// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Composable external iterators //! //! # The `Iterator` trait //! //! This module defines Rust's core iteration trait. The `Iterator` trait has //! one unimplemented method, `next`. All other methods are derived through //! default methods to perform operations such as `zip`, `chain`, `enumerate`, //! and `fold`. //! //! The goal of this module is to unify iteration across all containers in Rust. //! An iterator can be considered as a state machine which is used to track //! which element will be yielded next. //! //! There are various extensions also defined in this module to assist with //! various types of iteration, such as the `DoubleEndedIterator` for iterating //! in reverse, the `FromIterator` trait for creating a container from an //! iterator, and much more. //! //! # Rust's `for` loop //! //! The special syntax used by rust's `for` loop is based around the //! `IntoIterator` trait defined in this module. `for` loops can be viewed as a //! syntactical expansion into a `loop`, for example, the `for` loop in this //! example is essentially translated to the `loop` below. //! //! ``` //! let values = vec![1, 2, 3]; //! //! for x in values { //! println!("{}", x); //! } //! //! // Rough translation of the iteration without a `for` iterator. //! # let values = vec![1, 2, 3]; //! let mut it = values.into_iter(); //! loop { //! match it.next() { //! Some(x) => println!("{}", x), //! None => break, //! } //! } //! ``` //! //! Because `Iterator`s implement `IntoIterator`, this `for` loop syntax can be applied to any //! iterator over any type. #![stable(feature = "rust1", since = "1.0.0")] use self::MinMaxResult::*; use clone::Clone; use cmp; use cmp::{Ord, PartialOrd, PartialEq}; use default::Default; use marker; use mem; use num::{Zero, One}; use ops::{self, Add, Sub, FnMut, Mul, RangeFrom}; use option::Option::{self, Some, None}; use marker::Sized; use usize; fn _assert_is_object_safe(_: &Iterator) {} /// An interface for dealing with "external iterators". These types of iterators /// can be resumed at any time as all state is stored internally as opposed to /// being located on the call stack. /// /// The Iterator protocol states that an iterator yields a (potentially-empty, /// potentially-infinite) sequence of values, and returns `None` to signal that /// it's finished. The Iterator protocol does not define behavior after `None` /// is returned. A concrete Iterator implementation may choose to behave however /// it wishes, either by returning `None` infinitely, or by doing something /// else. #[lang = "iterator"] #[stable(feature = "rust1", since = "1.0.0")] #[rustc_on_unimplemented = "`{Self}` is not an iterator; maybe try calling \ `.iter()` or a similar method"] pub trait Iterator { /// The type of the elements being iterated #[stable(feature = "rust1", since = "1.0.0")] type Item; /// Advances the iterator and returns the next value. Returns `None` when the /// end is reached. #[stable(feature = "rust1", since = "1.0.0")] fn next(&mut self) -> Option; /// Returns a lower and upper bound on the remaining length of the iterator. /// /// An upper bound of `None` means either there is no known upper bound, or /// the upper bound does not fit within a `usize`. #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn size_hint(&self) -> (usize, Option) { (0, None) } /// Counts the number of elements in this iterator. /// /// # Overflow Behavior /// /// The method does no guarding against overflows, so counting elements of /// an iterator with more than `usize::MAX` elements either produces the /// wrong result or panics. If debug assertions are enabled, a panic is /// guaranteed. /// /// # Panics /// /// This functions might panic if the iterator has more than `usize::MAX` /// elements. /// /// # Examples /// /// ``` /// let a = [1, 2, 3, 4, 5]; /// assert_eq!(a.iter().count(), 5); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn count(self) -> usize where Self: Sized { // Might overflow. self.fold(0, |cnt, _| cnt + 1) } /// Loops through the entire iterator, returning the last element. /// /// # Examples /// /// ``` /// let a = [1, 2, 3, 4, 5]; /// assert_eq!(a.iter().last(), Some(&5)); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn last(self) -> Option where Self: Sized { let mut last = None; for x in self { last = Some(x); } last } /// Loops through `n` iterations, returning the `n`th element of the /// iterator. /// /// # Examples /// /// ``` /// let a = [1, 2, 3, 4, 5]; /// let mut it = a.iter(); /// assert_eq!(it.nth(2), Some(&3)); /// assert_eq!(it.nth(2), None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn nth(&mut self, mut n: usize) -> Option where Self: Sized { for x in self.by_ref() { if n == 0 { return Some(x) } n -= 1; } None } /// Chain this iterator with another, returning a new iterator that will /// finish iterating over the current iterator, and then iterate /// over the other specified iterator. /// /// # Examples /// /// ``` /// let a = [0]; /// let b = [1]; /// let mut it = a.iter().chain(b.iter()); /// assert_eq!(it.next(), Some(&0)); /// assert_eq!(it.next(), Some(&1)); /// assert!(it.next().is_none()); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn chain(self, other: U) -> Chain where Self: Sized, U: IntoIterator, { Chain{a: self, b: other.into_iter(), flag: false} } /// Creates an iterator that iterates over both this and the specified /// iterators simultaneously, yielding the two elements as pairs. When /// either iterator returns `None`, all further invocations of `next()` /// will return `None`. /// /// # Examples /// /// ``` /// let a = [0]; /// let b = [1]; /// let mut it = a.iter().zip(b.iter()); /// assert_eq!(it.next(), Some((&0, &1))); /// assert!(it.next().is_none()); /// ``` /// /// `zip` can provide similar functionality to `enumerate`: /// /// ``` /// for pair in "foo".chars().enumerate() { /// println!("{:?}", pair); /// } /// /// for pair in (0..).zip("foo".chars()) { /// println!("{:?}", pair); /// } /// ``` /// /// both produce the same output. #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn zip(self, other: U) -> Zip where Self: Sized, U: IntoIterator { Zip{a: self, b: other.into_iter()} } /// Creates a new iterator that will apply the specified function to each /// element returned by the first, yielding the mapped element instead. /// /// # Examples /// /// ``` /// let a = [1, 2]; /// let mut it = a.iter().map(|&x| 2 * x); /// assert_eq!(it.next(), Some(2)); /// assert_eq!(it.next(), Some(4)); /// assert!(it.next().is_none()); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn map(self, f: F) -> Map where Self: Sized, F: FnMut(Self::Item) -> B, { Map{iter: self, f: f} } /// Creates an iterator that applies the predicate to each element returned /// by this iterator. The only elements that will be yielded are those that /// make the predicate evaluate to `true`. /// /// # Examples /// /// ``` /// let a = [1, 2]; /// let mut it = a.iter().filter(|&x| *x > 1); /// assert_eq!(it.next(), Some(&2)); /// assert!(it.next().is_none()); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn filter

(self, predicate: P) -> Filter where Self: Sized, P: FnMut(&Self::Item) -> bool, { Filter{iter: self, predicate: predicate} } /// Creates an iterator that both filters and maps elements. /// If the specified function returns `None`, the element is skipped. /// Otherwise the option is unwrapped and the new value is yielded. /// /// # Examples /// /// ``` /// let a = [1, 2]; /// let mut it = a.iter().filter_map(|&x| if x > 1 {Some(2 * x)} else {None}); /// assert_eq!(it.next(), Some(4)); /// assert!(it.next().is_none()); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn filter_map(self, f: F) -> FilterMap where Self: Sized, F: FnMut(Self::Item) -> Option, { FilterMap { iter: self, f: f } } /// Creates an iterator that yields pairs `(i, val)` where `i` is the /// current index of iteration and `val` is the value returned by the /// iterator. /// /// `enumerate` keeps its count as a `usize`. If you want to count by a /// different sized integer, the `zip` function provides similar /// functionality. /// /// # Overflow Behavior /// /// The method does no guarding against overflows, so enumerating more than /// `usize::MAX` elements either produces the wrong result or panics. If /// debug assertions are enabled, a panic is guaranteed. /// /// # Panics /// /// The returned iterator might panic if the to-be-returned index would /// overflow a `usize`. /// /// # Examples /// /// ``` /// let a = [100, 200]; /// let mut it = a.iter().enumerate(); /// assert_eq!(it.next(), Some((0, &100))); /// assert_eq!(it.next(), Some((1, &200))); /// assert!(it.next().is_none()); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn enumerate(self) -> Enumerate where Self: Sized { Enumerate { iter: self, count: 0 } } /// Creates an iterator that has a `.peek()` method /// that returns an optional reference to the next element. /// /// # Examples /// /// ``` /// # #![feature(core)] /// let xs = [100, 200, 300]; /// let mut it = xs.iter().cloned().peekable(); /// assert_eq!(*it.peek().unwrap(), 100); /// assert_eq!(it.next().unwrap(), 100); /// assert_eq!(it.next().unwrap(), 200); /// assert_eq!(*it.peek().unwrap(), 300); /// assert_eq!(*it.peek().unwrap(), 300); /// assert_eq!(it.next().unwrap(), 300); /// assert!(it.peek().is_none()); /// assert!(it.next().is_none()); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn peekable(self) -> Peekable where Self: Sized { Peekable{iter: self, peeked: None} } /// Creates an iterator that invokes the predicate on elements /// until it returns false. Once the predicate returns false, that /// element and all further elements are yielded. /// /// # Examples /// /// ``` /// let a = [1, 2, 3, 4, 5]; /// let mut it = a.iter().skip_while(|&a| *a < 3); /// assert_eq!(it.next(), Some(&3)); /// assert_eq!(it.next(), Some(&4)); /// assert_eq!(it.next(), Some(&5)); /// assert!(it.next().is_none()); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn skip_while

(self, predicate: P) -> SkipWhile where Self: Sized, P: FnMut(&Self::Item) -> bool, { SkipWhile{iter: self, flag: false, predicate: predicate} } /// Creates an iterator that yields elements so long as the predicate /// returns true. After the predicate returns false for the first time, no /// further elements will be yielded. /// /// # Examples /// /// ``` /// let a = [1, 2, 3, 4, 5]; /// let mut it = a.iter().take_while(|&a| *a < 3); /// assert_eq!(it.next(), Some(&1)); /// assert_eq!(it.next(), Some(&2)); /// assert!(it.next().is_none()); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn take_while

(self, predicate: P) -> TakeWhile where Self: Sized, P: FnMut(&Self::Item) -> bool, { TakeWhile{iter: self, flag: false, predicate: predicate} } /// Creates an iterator that skips the first `n` elements of this iterator, /// and then yields all further items. /// /// # Examples /// /// ``` /// let a = [1, 2, 3, 4, 5]; /// let mut it = a.iter().skip(3); /// assert_eq!(it.next(), Some(&4)); /// assert_eq!(it.next(), Some(&5)); /// assert!(it.next().is_none()); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn skip(self, n: usize) -> Skip where Self: Sized { Skip{iter: self, n: n} } /// Creates an iterator that yields the first `n` elements of this /// iterator. /// /// # Examples /// /// ``` /// let a = [1, 2, 3, 4, 5]; /// let mut it = a.iter().take(3); /// assert_eq!(it.next(), Some(&1)); /// assert_eq!(it.next(), Some(&2)); /// assert_eq!(it.next(), Some(&3)); /// assert!(it.next().is_none()); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn take(self, n: usize) -> Take where Self: Sized, { Take{iter: self, n: n} } /// Creates a new iterator that behaves in a similar fashion to fold. /// There is a state which is passed between each iteration and can be /// mutated as necessary. The yielded values from the closure are yielded /// from the Scan instance when not `None`. /// /// # Examples /// /// ``` /// let a = [1, 2, 3, 4, 5]; /// let mut it = a.iter().scan(1, |fac, &x| { /// *fac = *fac * x; /// Some(*fac) /// }); /// assert_eq!(it.next(), Some(1)); /// assert_eq!(it.next(), Some(2)); /// assert_eq!(it.next(), Some(6)); /// assert_eq!(it.next(), Some(24)); /// assert_eq!(it.next(), Some(120)); /// assert!(it.next().is_none()); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn scan(self, initial_state: St, f: F) -> Scan where Self: Sized, F: FnMut(&mut St, Self::Item) -> Option, { Scan{iter: self, f: f, state: initial_state} } /// Takes a function that maps each element to a new iterator and yields /// all the elements of the produced iterators. /// /// This is useful for unraveling nested structures. /// /// # Examples /// /// ``` /// let words = ["alpha", "beta", "gamma"]; /// let merged: String = words.iter() /// .flat_map(|s| s.chars()) /// .collect(); /// assert_eq!(merged, "alphabetagamma"); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn flat_map(self, f: F) -> FlatMap where Self: Sized, U: IntoIterator, F: FnMut(Self::Item) -> U, { FlatMap{iter: self, f: f, frontiter: None, backiter: None } } /// Creates an iterator that yields `None` forever after the underlying /// iterator yields `None`. Random-access iterator behavior is not /// affected, only single and double-ended iterator behavior. /// /// # Examples /// /// ``` /// fn process>(it: U) -> i32 { /// let mut it = it.fuse(); /// let mut sum = 0; /// for x in it.by_ref() { /// if x > 5 { /// break; /// } /// sum += x; /// } /// // did we exhaust the iterator? /// if it.next().is_none() { /// sum += 1000; /// } /// sum /// } /// let x = vec![1, 2, 3, 7, 8, 9]; /// assert_eq!(process(x.into_iter()), 6); /// let x = vec![1, 2, 3]; /// assert_eq!(process(x.into_iter()), 1006); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn fuse(self) -> Fuse where Self: Sized { Fuse{iter: self, done: false} } /// Creates an iterator that calls a function with a reference to each /// element before yielding it. This is often useful for debugging an /// iterator pipeline. /// /// # Examples /// /// ``` /// # #![feature(core)] /// /// let a = [1, 4, 2, 3, 8, 9, 6]; /// let sum: i32 = a.iter() /// .map(|x| *x) /// .inspect(|&x| println!("filtering {}", x)) /// .filter(|&x| x % 2 == 0) /// .inspect(|&x| println!("{} made it through", x)) /// .sum(); /// println!("{}", sum); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn inspect(self, f: F) -> Inspect where Self: Sized, F: FnMut(&Self::Item), { Inspect{iter: self, f: f} } /// Creates a wrapper around a mutable reference to the iterator. /// /// This is useful to allow applying iterator adaptors while still /// retaining ownership of the original iterator value. /// /// # Examples /// /// ``` /// let mut it = 0..10; /// // sum the first five values /// let partial_sum = it.by_ref().take(5).fold(0, |a, b| a + b); /// assert_eq!(partial_sum, 10); /// assert_eq!(it.next(), Some(5)); /// ``` #[stable(feature = "rust1", since = "1.0.0")] fn by_ref(&mut self) -> &mut Self where Self: Sized { self } /// Loops through the entire iterator, collecting all of the elements into /// a container implementing `FromIterator`. /// /// # Examples /// /// ``` /// let expected = [1, 2, 3, 4, 5]; /// let actual: Vec<_> = expected.iter().cloned().collect(); /// assert_eq!(actual, expected); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn collect>(self) -> B where Self: Sized { FromIterator::from_iter(self) } /// Loops through the entire iterator, collecting all of the elements into /// one of two containers, depending on a predicate. The elements of the /// first container satisfy the predicate, while the elements of the second /// do not. /// /// ``` /// # #![feature(core)] /// let vec = vec![1, 2, 3, 4]; /// let (even, odd): (Vec<_>, Vec<_>) = vec.into_iter().partition(|&n| n % 2 == 0); /// assert_eq!(even, [2, 4]); /// assert_eq!(odd, [1, 3]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] fn partition(self, mut f: F) -> (B, B) where Self: Sized, B: Default + Extend, F: FnMut(&Self::Item) -> bool { let mut left: B = Default::default(); let mut right: B = Default::default(); for x in self { if f(&x) { left.extend(Some(x).into_iter()) } else { right.extend(Some(x).into_iter()) } } (left, right) } /// Performs a fold operation over the entire iterator, returning the /// eventual state at the end of the iteration. /// /// This operation is sometimes called 'reduce' or 'inject'. /// /// # Examples /// /// ``` /// let a = [1, 2, 3, 4, 5]; /// assert_eq!(a.iter().fold(0, |acc, &item| acc + item), 15); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn fold(self, init: B, mut f: F) -> B where Self: Sized, F: FnMut(B, Self::Item) -> B, { let mut accum = init; for x in self { accum = f(accum, x); } accum } /// Tests whether the predicate holds true for all elements in the iterator. /// /// # Examples /// /// ``` /// let a = [1, 2, 3, 4, 5]; /// assert!(a.iter().all(|x| *x > 0)); /// assert!(!a.iter().all(|x| *x > 2)); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn all(&mut self, mut f: F) -> bool where Self: Sized, F: FnMut(Self::Item) -> bool { for x in self.by_ref() { if !f(x) { return false; } } true } /// Tests whether any element of an iterator satisfies the specified /// predicate. /// /// Does not consume the iterator past the first found element. /// /// # Examples /// /// ``` /// let a = [1, 2, 3, 4, 5]; /// let mut it = a.iter(); /// assert!(it.any(|x| *x == 3)); /// assert_eq!(it.collect::>(), [&4, &5]); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn any(&mut self, mut f: F) -> bool where Self: Sized, F: FnMut(Self::Item) -> bool { for x in self.by_ref() { if f(x) { return true; } } false } /// Returns the first element satisfying the specified predicate. /// /// Does not consume the iterator past the first found element. /// /// # Examples /// /// ``` /// let a = [1, 2, 3, 4, 5]; /// let mut it = a.iter(); /// assert_eq!(it.find(|&x| *x == 3), Some(&3)); /// assert_eq!(it.collect::>(), [&4, &5]); #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn find

(&mut self, mut predicate: P) -> Option where Self: Sized, P: FnMut(&Self::Item) -> bool, { for x in self.by_ref() { if predicate(&x) { return Some(x) } } None } /// Returns the index of the first element satisfying the specified predicate /// /// Does not consume the iterator past the first found element. /// /// # Overflow Behavior /// /// The method does no guarding against overflows, so if there are more /// than `usize::MAX` non-matching elements, it either produces the wrong /// result or panics. If debug assertions are enabled, a panic is /// guaranteed. /// /// # Panics /// /// This functions might panic if the iterator has more than `usize::MAX` /// non-matching elements. /// /// # Examples /// /// ``` /// let a = [1, 2, 3, 4, 5]; /// let mut it = a.iter(); /// assert_eq!(it.position(|x| *x == 3), Some(2)); /// assert_eq!(it.collect::>(), [&4, &5]); #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn position

(&mut self, mut predicate: P) -> Option where Self: Sized, P: FnMut(Self::Item) -> bool, { // `enumerate` might overflow. for (i, x) in self.by_ref().enumerate() { if predicate(x) { return Some(i); } } None } /// Returns the index of the last element satisfying the specified predicate /// /// If no element matches, `None` is returned. /// /// Does not consume the iterator *before* the first found element. /// /// # Examples /// /// ``` /// let a = [1, 2, 2, 4, 5]; /// let mut it = a.iter(); /// assert_eq!(it.rposition(|x| *x == 2), Some(2)); /// assert_eq!(it.collect::>(), [&1, &2]); #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn rposition

(&mut self, mut predicate: P) -> Option where P: FnMut(Self::Item) -> bool, Self: Sized + ExactSizeIterator + DoubleEndedIterator { let mut i = self.len(); while let Some(v) = self.next_back() { if predicate(v) { return Some(i - 1); } // No need for an overflow check here, because `ExactSizeIterator` // implies that the number of elements fits into a `usize`. i -= 1; } None } /// Consumes the entire iterator to return the maximum element. /// /// Returns the rightmost element if the comparison determines two elements /// to be equally maximum. /// /// # Examples /// /// ``` /// let a = [1, 2, 3, 4, 5]; /// assert_eq!(a.iter().max(), Some(&5)); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn max(self) -> Option where Self: Sized, Self::Item: Ord { select_fold1(self, |_| (), // switch to y even if it is only equal, to preserve // stability. |_, x, _, y| *x <= *y) .map(|(_, x)| x) } /// Consumes the entire iterator to return the minimum element. /// /// Returns the leftmost element if the comparison determines two elements /// to be equally minimum. /// /// # Examples /// /// ``` /// let a = [1, 2, 3, 4, 5]; /// assert_eq!(a.iter().min(), Some(&1)); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn min(self) -> Option where Self: Sized, Self::Item: Ord { select_fold1(self, |_| (), // only switch to y if it is strictly smaller, to // preserve stability. |_, x, _, y| *x > *y) .map(|(_, x)| x) } /// `min_max` finds the minimum and maximum elements in the iterator. /// /// The return type `MinMaxResult` is an enum of three variants: /// /// - `NoElements` if the iterator is empty. /// - `OneElement(x)` if the iterator has exactly one element. /// - `MinMax(x, y)` is returned otherwise, where `x <= y`. Two /// values are equal if and only if there is more than one /// element in the iterator and all elements are equal. /// /// On an iterator of length `n`, `min_max` does `1.5 * n` comparisons, /// and so is faster than calling `min` and `max` separately which does `2 * /// n` comparisons. /// /// # Examples /// /// ``` /// # #![feature(core)] /// use std::iter::MinMaxResult::{NoElements, OneElement, MinMax}; /// /// let a: [i32; 0] = []; /// assert_eq!(a.iter().min_max(), NoElements); /// /// let a = [1]; /// assert_eq!(a.iter().min_max(), OneElement(&1)); /// /// let a = [1, 2, 3, 4, 5]; /// assert_eq!(a.iter().min_max(), MinMax(&1, &5)); /// /// let a = [1, 1, 1, 1]; /// assert_eq!(a.iter().min_max(), MinMax(&1, &1)); /// ``` #[unstable(feature = "core", reason = "return type may change")] fn min_max(mut self) -> MinMaxResult where Self: Sized, Self::Item: Ord { let (mut min, mut max) = match self.next() { None => return NoElements, Some(x) => { match self.next() { None => return OneElement(x), Some(y) => if x <= y {(x, y)} else {(y, x)} } } }; loop { // `first` and `second` are the two next elements we want to look // at. We first compare `first` and `second` (#1). The smaller one // is then compared to current minimum (#2). The larger one is // compared to current maximum (#3). This way we do 3 comparisons // for 2 elements. let first = match self.next() { None => break, Some(x) => x }; let second = match self.next() { None => { if first < min { min = first; } else if first >= max { max = first; } break; } Some(x) => x }; if first <= second { if first < min { min = first } if second >= max { max = second } } else { if second < min { min = second } if first >= max { max = first } } } MinMax(min, max) } /// Returns the element that gives the maximum value from the /// specified function. /// /// Returns the rightmost element if the comparison determines two elements /// to be equally maximum. /// /// # Examples /// /// ``` /// # #![feature(core)] /// /// let a = [-3_i32, 0, 1, 5, -10]; /// assert_eq!(*a.iter().max_by(|x| x.abs()).unwrap(), -10); /// ``` #[inline] #[unstable(feature = "core", reason = "may want to produce an Ordering directly; see #15311")] fn max_by(self, f: F) -> Option where Self: Sized, F: FnMut(&Self::Item) -> B, { select_fold1(self, f, // switch to y even if it is only equal, to preserve // stability. |x_p, _, y_p, _| x_p <= y_p) .map(|(_, x)| x) } /// Returns the element that gives the minimum value from the /// specified function. /// /// Returns the leftmost element if the comparison determines two elements /// to be equally minimum. /// /// # Examples /// /// ``` /// # #![feature(core)] /// /// let a = [-3_i32, 0, 1, 5, -10]; /// assert_eq!(*a.iter().min_by(|x| x.abs()).unwrap(), 0); /// ``` #[inline] #[unstable(feature = "core", reason = "may want to produce an Ordering directly; see #15311")] fn min_by(self, f: F) -> Option where Self: Sized, F: FnMut(&Self::Item) -> B, { select_fold1(self, f, // only switch to y if it is strictly smaller, to // preserve stability. |x_p, _, y_p, _| x_p > y_p) .map(|(_, x)| x) } /// Change the direction of the iterator /// /// The flipped iterator swaps the ends on an iterator that can already /// be iterated from the front and from the back. /// /// /// If the iterator also implements RandomAccessIterator, the flipped /// iterator is also random access, with the indices starting at the back /// of the original iterator. /// /// Note: Random access with flipped indices still only applies to the first /// `std::usize::MAX` elements of the original iterator. #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn rev(self) -> Rev where Self: Sized + DoubleEndedIterator { Rev{iter: self} } /// Converts an iterator of pairs into a pair of containers. /// /// Loops through the entire iterator, collecting the first component of /// each item into one new container, and the second component into another. /// /// # Examples /// /// ``` /// # #![feature(core)] /// let a = [(1, 2), (3, 4)]; /// let (left, right): (Vec<_>, Vec<_>) = a.iter().cloned().unzip(); /// assert_eq!(left, [1, 3]); /// assert_eq!(right, [2, 4]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] fn unzip(self) -> (FromA, FromB) where FromA: Default + Extend, FromB: Default + Extend, Self: Sized + Iterator, { struct SizeHint(usize, Option, marker::PhantomData); impl Iterator for SizeHint { type Item = A; fn next(&mut self) -> Option { None } fn size_hint(&self) -> (usize, Option) { (self.0, self.1) } } let (lo, hi) = self.size_hint(); let mut ts: FromA = Default::default(); let mut us: FromB = Default::default(); ts.extend(SizeHint(lo, hi, marker::PhantomData)); us.extend(SizeHint(lo, hi, marker::PhantomData)); for (t, u) in self { ts.extend(Some(t).into_iter()); us.extend(Some(u).into_iter()); } (ts, us) } /// Creates an iterator that clones the elements it yields. /// /// This is useful for converting an Iterator<&T> to an Iterator, /// so it's a more convenient form of `map(|&x| x)`. /// /// # Examples /// /// ``` /// let a = [0, 1, 2]; /// let v_cloned: Vec<_> = a.iter().cloned().collect(); /// let v_map: Vec<_> = a.iter().map(|&x| x).collect(); /// assert_eq!(v_cloned, v_map); /// ``` #[stable(feature = "rust1", since = "1.0.0")] fn cloned<'a, T: 'a>(self) -> Cloned where Self: Sized + Iterator, T: Clone { Cloned { it: self } } /// Repeats an iterator endlessly /// /// # Examples /// /// ``` /// let a = [1, 2]; /// let mut it = a.iter().cycle(); /// assert_eq!(it.next(), Some(&1)); /// assert_eq!(it.next(), Some(&2)); /// assert_eq!(it.next(), Some(&1)); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] fn cycle(self) -> Cycle where Self: Sized + Clone { Cycle{orig: self.clone(), iter: self} } /// Use an iterator to reverse a container in place. #[unstable(feature = "core", reason = "uncertain about placement or widespread use")] fn reverse_in_place<'a, T: 'a>(&mut self) where Self: Sized + Iterator + DoubleEndedIterator { loop { match (self.next(), self.next_back()) { (Some(x), Some(y)) => mem::swap(x, y), _ => break } } } /// Iterates over the entire iterator, summing up all the elements /// /// # Examples /// /// ``` /// # #![feature(core)] /// /// let a = [1, 2, 3, 4, 5]; /// let it = a.iter(); /// assert_eq!(it.sum::(), 15); /// ``` #[unstable(feature="core")] fn sum::Item>(self) -> S where S: Add + Zero, Self: Sized, { self.fold(Zero::zero(), |s, e| s + e) } /// Iterates over the entire iterator, multiplying all the elements /// /// # Examples /// /// ``` /// # #![feature(core)] /// /// fn factorial(n: u32) -> u32 { /// (1..).take_while(|&i| i <= n).product() /// } /// assert_eq!(factorial(0), 1); /// assert_eq!(factorial(1), 1); /// assert_eq!(factorial(5), 120); /// ``` #[unstable(feature="core")] fn product::Item>(self) -> P where P: Mul + One, Self: Sized, { self.fold(One::one(), |p, e| p * e) } } /// Select an element from an iterator based on the given projection /// and "comparison" function. /// /// This is an idiosyncratic helper to try to factor out the /// commonalities of {max,min}{,_by}. In particular, this avoids /// having to implement optimisations several times. #[inline] fn select_fold1(mut it: I, mut f_proj: FProj, mut f_cmp: FCmp) -> Option<(B, I::Item)> where I: Iterator, FProj: FnMut(&I::Item) -> B, FCmp: FnMut(&B, &I::Item, &B, &I::Item) -> bool { // start with the first element as our selection. This avoids // having to use `Option`s inside the loop, translating to a // sizeable performance gain (6x in one case). it.next().map(|mut sel| { let mut sel_p = f_proj(&sel); for x in it { let x_p = f_proj(&x); if f_cmp(&sel_p, &sel, &x_p, &x) { sel = x; sel_p = x_p; } } (sel_p, sel) }) } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, I: Iterator + ?Sized> Iterator for &'a mut I { type Item = I::Item; fn next(&mut self) -> Option { (**self).next() } fn size_hint(&self) -> (usize, Option) { (**self).size_hint() } } /// Conversion from an `Iterator` #[stable(feature = "rust1", since = "1.0.0")] #[rustc_on_unimplemented="a collection of type `{Self}` cannot be \ built from an iterator over elements of type `{A}`"] pub trait FromIterator { /// Builds a container with elements from something iterable. /// /// # Examples /// /// ``` /// use std::collections::HashSet; /// use std::iter::FromIterator; /// /// let colors_vec = vec!["red", "red", "yellow", "blue"]; /// let colors_set = HashSet::<&str>::from_iter(colors_vec); /// assert_eq!(colors_set.len(), 3); /// ``` /// /// `FromIterator` is more commonly used implicitly via the /// `Iterator::collect` method: /// /// ``` /// use std::collections::HashSet; /// /// let colors_vec = vec!["red", "red", "yellow", "blue"]; /// let colors_set = colors_vec.into_iter().collect::>(); /// assert_eq!(colors_set.len(), 3); /// ``` #[stable(feature = "rust1", since = "1.0.0")] fn from_iter>(iterator: T) -> Self; } /// Conversion into an `Iterator` /// /// Implementing this trait allows you to use your type with Rust's `for` loop. See /// the [module level documentation](index.html) for more details. #[stable(feature = "rust1", since = "1.0.0")] pub trait IntoIterator { /// The type of the elements being iterated #[stable(feature = "rust1", since = "1.0.0")] type Item; /// A container for iterating over elements of type `Item` #[stable(feature = "rust1", since = "1.0.0")] type IntoIter: Iterator; /// Consumes `Self` and returns an iterator over it #[stable(feature = "rust1", since = "1.0.0")] fn into_iter(self) -> Self::IntoIter; } #[stable(feature = "rust1", since = "1.0.0")] impl IntoIterator for I { type Item = I::Item; type IntoIter = I; fn into_iter(self) -> I { self } } /// A type growable from an `Iterator` implementation #[stable(feature = "rust1", since = "1.0.0")] pub trait Extend { /// Extends a container with the elements yielded by an arbitrary iterator #[stable(feature = "rust1", since = "1.0.0")] fn extend>(&mut self, iterable: T); } /// A range iterator able to yield elements from both ends /// /// A `DoubleEndedIterator` can be thought of as a deque in that `next()` and /// `next_back()` exhaust elements from the *same* range, and do not work /// independently of each other. #[stable(feature = "rust1", since = "1.0.0")] pub trait DoubleEndedIterator: Iterator { /// Yields an element from the end of the range, returning `None` if the /// range is empty. #[stable(feature = "rust1", since = "1.0.0")] fn next_back(&mut self) -> Option; } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, I: DoubleEndedIterator + ?Sized> DoubleEndedIterator for &'a mut I { fn next_back(&mut self) -> Option { (**self).next_back() } } /// An object implementing random access indexing by `usize` /// /// A `RandomAccessIterator` should be either infinite or a /// `DoubleEndedIterator`. Calling `next()` or `next_back()` on a /// `RandomAccessIterator` reduces the indexable range accordingly. That is, /// `it.idx(1)` will become `it.idx(0)` after `it.next()` is called. #[unstable(feature = "core", reason = "not widely used, may be better decomposed into Index \ and ExactSizeIterator")] pub trait RandomAccessIterator: Iterator { /// Returns the number of indexable elements. At most `std::usize::MAX` /// elements are indexable, even if the iterator represents a longer range. fn indexable(&self) -> usize; /// Returns an element at an index, or `None` if the index is out of bounds fn idx(&mut self, index: usize) -> Option; } /// An iterator that knows its exact length /// /// This trait is a helper for iterators like the vector iterator, so that /// it can support double-ended enumeration. /// /// `Iterator::size_hint` *must* return the exact size of the iterator. /// Note that the size must fit in `usize`. #[stable(feature = "rust1", since = "1.0.0")] pub trait ExactSizeIterator: Iterator { #[inline] #[stable(feature = "rust1", since = "1.0.0")] /// Returns the exact length of the iterator. fn len(&self) -> usize { let (lower, upper) = self.size_hint(); // Note: This assertion is overly defensive, but it checks the invariant // guaranteed by the trait. If this trait were rust-internal, // we could use debug_assert!; assert_eq! will check all Rust user // implementations too. assert_eq!(upper, Some(lower)); lower } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, I: ExactSizeIterator + ?Sized> ExactSizeIterator for &'a mut I {} // All adaptors that preserve the size of the wrapped iterator are fine // Adaptors that may overflow in `size_hint` are not, i.e. `Chain`. #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for Enumerate where I: ExactSizeIterator {} #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for Inspect where F: FnMut(&I::Item), {} #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for Rev where I: ExactSizeIterator + DoubleEndedIterator {} #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for Map where F: FnMut(I::Item) -> B, {} #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for Zip where A: ExactSizeIterator, B: ExactSizeIterator {} /// An double-ended iterator with the direction inverted #[derive(Clone)] #[must_use = "iterator adaptors are lazy and do nothing unless consumed"] #[stable(feature = "rust1", since = "1.0.0")] pub struct Rev { iter: T } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for Rev where I: DoubleEndedIterator { type Item = ::Item; #[inline] fn next(&mut self) -> Option<::Item> { self.iter.next_back() } #[inline] fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl DoubleEndedIterator for Rev where I: DoubleEndedIterator { #[inline] fn next_back(&mut self) -> Option<::Item> { self.iter.next() } } #[unstable(feature = "core", reason = "trait is experimental")] impl RandomAccessIterator for Rev where I: DoubleEndedIterator + RandomAccessIterator { #[inline] fn indexable(&self) -> usize { self.iter.indexable() } #[inline] fn idx(&mut self, index: usize) -> Option<::Item> { let amt = self.indexable(); if amt > index { self.iter.idx(amt - index - 1) } else { None } } } /// `MinMaxResult` is an enum returned by `min_max`. See `Iterator::min_max` for /// more detail. #[derive(Clone, PartialEq, Debug)] #[unstable(feature = "core", reason = "unclear whether such a fine-grained result is widely useful")] pub enum MinMaxResult { /// Empty iterator NoElements, /// Iterator with one element, so the minimum and maximum are the same OneElement(T), /// More than one element in the iterator, the first element is not larger /// than the second MinMax(T, T) } impl MinMaxResult { /// `into_option` creates an `Option` of type `(T,T)`. The returned `Option` /// has variant `None` if and only if the `MinMaxResult` has variant /// `NoElements`. Otherwise variant `Some(x,y)` is returned where `x <= y`. /// If `MinMaxResult` has variant `OneElement(x)`, performing this operation /// will make one clone of `x`. /// /// # Examples /// /// ``` /// # #![feature(core)] /// use std::iter::MinMaxResult::{self, NoElements, OneElement, MinMax}; /// /// let r: MinMaxResult = NoElements; /// assert_eq!(r.into_option(), None); /// /// let r = OneElement(1); /// assert_eq!(r.into_option(), Some((1, 1))); /// /// let r = MinMax(1, 2); /// assert_eq!(r.into_option(), Some((1, 2))); /// ``` #[unstable(feature = "core", reason = "type is unstable")] pub fn into_option(self) -> Option<(T,T)> { match self { NoElements => None, OneElement(x) => Some((x.clone(), x)), MinMax(x, y) => Some((x, y)) } } } /// An iterator that clones the elements of an underlying iterator #[stable(feature = "iter_cloned", since = "1.1.0")] #[must_use = "iterator adaptors are lazy and do nothing unless consumed"] #[derive(Clone)] pub struct Cloned { it: I, } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, I, T: 'a> Iterator for Cloned where I: Iterator, T: Clone { type Item = T; fn next(&mut self) -> Option { self.it.next().cloned() } fn size_hint(&self) -> (usize, Option) { self.it.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, I, T: 'a> DoubleEndedIterator for Cloned where I: DoubleEndedIterator, T: Clone { fn next_back(&mut self) -> Option { self.it.next_back().cloned() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, I, T: 'a> ExactSizeIterator for Cloned where I: ExactSizeIterator, T: Clone {} #[unstable(feature = "core", reason = "trait is experimental")] impl<'a, I, T: 'a> RandomAccessIterator for Cloned where I: RandomAccessIterator, T: Clone { #[inline] fn indexable(&self) -> usize { self.it.indexable() } #[inline] fn idx(&mut self, index: usize) -> Option { self.it.idx(index).cloned() } } /// An iterator that repeats endlessly #[derive(Clone)] #[must_use = "iterator adaptors are lazy and do nothing unless consumed"] #[stable(feature = "rust1", since = "1.0.0")] pub struct Cycle { orig: I, iter: I, } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for Cycle where I: Clone + Iterator { type Item = ::Item; #[inline] fn next(&mut self) -> Option<::Item> { match self.iter.next() { None => { self.iter = self.orig.clone(); self.iter.next() } y => y } } #[inline] fn size_hint(&self) -> (usize, Option) { // the cycle iterator is either empty or infinite match self.orig.size_hint() { sz @ (0, Some(0)) => sz, (0, _) => (0, None), _ => (usize::MAX, None) } } } #[unstable(feature = "core", reason = "trait is experimental")] impl RandomAccessIterator for Cycle where I: Clone + RandomAccessIterator, { #[inline] fn indexable(&self) -> usize { if self.orig.indexable() > 0 { usize::MAX } else { 0 } } #[inline] fn idx(&mut self, index: usize) -> Option<::Item> { let liter = self.iter.indexable(); let lorig = self.orig.indexable(); if lorig == 0 { None } else if index < liter { self.iter.idx(index) } else { self.orig.idx((index - liter) % lorig) } } } /// An iterator that strings two iterators together #[derive(Clone)] #[must_use = "iterator adaptors are lazy and do nothing unless consumed"] #[stable(feature = "rust1", since = "1.0.0")] pub struct Chain { a: A, b: B, flag: bool, } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for Chain where A: Iterator, B: Iterator { type Item = A::Item; #[inline] fn next(&mut self) -> Option { if self.flag { self.b.next() } else { match self.a.next() { Some(x) => return Some(x), _ => () } self.flag = true; self.b.next() } } #[inline] fn count(self) -> usize { (if !self.flag { self.a.count() } else { 0 }) + self.b.count() } #[inline] fn nth(&mut self, mut n: usize) -> Option { if !self.flag { for x in self.a.by_ref() { if n == 0 { return Some(x) } n -= 1; } self.flag = true; } self.b.nth(n) } #[inline] fn last(self) -> Option { let a_last = if self.flag { None } else { self.a.last() }; let b_last = self.b.last(); b_last.or(a_last) } #[inline] fn size_hint(&self) -> (usize, Option) { let (a_lower, a_upper) = self.a.size_hint(); let (b_lower, b_upper) = self.b.size_hint(); let lower = a_lower.saturating_add(b_lower); let upper = match (a_upper, b_upper) { (Some(x), Some(y)) => x.checked_add(y), _ => None }; (lower, upper) } } #[stable(feature = "rust1", since = "1.0.0")] impl DoubleEndedIterator for Chain where A: DoubleEndedIterator, B: DoubleEndedIterator, { #[inline] fn next_back(&mut self) -> Option { match self.b.next_back() { Some(x) => Some(x), None => self.a.next_back() } } } #[unstable(feature = "core", reason = "trait is experimental")] impl RandomAccessIterator for Chain where A: RandomAccessIterator, B: RandomAccessIterator, { #[inline] fn indexable(&self) -> usize { let (a, b) = (self.a.indexable(), self.b.indexable()); a.saturating_add(b) } #[inline] fn idx(&mut self, index: usize) -> Option { let len = self.a.indexable(); if index < len { self.a.idx(index) } else { self.b.idx(index - len) } } } /// An iterator that iterates two other iterators simultaneously #[derive(Clone)] #[must_use = "iterator adaptors are lazy and do nothing unless consumed"] #[stable(feature = "rust1", since = "1.0.0")] pub struct Zip { a: A, b: B } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for Zip where A: Iterator, B: Iterator { type Item = (A::Item, B::Item); #[inline] fn next(&mut self) -> Option<(A::Item, B::Item)> { self.a.next().and_then(|x| { self.b.next().and_then(|y| { Some((x, y)) }) }) } #[inline] fn size_hint(&self) -> (usize, Option) { let (a_lower, a_upper) = self.a.size_hint(); let (b_lower, b_upper) = self.b.size_hint(); let lower = cmp::min(a_lower, b_lower); let upper = match (a_upper, b_upper) { (Some(x), Some(y)) => Some(cmp::min(x,y)), (Some(x), None) => Some(x), (None, Some(y)) => Some(y), (None, None) => None }; (lower, upper) } } #[stable(feature = "rust1", since = "1.0.0")] impl DoubleEndedIterator for Zip where A: DoubleEndedIterator + ExactSizeIterator, B: DoubleEndedIterator + ExactSizeIterator, { #[inline] fn next_back(&mut self) -> Option<(A::Item, B::Item)> { let a_sz = self.a.len(); let b_sz = self.b.len(); if a_sz != b_sz { // Adjust a, b to equal length if a_sz > b_sz { for _ in 0..a_sz - b_sz { self.a.next_back(); } } else { for _ in 0..b_sz - a_sz { self.b.next_back(); } } } match (self.a.next_back(), self.b.next_back()) { (Some(x), Some(y)) => Some((x, y)), (None, None) => None, _ => unreachable!(), } } } #[unstable(feature = "core", reason = "trait is experimental")] impl RandomAccessIterator for Zip where A: RandomAccessIterator, B: RandomAccessIterator { #[inline] fn indexable(&self) -> usize { cmp::min(self.a.indexable(), self.b.indexable()) } #[inline] fn idx(&mut self, index: usize) -> Option<(A::Item, B::Item)> { self.a.idx(index).and_then(|x| { self.b.idx(index).and_then(|y| { Some((x, y)) }) }) } } /// An iterator that maps the values of `iter` with `f` #[must_use = "iterator adaptors are lazy and do nothing unless consumed"] #[stable(feature = "rust1", since = "1.0.0")] #[derive(Clone)] pub struct Map { iter: I, f: F, } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for Map where F: FnMut(I::Item) -> B { type Item = B; #[inline] fn next(&mut self) -> Option { self.iter.next().map(|a| (self.f)(a)) } #[inline] fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl DoubleEndedIterator for Map where F: FnMut(I::Item) -> B, { #[inline] fn next_back(&mut self) -> Option { self.iter.next_back().map(|a| (self.f)(a)) } } #[unstable(feature = "core", reason = "trait is experimental")] impl RandomAccessIterator for Map where F: FnMut(I::Item) -> B, { #[inline] fn indexable(&self) -> usize { self.iter.indexable() } #[inline] fn idx(&mut self, index: usize) -> Option { self.iter.idx(index).map(|a| (self.f)(a)) } } /// An iterator that filters the elements of `iter` with `predicate` #[must_use = "iterator adaptors are lazy and do nothing unless consumed"] #[stable(feature = "rust1", since = "1.0.0")] #[derive(Clone)] pub struct Filter { iter: I, predicate: P, } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for Filter where P: FnMut(&I::Item) -> bool { type Item = I::Item; #[inline] fn next(&mut self) -> Option { for x in self.iter.by_ref() { if (self.predicate)(&x) { return Some(x); } } None } #[inline] fn size_hint(&self) -> (usize, Option) { let (_, upper) = self.iter.size_hint(); (0, upper) // can't know a lower bound, due to the predicate } } #[stable(feature = "rust1", since = "1.0.0")] impl DoubleEndedIterator for Filter where P: FnMut(&I::Item) -> bool, { #[inline] fn next_back(&mut self) -> Option { for x in self.iter.by_ref().rev() { if (self.predicate)(&x) { return Some(x); } } None } } /// An iterator that uses `f` to both filter and map elements from `iter` #[must_use = "iterator adaptors are lazy and do nothing unless consumed"] #[stable(feature = "rust1", since = "1.0.0")] #[derive(Clone)] pub struct FilterMap { iter: I, f: F, } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for FilterMap where F: FnMut(I::Item) -> Option, { type Item = B; #[inline] fn next(&mut self) -> Option { for x in self.iter.by_ref() { if let Some(y) = (self.f)(x) { return Some(y); } } None } #[inline] fn size_hint(&self) -> (usize, Option) { let (_, upper) = self.iter.size_hint(); (0, upper) // can't know a lower bound, due to the predicate } } #[stable(feature = "rust1", since = "1.0.0")] impl DoubleEndedIterator for FilterMap where F: FnMut(I::Item) -> Option, { #[inline] fn next_back(&mut self) -> Option { for x in self.iter.by_ref().rev() { if let Some(y) = (self.f)(x) { return Some(y); } } None } } /// An iterator that yields the current count and the element during iteration #[derive(Clone)] #[must_use = "iterator adaptors are lazy and do nothing unless consumed"] #[stable(feature = "rust1", since = "1.0.0")] pub struct Enumerate { iter: I, count: usize, } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for Enumerate where I: Iterator { type Item = (usize, ::Item); /// # Overflow Behavior /// /// The method does no guarding against overflows, so enumerating more than /// `usize::MAX` elements either produces the wrong result or panics. If /// debug assertions are enabled, a panic is guaranteed. /// /// # Panics /// /// Might panic if the index of the element overflows a `usize`. #[inline] fn next(&mut self) -> Option<(usize, ::Item)> { self.iter.next().map(|a| { let ret = (self.count, a); // Possible undefined overflow. self.count += 1; ret }) } #[inline] fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } #[inline] fn nth(&mut self, n: usize) -> Option<(usize, I::Item)> { self.iter.nth(n).map(|a| { let i = self.count + n; self.count = i + 1; (i, a) }) } #[inline] fn count(self) -> usize { self.iter.count() } } #[stable(feature = "rust1", since = "1.0.0")] impl DoubleEndedIterator for Enumerate where I: ExactSizeIterator + DoubleEndedIterator { #[inline] fn next_back(&mut self) -> Option<(usize, ::Item)> { self.iter.next_back().map(|a| { let len = self.iter.len(); // Can safely add, `ExactSizeIterator` promises that the number of // elements fits into a `usize`. (self.count + len, a) }) } } #[unstable(feature = "core", reason = "trait is experimental")] impl RandomAccessIterator for Enumerate where I: RandomAccessIterator { #[inline] fn indexable(&self) -> usize { self.iter.indexable() } #[inline] fn idx(&mut self, index: usize) -> Option<(usize, ::Item)> { // Can safely add, `ExactSizeIterator` (ancestor of // `RandomAccessIterator`) promises that the number of elements fits // into a `usize`. self.iter.idx(index).map(|a| (self.count + index, a)) } } /// An iterator with a `peek()` that returns an optional reference to the next element. #[must_use = "iterator adaptors are lazy and do nothing unless consumed"] #[stable(feature = "rust1", since = "1.0.0")] pub struct Peekable { iter: I, peeked: Option, } impl Clone for Peekable where I::Item: Clone { fn clone(&self) -> Peekable { Peekable { iter: self.iter.clone(), peeked: self.peeked.clone(), } } } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for Peekable { type Item = I::Item; #[inline] fn next(&mut self) -> Option { match self.peeked { Some(_) => self.peeked.take(), None => self.iter.next(), } } #[inline] fn count(self) -> usize { (if self.peeked.is_some() { 1 } else { 0 }) + self.iter.count() } #[inline] fn nth(&mut self, n: usize) -> Option { match self.peeked { Some(_) if n == 0 => self.peeked.take(), Some(_) => { self.peeked = None; self.iter.nth(n-1) }, None => self.iter.nth(n) } } #[inline] fn last(self) -> Option { self.iter.last().or(self.peeked) } #[inline] fn size_hint(&self) -> (usize, Option) { let (lo, hi) = self.iter.size_hint(); if self.peeked.is_some() { let lo = lo.saturating_add(1); let hi = hi.and_then(|x| x.checked_add(1)); (lo, hi) } else { (lo, hi) } } } #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for Peekable {} #[stable(feature = "rust1", since = "1.0.0")] impl Peekable { /// Returns a reference to the next element of the iterator with out /// advancing it, or None if the iterator is exhausted. #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn peek(&mut self) -> Option<&I::Item> { if self.peeked.is_none() { self.peeked = self.iter.next(); } match self.peeked { Some(ref value) => Some(value), None => None, } } /// Checks whether peekable iterator is empty or not. #[inline] pub fn is_empty(&mut self) -> bool { self.peek().is_none() } } /// An iterator that rejects elements while `predicate` is true #[must_use = "iterator adaptors are lazy and do nothing unless consumed"] #[stable(feature = "rust1", since = "1.0.0")] #[derive(Clone)] pub struct SkipWhile { iter: I, flag: bool, predicate: P, } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for SkipWhile where P: FnMut(&I::Item) -> bool { type Item = I::Item; #[inline] fn next(&mut self) -> Option { for x in self.iter.by_ref() { if self.flag || !(self.predicate)(&x) { self.flag = true; return Some(x); } } None } #[inline] fn size_hint(&self) -> (usize, Option) { let (_, upper) = self.iter.size_hint(); (0, upper) // can't know a lower bound, due to the predicate } } /// An iterator that only accepts elements while `predicate` is true #[must_use = "iterator adaptors are lazy and do nothing unless consumed"] #[stable(feature = "rust1", since = "1.0.0")] #[derive(Clone)] pub struct TakeWhile { iter: I, flag: bool, predicate: P, } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for TakeWhile where P: FnMut(&I::Item) -> bool { type Item = I::Item; #[inline] fn next(&mut self) -> Option { if self.flag { None } else { self.iter.next().and_then(|x| { if (self.predicate)(&x) { Some(x) } else { self.flag = true; None } }) } } #[inline] fn size_hint(&self) -> (usize, Option) { let (_, upper) = self.iter.size_hint(); (0, upper) // can't know a lower bound, due to the predicate } } /// An iterator that skips over `n` elements of `iter`. #[derive(Clone)] #[must_use = "iterator adaptors are lazy and do nothing unless consumed"] #[stable(feature = "rust1", since = "1.0.0")] pub struct Skip { iter: I, n: usize } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for Skip where I: Iterator { type Item = ::Item; #[inline] fn next(&mut self) -> Option { if self.n == 0 { self.iter.next() } else { let old_n = self.n; self.n = 0; self.iter.nth(old_n) } } #[inline] fn nth(&mut self, n: usize) -> Option { // Can't just add n + self.n due to overflow. if self.n == 0 { self.iter.nth(n) } else { let to_skip = self.n; self.n = 0; // nth(n) skips n+1 if self.iter.nth(to_skip-1).is_none() { return None; } self.iter.nth(n) } } #[inline] fn count(self) -> usize { self.iter.count().saturating_sub(self.n) } #[inline] fn last(mut self) -> Option { if self.n == 0 { self.iter.last() } else { let next = self.next(); if next.is_some() { // recurse. n should be 0. self.last().or(next) } else { None } } } #[inline] fn size_hint(&self) -> (usize, Option) { let (lower, upper) = self.iter.size_hint(); let lower = lower.saturating_sub(self.n); let upper = upper.map(|x| x.saturating_sub(self.n)); (lower, upper) } } #[unstable(feature = "core", reason = "trait is experimental")] impl RandomAccessIterator for Skip where I: RandomAccessIterator{ #[inline] fn indexable(&self) -> usize { self.iter.indexable().saturating_sub(self.n) } #[inline] fn idx(&mut self, index: usize) -> Option<::Item> { if index >= self.indexable() { None } else { self.iter.idx(index + self.n) } } } #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for Skip where I: ExactSizeIterator {} /// An iterator that only iterates over the first `n` iterations of `iter`. #[derive(Clone)] #[must_use = "iterator adaptors are lazy and do nothing unless consumed"] #[stable(feature = "rust1", since = "1.0.0")] pub struct Take { iter: I, n: usize } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for Take where I: Iterator{ type Item = ::Item; #[inline] fn next(&mut self) -> Option<::Item> { if self.n != 0 { self.n -= 1; self.iter.next() } else { None } } #[inline] fn nth(&mut self, n: usize) -> Option { if self.n > n { self.n -= n + 1; self.iter.nth(n) } else { if self.n > 0 { self.iter.nth(self.n - 1); self.n = 0; } None } } #[inline] fn size_hint(&self) -> (usize, Option) { let (lower, upper) = self.iter.size_hint(); let lower = cmp::min(lower, self.n); let upper = match upper { Some(x) if x < self.n => Some(x), _ => Some(self.n) }; (lower, upper) } } #[unstable(feature = "core", reason = "trait is experimental")] impl RandomAccessIterator for Take where I: RandomAccessIterator{ #[inline] fn indexable(&self) -> usize { cmp::min(self.iter.indexable(), self.n) } #[inline] fn idx(&mut self, index: usize) -> Option<::Item> { if index >= self.n { None } else { self.iter.idx(index) } } } #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for Take where I: ExactSizeIterator {} /// An iterator to maintain state while iterating another iterator #[must_use = "iterator adaptors are lazy and do nothing unless consumed"] #[stable(feature = "rust1", since = "1.0.0")] #[derive(Clone)] pub struct Scan { iter: I, f: F, /// The current internal state to be passed to the closure next. #[unstable(feature = "core")] pub state: St, } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for Scan where I: Iterator, F: FnMut(&mut St, I::Item) -> Option, { type Item = B; #[inline] fn next(&mut self) -> Option { self.iter.next().and_then(|a| (self.f)(&mut self.state, a)) } #[inline] fn size_hint(&self) -> (usize, Option) { let (_, upper) = self.iter.size_hint(); (0, upper) // can't know a lower bound, due to the scan function } } /// An iterator that maps each element to an iterator, /// and yields the elements of the produced iterators /// #[must_use = "iterator adaptors are lazy and do nothing unless consumed"] #[stable(feature = "rust1", since = "1.0.0")] #[derive(Clone)] pub struct FlatMap { iter: I, f: F, frontiter: Option, backiter: Option, } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for FlatMap where F: FnMut(I::Item) -> U, { type Item = U::Item; #[inline] fn next(&mut self) -> Option { loop { if let Some(ref mut inner) = self.frontiter { if let Some(x) = inner.by_ref().next() { return Some(x) } } match self.iter.next().map(|x| (self.f)(x)) { None => return self.backiter.as_mut().and_then(|it| it.next()), next => self.frontiter = next.map(IntoIterator::into_iter), } } } #[inline] fn size_hint(&self) -> (usize, Option) { let (flo, fhi) = self.frontiter.as_ref().map_or((0, Some(0)), |it| it.size_hint()); let (blo, bhi) = self.backiter.as_ref().map_or((0, Some(0)), |it| it.size_hint()); let lo = flo.saturating_add(blo); match (self.iter.size_hint(), fhi, bhi) { ((0, Some(0)), Some(a), Some(b)) => (lo, a.checked_add(b)), _ => (lo, None) } } } #[stable(feature = "rust1", since = "1.0.0")] impl DoubleEndedIterator for FlatMap where F: FnMut(I::Item) -> U, U: IntoIterator, U::IntoIter: DoubleEndedIterator { #[inline] fn next_back(&mut self) -> Option { loop { if let Some(ref mut inner) = self.backiter { if let Some(y) = inner.next_back() { return Some(y) } } match self.iter.next_back().map(|x| (self.f)(x)) { None => return self.frontiter.as_mut().and_then(|it| it.next_back()), next => self.backiter = next.map(IntoIterator::into_iter), } } } } /// An iterator that yields `None` forever after the underlying iterator /// yields `None` once. #[derive(Clone)] #[must_use = "iterator adaptors are lazy and do nothing unless consumed"] #[stable(feature = "rust1", since = "1.0.0")] pub struct Fuse { iter: I, done: bool } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for Fuse where I: Iterator { type Item = ::Item; #[inline] fn next(&mut self) -> Option<::Item> { if self.done { None } else { let next = self.iter.next(); self.done = next.is_none(); next } } #[inline] fn nth(&mut self, n: usize) -> Option { if self.done { None } else { let nth = self.iter.nth(n); self.done = nth.is_none(); nth } } #[inline] fn last(self) -> Option { if self.done { None } else { self.iter.last() } } #[inline] fn count(self) -> usize { if self.done { 0 } else { self.iter.count() } } #[inline] fn size_hint(&self) -> (usize, Option) { if self.done { (0, Some(0)) } else { self.iter.size_hint() } } } #[stable(feature = "rust1", since = "1.0.0")] impl DoubleEndedIterator for Fuse where I: DoubleEndedIterator { #[inline] fn next_back(&mut self) -> Option<::Item> { if self.done { None } else { let next = self.iter.next_back(); self.done = next.is_none(); next } } } // Allow RandomAccessIterators to be fused without affecting random-access behavior #[unstable(feature = "core", reason = "trait is experimental")] impl RandomAccessIterator for Fuse where I: RandomAccessIterator { #[inline] fn indexable(&self) -> usize { self.iter.indexable() } #[inline] fn idx(&mut self, index: usize) -> Option<::Item> { self.iter.idx(index) } } #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for Fuse where I: ExactSizeIterator {} impl Fuse { /// Resets the `Fuse` such that the next call to `.next()` or /// `.next_back()` will call the underlying iterator again even if it /// previously returned `None`. #[inline] #[unstable(feature = "core", reason = "seems marginal")] pub fn reset_fuse(&mut self) { self.done = false } } /// An iterator that calls a function with a reference to each /// element before yielding it. #[must_use = "iterator adaptors are lazy and do nothing unless consumed"] #[stable(feature = "rust1", since = "1.0.0")] #[derive(Clone)] pub struct Inspect { iter: I, f: F, } impl Inspect where F: FnMut(&I::Item) { #[inline] fn do_inspect(&mut self, elt: Option) -> Option { if let Some(ref a) = elt { (self.f)(a); } elt } } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for Inspect where F: FnMut(&I::Item) { type Item = I::Item; #[inline] fn next(&mut self) -> Option { let next = self.iter.next(); self.do_inspect(next) } #[inline] fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl DoubleEndedIterator for Inspect where F: FnMut(&I::Item), { #[inline] fn next_back(&mut self) -> Option { let next = self.iter.next_back(); self.do_inspect(next) } } #[unstable(feature = "core", reason = "trait is experimental")] impl RandomAccessIterator for Inspect where F: FnMut(&I::Item), { #[inline] fn indexable(&self) -> usize { self.iter.indexable() } #[inline] fn idx(&mut self, index: usize) -> Option { let element = self.iter.idx(index); self.do_inspect(element) } } /// An iterator that passes mutable state to a closure and yields the result. /// /// # Examples /// /// An iterator that yields sequential Fibonacci numbers, and stops on overflow. /// /// ``` /// #![feature(core)] /// use std::iter::Unfold; /// /// // This iterator will yield up to the last Fibonacci number before the max /// // value of `u32`. You can simply change `u32` to `u64` in this line if /// // you want higher values than that. /// let mut fibonacci = Unfold::new((Some(0u32), Some(1u32)), /// |&mut (ref mut x2, ref mut x1)| { /// // Attempt to get the next Fibonacci number /// // `x1` will be `None` if previously overflowed. /// let next = match (*x2, *x1) { /// (Some(x2), Some(x1)) => x2.checked_add(x1), /// _ => None, /// }; /// /// // Shift left: ret <- x2 <- x1 <- next /// let ret = *x2; /// *x2 = *x1; /// *x1 = next; /// /// ret /// }); /// /// for i in fibonacci { /// println!("{}", i); /// } /// ``` #[unstable(feature = "core")] #[derive(Clone)] pub struct Unfold { f: F, /// Internal state that will be passed to the closure on the next iteration #[unstable(feature = "core")] pub state: St, } #[unstable(feature = "core")] impl Unfold where F: FnMut(&mut St) -> Option { /// Creates a new iterator with the specified closure as the "iterator /// function" and an initial state to eventually pass to the closure #[inline] pub fn new(initial_state: St, f: F) -> Unfold { Unfold { f: f, state: initial_state } } } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for Unfold where F: FnMut(&mut St) -> Option { type Item = A; #[inline] fn next(&mut self) -> Option { (self.f)(&mut self.state) } #[inline] fn size_hint(&self) -> (usize, Option) { // no possible known bounds at this point (0, None) } } /// Objects that can be stepped over in both directions. /// /// The `steps_between` function provides a way to efficiently compare /// two `Step` objects. #[unstable(feature = "step_trait", reason = "likely to be replaced by finer-grained traits")] pub trait Step: PartialOrd { /// Steps `self` if possible. fn step(&self, by: &Self) -> Option; /// Returns the number of steps between two step objects. The count is /// inclusive of `start` and exclusive of `end`. /// /// Returns `None` if it is not possible to calculate `steps_between` /// without overflow. fn steps_between(start: &Self, end: &Self, by: &Self) -> Option; } macro_rules! step_impl_unsigned { ($($t:ty)*) => ($( impl Step for $t { #[inline] fn step(&self, by: &$t) -> Option<$t> { (*self).checked_add(*by) } #[inline] #[allow(trivial_numeric_casts)] fn steps_between(start: &$t, end: &$t, by: &$t) -> Option { if *by == 0 { return None; } if *start < *end { // Note: We assume $t <= usize here let diff = (*end - *start) as usize; let by = *by as usize; if diff % by > 0 { Some(diff / by + 1) } else { Some(diff / by) } } else { Some(0) } } } )*) } macro_rules! step_impl_signed { ($($t:ty)*) => ($( impl Step for $t { #[inline] fn step(&self, by: &$t) -> Option<$t> { (*self).checked_add(*by) } #[inline] #[allow(trivial_numeric_casts)] fn steps_between(start: &$t, end: &$t, by: &$t) -> Option { if *by == 0 { return None; } let mut diff: usize; let mut by_u: usize; if *by > 0 { if *start >= *end { return Some(0); } // Note: We assume $t <= isize here // Use .wrapping_sub and cast to usize to compute the // difference that may not fit inside the range of isize. diff = (*end as isize).wrapping_sub(*start as isize) as usize; by_u = *by as usize; } else { if *start <= *end { return Some(0); } diff = (*start as isize).wrapping_sub(*end as isize) as usize; by_u = (*by as isize).wrapping_mul(-1) as usize; } if diff % by_u > 0 { Some(diff / by_u + 1) } else { Some(diff / by_u) } } } )*) } macro_rules! step_impl_no_between { ($($t:ty)*) => ($( impl Step for $t { #[inline] fn step(&self, by: &$t) -> Option<$t> { (*self).checked_add(*by) } #[inline] fn steps_between(_a: &$t, _b: &$t, _by: &$t) -> Option { None } } )*) } step_impl_unsigned!(usize u8 u16 u32); step_impl_signed!(isize i8 i16 i32); #[cfg(target_pointer_width = "64")] step_impl_unsigned!(u64); #[cfg(target_pointer_width = "64")] step_impl_signed!(i64); #[cfg(target_pointer_width = "32")] step_impl_no_between!(u64 i64); /// An adapter for stepping range iterators by a custom amount. /// /// The resulting iterator handles overflow by stopping. The `A` /// parameter is the type being iterated over, while `R` is the range /// type (usually one of `std::ops::{Range, RangeFrom}`. #[derive(Clone)] #[unstable(feature = "step_by", reason = "recent addition")] pub struct StepBy { step_by: A, range: R, } impl RangeFrom { /// Creates an iterator starting at the same point, but stepping by /// the given amount at each iteration. /// /// # Examples /// /// ```ignore /// for i in (0u8..).step_by(2) { /// println!("{}", i); /// } /// ``` /// /// This prints all even `u8` values. #[unstable(feature = "step_by", reason = "recent addition")] pub fn step_by(self, by: A) -> StepBy { StepBy { step_by: by, range: self } } } #[allow(deprecated)] impl ops::Range { /// Creates an iterator with the same range, but stepping by the /// given amount at each iteration. /// /// The resulting iterator handles overflow by stopping. /// /// # Examples /// /// ``` /// # #![feature(step_by, core)] /// for i in (0..10).step_by(2) { /// println!("{}", i); /// } /// ``` /// /// This prints: /// /// ```text /// 0 /// 2 /// 4 /// 6 /// 8 /// ``` #[unstable(feature = "step_by", reason = "recent addition")] pub fn step_by(self, by: A) -> StepBy { StepBy { step_by: by, range: self } } } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for StepBy> where A: Clone, for<'a> &'a A: Add<&'a A, Output = A> { type Item = A; #[inline] fn next(&mut self) -> Option { let mut n = &self.range.start + &self.step_by; mem::swap(&mut n, &mut self.range.start); Some(n) } #[inline] fn size_hint(&self) -> (usize, Option) { (usize::MAX, None) // Too bad we can't specify an infinite lower bound } } /// An iterator over the range [start, stop] #[derive(Clone)] #[unstable(feature = "core", reason = "likely to be replaced by range notation and adapters")] pub struct RangeInclusive { range: ops::Range, done: bool, } /// Returns an iterator over the range [start, stop]. #[inline] #[unstable(feature = "core", reason = "likely to be replaced by range notation and adapters")] pub fn range_inclusive(start: A, stop: A) -> RangeInclusive where A: Step + One + Clone { RangeInclusive { range: start..stop, done: false, } } #[unstable(feature = "core", reason = "likely to be replaced by range notation and adapters")] impl Iterator for RangeInclusive where A: PartialEq + Step + One + Clone, for<'a> &'a A: Add<&'a A, Output = A> { type Item = A; #[inline] fn next(&mut self) -> Option { self.range.next().or_else(|| { if !self.done && self.range.start == self.range.end { self.done = true; Some(self.range.end.clone()) } else { None } }) } #[inline] fn size_hint(&self) -> (usize, Option) { let (lo, hi) = self.range.size_hint(); if self.done { (lo, hi) } else { let lo = lo.saturating_add(1); let hi = hi.and_then(|x| x.checked_add(1)); (lo, hi) } } } #[unstable(feature = "core", reason = "likely to be replaced by range notation and adapters")] impl DoubleEndedIterator for RangeInclusive where A: PartialEq + Step + One + Clone, for<'a> &'a A: Add<&'a A, Output = A>, for<'a> &'a A: Sub { #[inline] fn next_back(&mut self) -> Option { if self.range.end > self.range.start { let result = self.range.end.clone(); self.range.end = &self.range.end - &A::one(); Some(result) } else if !self.done && self.range.start == self.range.end { self.done = true; Some(self.range.end.clone()) } else { None } } } #[stable(feature = "rust1", since = "1.0.0")] #[allow(deprecated)] impl Iterator for StepBy> { type Item = A; #[inline] fn next(&mut self) -> Option { let rev = self.step_by < A::zero(); if (rev && self.range.start > self.range.end) || (!rev && self.range.start < self.range.end) { match self.range.start.step(&self.step_by) { Some(mut n) => { mem::swap(&mut self.range.start, &mut n); Some(n) }, None => { let mut n = self.range.end.clone(); mem::swap(&mut self.range.start, &mut n); Some(n) } } } else { None } } #[inline] fn size_hint(&self) -> (usize, Option) { match Step::steps_between(&self.range.start, &self.range.end, &self.step_by) { Some(hint) => (hint, Some(hint)), None => (0, None) } } } macro_rules! range_exact_iter_impl { ($($t:ty)*) => ($( #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for ops::Range<$t> { } )*) } #[stable(feature = "rust1", since = "1.0.0")] #[allow(deprecated)] impl Iterator for ops::Range where for<'a> &'a A: Add<&'a A, Output = A> { type Item = A; #[inline] fn next(&mut self) -> Option { if self.start < self.end { let mut n = &self.start + &A::one(); mem::swap(&mut n, &mut self.start); Some(n) } else { None } } #[inline] fn size_hint(&self) -> (usize, Option) { match Step::steps_between(&self.start, &self.end, &A::one()) { Some(hint) => (hint, Some(hint)), None => (0, None) } } } // Ranges of u64 and i64 are excluded because they cannot guarantee having // a length <= usize::MAX, which is required by ExactSizeIterator. range_exact_iter_impl!(usize u8 u16 u32 isize i8 i16 i32); #[stable(feature = "rust1", since = "1.0.0")] #[allow(deprecated)] impl DoubleEndedIterator for ops::Range where for<'a> &'a A: Add<&'a A, Output = A>, for<'a> &'a A: Sub<&'a A, Output = A> { #[inline] fn next_back(&mut self) -> Option { if self.start < self.end { self.end = &self.end - &A::one(); Some(self.end.clone()) } else { None } } } #[stable(feature = "rust1", since = "1.0.0")] #[allow(deprecated)] impl Iterator for ops::RangeFrom where for<'a> &'a A: Add<&'a A, Output = A> { type Item = A; #[inline] fn next(&mut self) -> Option { let mut n = &self.start + &A::one(); mem::swap(&mut n, &mut self.start); Some(n) } } /// An iterator that repeats an element endlessly #[derive(Clone)] #[stable(feature = "rust1", since = "1.0.0")] pub struct Repeat { element: A } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for Repeat { type Item = A; #[inline] fn next(&mut self) -> Option { self.idx(0) } #[inline] fn size_hint(&self) -> (usize, Option) { (usize::MAX, None) } } #[stable(feature = "rust1", since = "1.0.0")] impl DoubleEndedIterator for Repeat { #[inline] fn next_back(&mut self) -> Option { self.idx(0) } } #[unstable(feature = "core", reason = "trait is experimental")] impl RandomAccessIterator for Repeat { #[inline] fn indexable(&self) -> usize { usize::MAX } #[inline] fn idx(&mut self, _: usize) -> Option { Some(self.element.clone()) } } type IterateState = (F, Option, bool); /// An iterator that repeatedly applies a given function, starting /// from a given seed value. #[unstable(feature = "core")] pub type Iterate = Unfold, fn(&mut IterateState) -> Option>; /// Creates a new iterator that produces an infinite sequence of /// repeated applications of the given function `f`. #[unstable(feature = "core")] pub fn iterate(seed: T, f: F) -> Iterate where T: Clone, F: FnMut(T) -> T, { fn next(st: &mut IterateState) -> Option where T: Clone, F: FnMut(T) -> T, { let &mut (ref mut f, ref mut val, ref mut first) = st; if *first { *first = false; } else if let Some(x) = val.take() { *val = Some((*f)(x)) } val.clone() } // coerce to a fn pointer let next: fn(&mut IterateState) -> Option = next; Unfold::new((f, Some(seed), true), next) } /// Creates a new iterator that endlessly repeats the element `elt`. #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn repeat(elt: T) -> Repeat { Repeat{element: elt} } /// Functions for lexicographical ordering of sequences. /// /// Lexicographical ordering through `<`, `<=`, `>=`, `>` requires /// that the elements implement both `PartialEq` and `PartialOrd`. /// /// If two sequences are equal up until the point where one ends, /// the shorter sequence compares less. #[unstable(feature = "core", reason = "needs review and revision")] pub mod order { use cmp; use cmp::{Eq, Ord, PartialOrd, PartialEq}; use cmp::Ordering::{Equal, Less, Greater}; use option::Option; use option::Option::{Some, None}; use super::Iterator; /// Compare `a` and `b` for equality using `Eq` pub fn equals(mut a: L, mut b: R) -> bool where A: Eq, L: Iterator, R: Iterator, { loop { match (a.next(), b.next()) { (None, None) => return true, (None, _) | (_, None) => return false, (Some(x), Some(y)) => if x != y { return false }, } } } /// Order `a` and `b` lexicographically using `Ord` pub fn cmp(mut a: L, mut b: R) -> cmp::Ordering where A: Ord, L: Iterator, R: Iterator, { loop { match (a.next(), b.next()) { (None, None) => return Equal, (None, _ ) => return Less, (_ , None) => return Greater, (Some(x), Some(y)) => match x.cmp(&y) { Equal => (), non_eq => return non_eq, }, } } } /// Order `a` and `b` lexicographically using `PartialOrd` pub fn partial_cmp(mut a: L, mut b: R) -> Option where L::Item: PartialOrd { loop { match (a.next(), b.next()) { (None, None) => return Some(Equal), (None, _ ) => return Some(Less), (_ , None) => return Some(Greater), (Some(x), Some(y)) => match x.partial_cmp(&y) { Some(Equal) => (), non_eq => return non_eq, }, } } } /// Compare `a` and `b` for equality (Using partial equality, `PartialEq`) pub fn eq(mut a: L, mut b: R) -> bool where L::Item: PartialEq, { loop { match (a.next(), b.next()) { (None, None) => return true, (None, _) | (_, None) => return false, (Some(x), Some(y)) => if !x.eq(&y) { return false }, } } } /// Compares `a` and `b` for nonequality (Using partial equality, `PartialEq`) pub fn ne(mut a: L, mut b: R) -> bool where L::Item: PartialEq, { loop { match (a.next(), b.next()) { (None, None) => return false, (None, _) | (_, None) => return true, (Some(x), Some(y)) => if x.ne(&y) { return true }, } } } /// Returns `a` < `b` lexicographically (Using partial order, `PartialOrd`) pub fn lt(mut a: L, mut b: R) -> bool where L::Item: PartialOrd, { loop { match (a.next(), b.next()) { (None, None) => return false, (None, _ ) => return true, (_ , None) => return false, (Some(x), Some(y)) => if x.ne(&y) { return x.lt(&y) }, } } } /// Returns `a` <= `b` lexicographically (Using partial order, `PartialOrd`) pub fn le(mut a: L, mut b: R) -> bool where L::Item: PartialOrd, { loop { match (a.next(), b.next()) { (None, None) => return true, (None, _ ) => return true, (_ , None) => return false, (Some(x), Some(y)) => if x.ne(&y) { return x.le(&y) }, } } } /// Returns `a` > `b` lexicographically (Using partial order, `PartialOrd`) pub fn gt(mut a: L, mut b: R) -> bool where L::Item: PartialOrd, { loop { match (a.next(), b.next()) { (None, None) => return false, (None, _ ) => return false, (_ , None) => return true, (Some(x), Some(y)) => if x.ne(&y) { return x.gt(&y) }, } } } /// Returns `a` >= `b` lexicographically (Using partial order, `PartialOrd`) pub fn ge(mut a: L, mut b: R) -> bool where L::Item: PartialOrd, { loop { match (a.next(), b.next()) { (None, None) => return true, (None, _ ) => return false, (_ , None) => return true, (Some(x), Some(y)) => if x.ne(&y) { return x.ge(&y) }, } } } }