tup(vec![int_ty, uint_ty, int_ty, uint_ty]); let tup2_ty = tcx.mk_tup(vec![tup1_ty, tup1_ty, uint_ty]); let uniq_ty = tcx.mk_box(tup2_ty); let walked: Vec<_> = uniq_ty.walk().collect(); assert_eq!(walked, [uniq_ty, tup2_ty, tup1_ty, int_ty, uint_ty, int_ty, uint_ty, tup1_ty, int_ty, uint_ty, int_ty, uint_ty, uint_ty]); }) } #[test] fn walk_ty_skip_subtree() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { let tcx = env.infcx.tcx; let int_ty = tcx.types.isize; let uint_ty = tcx.types.usize; let tup1_ty = tcx.mk_tup(vec![int_ty, uint_ty, int_ty, uint_ty]); let tup2_ty = tcx.mk_tup(vec![tup1_ty, tup1_ty, uint_ty]); let uniq_ty = tcx.mk_box(tup2_ty); // types we expect to see (in order), plus a boolean saying // whether to skip the subtree. let mut expected = vec![(uniq_ty, false), (tup2_ty, false), (tup1_ty, false), (int_ty, false), (uint_ty, false), (int_ty, false), (uint_ty, false), (tup1_ty, true), // skip the isize/usize/isize/usize (uint_ty, false)]; expected.reverse(); let mut walker = uniq_ty.walk(); while let Some(t) = walker.next() { debug!("walked to {:?}", t); let (expected_ty, skip) = expected.pop().unwrap(); assert_eq!(t, expected_ty); if skip { walker.skip_current_subtree(); } } assert!(expected.is_empty()); }) }