// Copyright 2012-2016 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! # Token Streams //! //! `TokenStream`s represent syntactic objects before they are converted into ASTs. //! A `TokenStream` is, roughly speaking, a sequence (eg stream) of `TokenTree`s, //! which are themselves a single `Token` or a `Delimited` subsequence of tokens. //! //! ## Ownership //! `TokenStreams` are persistent data structures constructed as ropes with reference //! counted-children. In general, this means that calling an operation on a `TokenStream` //! (such as `slice`) produces an entirely new `TokenStream` from the borrowed reference to //! the original. This essentially coerces `TokenStream`s into 'views' of their subparts, //! and a borrowed `TokenStream` is sufficient to build an owned `TokenStream` without taking //! ownership of the original. use syntax_pos::{BytePos, Mark, Span, DUMMY_SP}; use ext::base; use ext::tt::{macro_parser, quoted}; use parse::Directory; use parse::token::{self, DelimToken, Token}; use print::pprust; use rustc_data_structures::sync::Lrc; use serialize::{Decoder, Decodable, Encoder, Encodable}; use std::borrow::Cow; use std::{fmt, iter, mem}; /// When the main rust parser encounters a syntax-extension invocation, it /// parses the arguments to the invocation as a token-tree. This is a very /// loose structure, such that all sorts of different AST-fragments can /// be passed to syntax extensions using a uniform type. /// /// If the syntax extension is an MBE macro, it will attempt to match its /// LHS token tree against the provided token tree, and if it finds a /// match, will transcribe the RHS token tree, splicing in any captured /// `macro_parser::matched_nonterminals` into the `SubstNt`s it finds. /// /// The RHS of an MBE macro is the only place `SubstNt`s are substituted. /// Nothing special happens to misnamed or misplaced `SubstNt`s. #[derive(Debug, Clone, PartialEq, RustcEncodable, RustcDecodable)] pub enum TokenTree { /// A single token Token(Span, token::Token), /// A delimited sequence of token trees Delimited(DelimSpan, DelimToken, ThinTokenStream), } impl TokenTree { /// Use this token tree as a matcher to parse given tts. pub fn parse(cx: &base::ExtCtxt, mtch: &[quoted::TokenTree], tts: TokenStream) -> macro_parser::NamedParseResult { // `None` is because we're not interpolating let directory = Directory { path: Cow::from(cx.current_expansion.module.directory.as_path()), ownership: cx.current_expansion.directory_ownership, }; macro_parser::parse(cx.parse_sess(), tts, mtch, Some(directory), true) } /// Check if this TokenTree is equal to the other, regardless of span information. pub fn eq_unspanned(&self, other: &TokenTree) -> bool { match (self, other) { (&TokenTree::Token(_, ref tk), &TokenTree::Token(_, ref tk2)) => tk == tk2, (&TokenTree::Delimited(_, delim, ref tts), &TokenTree::Delimited(_, delim2, ref tts2)) => { delim == delim2 && tts.stream().eq_unspanned(&tts2.stream()) } (_, _) => false, } } // See comments in `interpolated_to_tokenstream` for why we care about // *probably* equal here rather than actual equality // // This is otherwise the same as `eq_unspanned`, only recursing with a // different method. pub fn probably_equal_for_proc_macro(&self, other: &TokenTree) -> bool { match (self, other) { (&TokenTree::Token(_, ref tk), &TokenTree::Token(_, ref tk2)) => { tk.probably_equal_for_proc_macro(tk2) } (&TokenTree::Delimited(_, delim, ref tts), &TokenTree::Delimited(_, delim2, ref tts2)) => { delim == delim2 && tts.stream().probably_equal_for_proc_macro(&tts2.stream()) } (_, _) => false, } } /// Retrieve the TokenTree's span. pub fn span(&self) -> Span { match *self { TokenTree::Token(sp, _) => sp, TokenTree::Delimited(sp, ..) => sp.entire(), } } /// Modify the `TokenTree`'s span in-place. pub fn set_span(&mut self, span: Span) { match *self { TokenTree::Token(ref mut sp, _) => *sp = span, TokenTree::Delimited(ref mut sp, ..) => *sp = DelimSpan::from_single(span), } } /// Indicates if the stream is a token that is equal to the provided token. pub fn eq_token(&self, t: Token) -> bool { match *self { TokenTree::Token(_, ref tk) => *tk == t, _ => false, } } pub fn joint(self) -> TokenStream { TokenStream::JointTree(self) } /// Returns the opening delimiter as a token tree. pub fn open_tt(span: Span, delim: DelimToken) -> TokenTree { let open_span = if span.is_dummy() { span } else { span.with_hi(span.lo() + BytePos(delim.len() as u32)) }; TokenTree::Token(open_span, token::OpenDelim(delim)) } /// Returns the closing delimiter as a token tree. pub fn close_tt(span: Span, delim: DelimToken) -> TokenTree { let close_span = if span.is_dummy() { span } else { span.with_lo(span.hi() - BytePos(delim.len() as u32)) }; TokenTree::Token(close_span, token::CloseDelim(delim)) } } /// # Token Streams /// /// A `TokenStream` is an abstract sequence of tokens, organized into `TokenTree`s. /// The goal is for procedural macros to work with `TokenStream`s and `TokenTree`s /// instead of a representation of the abstract syntax tree. /// Today's `TokenTree`s can still contain AST via `Token::Interpolated` for back-compat. #[derive(Clone, Debug)] pub enum TokenStream { Empty, Tree(TokenTree), JointTree(TokenTree), Stream(Lrc>), } // `TokenStream` is used a lot. Make sure it doesn't unintentionally get bigger. #[cfg(target_arch = "x86_64")] static_assert!(MEM_SIZE_OF_TOKEN_STREAM: mem::size_of::() == 32); impl TokenStream { /// Given a `TokenStream` with a `Stream` of only two arguments, return a new `TokenStream` /// separating the two arguments with a comma for diagnostic suggestions. pub(crate) fn add_comma(&self) -> Option<(TokenStream, Span)> { // Used to suggest if a user writes `foo!(a b);` if let TokenStream::Stream(ref stream) = self { let mut suggestion = None; let mut iter = stream.iter().enumerate().peekable(); while let Some((pos, ts)) = iter.next() { if let Some((_, next)) = iter.peek() { let sp = match (&ts, &next) { (TokenStream::Tree(TokenTree::Token(_, token::Token::Comma)), _) | (_, TokenStream::Tree(TokenTree::Token(_, token::Token::Comma))) => { continue; } (TokenStream::Tree(TokenTree::Token(sp, _)), _) => *sp, (TokenStream::Tree(TokenTree::Delimited(sp, ..)), _) => sp.entire(), _ => continue, }; let sp = sp.shrink_to_hi(); let comma = TokenStream::Tree(TokenTree::Token(sp, token::Comma)); suggestion = Some((pos, comma, sp)); } } if let Some((pos, comma, sp)) = suggestion { let mut new_stream = vec![]; let parts = stream.split_at(pos + 1); new_stream.extend_from_slice(parts.0); new_stream.push(comma); new_stream.extend_from_slice(parts.1); return Some((TokenStream::new(new_stream), sp)); } } None } } impl From for TokenStream { fn from(tt: TokenTree) -> TokenStream { TokenStream::Tree(tt) } } impl From for TokenStream { fn from(token: Token) -> TokenStream { TokenTree::Token(DUMMY_SP, token).into() } } impl> iter::FromIterator for TokenStream { fn from_iter>(iter: I) -> Self { TokenStream::new(iter.into_iter().map(Into::into).collect::>()) } } impl Extend for TokenStream { fn extend>(&mut self, iter: I) { let iter = iter.into_iter(); let this = mem::replace(self, TokenStream::Empty); // Vector of token streams originally in self. let tts: Vec = match this { TokenStream::Empty => { let mut vec = Vec::new(); vec.reserve(iter.size_hint().0); vec } TokenStream::Tree(_) | TokenStream::JointTree(_) => { let mut vec = Vec::new(); vec.reserve(1 + iter.size_hint().0); vec.push(this); vec } TokenStream::Stream(rc_vec) => match Lrc::try_unwrap(rc_vec) { Ok(mut vec) => { // Extend in place using the existing capacity if possible. // This is the fast path for libraries like `quote` that // build a token stream. vec.reserve(iter.size_hint().0); vec } Err(rc_vec) => { // Self is shared so we need to copy and extend that. let mut vec = Vec::new(); vec.reserve(rc_vec.len() + iter.size_hint().0); vec.extend_from_slice(&rc_vec); vec } } }; // Perform the extend, joining tokens as needed along the way. let mut builder = TokenStreamBuilder(tts); for stream in iter { builder.push(stream); } // Build the resulting token stream. If it contains more than one token, // preserve capacity in the vector in anticipation of the caller // performing additional calls to extend. *self = TokenStream::new(builder.0); } } impl Eq for TokenStream {} impl PartialEq for TokenStream { fn eq(&self, other: &TokenStream) -> bool { self.trees().eq(other.trees()) } } impl TokenStream { pub fn len(&self) -> usize { if let TokenStream::Stream(ref slice) = self { slice.len() } else { 0 } } pub fn empty() -> TokenStream { TokenStream::Empty } pub fn is_empty(&self) -> bool { match self { TokenStream::Empty => true, _ => false, } } pub fn new(mut streams: Vec) -> TokenStream { match streams.len() { 0 => TokenStream::empty(), 1 => streams.pop().unwrap(), _ => TokenStream::Stream(Lrc::new(streams)), } } pub fn trees(&self) -> Cursor { self.clone().into_trees() } pub fn into_trees(self) -> Cursor { Cursor::new(self) } /// Compares two TokenStreams, checking equality without regarding span information. pub fn eq_unspanned(&self, other: &TokenStream) -> bool { let mut t1 = self.trees(); let mut t2 = other.trees(); for (t1, t2) in t1.by_ref().zip(t2.by_ref()) { if !t1.eq_unspanned(&t2) { return false; } } t1.next().is_none() && t2.next().is_none() } // See comments in `interpolated_to_tokenstream` for why we care about // *probably* equal here rather than actual equality // // This is otherwise the same as `eq_unspanned`, only recursing with a // different method. pub fn probably_equal_for_proc_macro(&self, other: &TokenStream) -> bool { // When checking for `probably_eq`, we ignore certain tokens that aren't // preserved in the AST. Because they are not preserved, the pretty // printer arbitrarily adds or removes them when printing as token // streams, making a comparison between a token stream generated from an // AST and a token stream which was parsed into an AST more reliable. fn semantic_tree(tree: &TokenTree) -> bool { match tree { // The pretty printer tends to add trailing commas to // everything, and in particular, after struct fields. | TokenTree::Token(_, Token::Comma) // The pretty printer emits `NoDelim` as whitespace. | TokenTree::Token(_, Token::OpenDelim(DelimToken::NoDelim)) | TokenTree::Token(_, Token::CloseDelim(DelimToken::NoDelim)) // The pretty printer collapses many semicolons into one. | TokenTree::Token(_, Token::Semi) // The pretty printer collapses whitespace arbitrarily and can // introduce whitespace from `NoDelim`. | TokenTree::Token(_, Token::Whitespace) => false, _ => true } } let mut t1 = self.trees().filter(semantic_tree); let mut t2 = other.trees().filter(semantic_tree); for (t1, t2) in t1.by_ref().zip(t2.by_ref()) { if !t1.probably_equal_for_proc_macro(&t2) { return false; } } t1.next().is_none() && t2.next().is_none() } /// Precondition: `self` consists of a single token tree. /// Returns true if the token tree is a joint operation w.r.t. `proc_macro::TokenNode`. pub fn as_tree(self) -> (TokenTree, bool /* joint? */) { match self { TokenStream::Tree(tree) => (tree, false), TokenStream::JointTree(tree) => (tree, true), _ => unreachable!(), } } pub fn map_enumerated TokenTree>(self, mut f: F) -> TokenStream { let mut trees = self.into_trees(); let mut result = Vec::new(); let mut i = 0; while let Some(stream) = trees.next_as_stream() { result.push(match stream { TokenStream::Tree(tree) => f(i, tree).into(), TokenStream::JointTree(tree) => f(i, tree).joint(), _ => unreachable!() }); i += 1; } TokenStream::new(result) } pub fn map TokenTree>(self, mut f: F) -> TokenStream { let mut trees = self.into_trees(); let mut result = Vec::new(); while let Some(stream) = trees.next_as_stream() { result.push(match stream { TokenStream::Tree(tree) => f(tree).into(), TokenStream::JointTree(tree) => f(tree).joint(), _ => unreachable!() }); } TokenStream::new(result) } fn first_tree_and_joint(&self) -> Option<(TokenTree, bool)> { match self { TokenStream::Empty => None, TokenStream::Tree(ref tree) => Some((tree.clone(), false)), TokenStream::JointTree(ref tree) => Some((tree.clone(), true)), TokenStream::Stream(ref stream) => stream.first().unwrap().first_tree_and_joint(), } } fn last_tree_if_joint(&self) -> Option { match self { TokenStream::Empty | TokenStream::Tree(..) => None, TokenStream::JointTree(ref tree) => Some(tree.clone()), TokenStream::Stream(ref stream) => stream.last().unwrap().last_tree_if_joint(), } } } #[derive(Clone)] pub struct TokenStreamBuilder(Vec); impl TokenStreamBuilder { pub fn new() -> TokenStreamBuilder { TokenStreamBuilder(Vec::new()) } pub fn push>(&mut self, stream: T) { let stream = stream.into(); let last_tree_if_joint = self.0.last().and_then(TokenStream::last_tree_if_joint); if let Some(TokenTree::Token(last_span, last_tok)) = last_tree_if_joint { if let Some((TokenTree::Token(span, tok), is_joint)) = stream.first_tree_and_joint() { if let Some(glued_tok) = last_tok.glue(tok) { let last_stream = self.0.pop().unwrap(); self.push_all_but_last_tree(&last_stream); let glued_span = last_span.to(span); let glued_tt = TokenTree::Token(glued_span, glued_tok); let glued_tokenstream = if is_joint { glued_tt.joint() } else { glued_tt.into() }; self.0.push(glued_tokenstream); self.push_all_but_first_tree(&stream); return } } } self.0.push(stream); } pub fn add>(mut self, stream: T) -> Self { self.push(stream); self } pub fn build(self) -> TokenStream { TokenStream::new(self.0) } fn push_all_but_last_tree(&mut self, stream: &TokenStream) { if let TokenStream::Stream(ref streams) = stream { let len = streams.len(); match len { 1 => {} 2 => self.0.push(streams[0].clone().into()), _ => self.0.push(TokenStream::new(streams[0 .. len - 1].to_vec())), } self.push_all_but_last_tree(&streams[len - 1]) } } fn push_all_but_first_tree(&mut self, stream: &TokenStream) { if let TokenStream::Stream(ref streams) = stream { let len = streams.len(); match len { 1 => {} 2 => self.0.push(streams[1].clone().into()), _ => self.0.push(TokenStream::new(streams[1 .. len].to_vec())), } self.push_all_but_first_tree(&streams[0]) } } } #[derive(Clone)] pub struct Cursor(CursorKind); #[derive(Clone)] enum CursorKind { Empty, Tree(TokenTree, bool /* consumed? */), JointTree(TokenTree, bool /* consumed? */), Stream(StreamCursor), } #[derive(Clone)] struct StreamCursor { stream: Lrc>, index: usize, stack: Vec<(Lrc>, usize)>, } impl StreamCursor { fn new(stream: Lrc>) -> Self { StreamCursor { stream: stream, index: 0, stack: Vec::new() } } fn next_as_stream(&mut self) -> Option { loop { if self.index < self.stream.len() { self.index += 1; let next = self.stream[self.index - 1].clone(); match next { TokenStream::Tree(..) | TokenStream::JointTree(..) => return Some(next), TokenStream::Stream(stream) => self.insert(stream), TokenStream::Empty => {} } } else if let Some((stream, index)) = self.stack.pop() { self.stream = stream; self.index = index; } else { return None; } } } fn insert(&mut self, stream: Lrc>) { self.stack.push((mem::replace(&mut self.stream, stream), mem::replace(&mut self.index, 0))); } } impl Iterator for Cursor { type Item = TokenTree; fn next(&mut self) -> Option { self.next_as_stream().map(|stream| match stream { TokenStream::Tree(tree) | TokenStream::JointTree(tree) => tree, _ => unreachable!() }) } } impl Cursor { fn new(stream: TokenStream) -> Self { Cursor(match stream { TokenStream::Empty => CursorKind::Empty, TokenStream::Tree(tree) => CursorKind::Tree(tree, false), TokenStream::JointTree(tree) => CursorKind::JointTree(tree, false), TokenStream::Stream(stream) => CursorKind::Stream(StreamCursor::new(stream)), }) } pub fn next_as_stream(&mut self) -> Option { let (stream, consumed) = match self.0 { CursorKind::Tree(ref tree, ref mut consumed @ false) => (tree.clone().into(), consumed), CursorKind::JointTree(ref tree, ref mut consumed @ false) => (tree.clone().joint(), consumed), CursorKind::Stream(ref mut cursor) => return cursor.next_as_stream(), _ => return None, }; *consumed = true; Some(stream) } pub fn insert(&mut self, stream: TokenStream) { match self.0 { _ if stream.is_empty() => return, CursorKind::Empty => *self = stream.trees(), CursorKind::Tree(_, consumed) | CursorKind::JointTree(_, consumed) => { *self = TokenStream::new(vec![self.original_stream(), stream]).trees(); if consumed { self.next(); } } CursorKind::Stream(ref mut cursor) => { cursor.insert(ThinTokenStream::from(stream).0.unwrap()); } } } pub fn original_stream(&self) -> TokenStream { match self.0 { CursorKind::Empty => TokenStream::empty(), CursorKind::Tree(ref tree, _) => tree.clone().into(), CursorKind::JointTree(ref tree, _) => tree.clone().joint(), CursorKind::Stream(ref cursor) => TokenStream::Stream( cursor.stack.get(0).cloned().map(|(stream, _)| stream) .unwrap_or_else(|| cursor.stream.clone()) ), } } pub fn look_ahead(&self, n: usize) -> Option { fn look_ahead(streams: &[TokenStream], mut n: usize) -> Result { for stream in streams { n = match stream { TokenStream::Tree(ref tree) | TokenStream::JointTree(ref tree) if n == 0 => return Ok(tree.clone()), TokenStream::Tree(..) | TokenStream::JointTree(..) => n - 1, TokenStream::Stream(ref stream) => match look_ahead(stream, n) { Ok(tree) => return Ok(tree), Err(n) => n, }, _ => n, }; } Err(n) } match self.0 { CursorKind::Empty | CursorKind::Tree(_, true) | CursorKind::JointTree(_, true) => Err(n), CursorKind::Tree(ref tree, false) | CursorKind::JointTree(ref tree, false) => look_ahead(&[tree.clone().into()], n), CursorKind::Stream(ref cursor) => { look_ahead(&cursor.stream[cursor.index ..], n).or_else(|mut n| { for &(ref stream, index) in cursor.stack.iter().rev() { n = match look_ahead(&stream[index..], n) { Ok(tree) => return Ok(tree), Err(n) => n, } } Err(n) }) } }.ok() } } /// The `TokenStream` type is large enough to represent a single `TokenTree` without allocation. /// `ThinTokenStream` is smaller, but needs to allocate to represent a single `TokenTree`. /// We must use `ThinTokenStream` in `TokenTree::Delimited` to avoid infinite size due to recursion. #[derive(Debug, Clone)] pub struct ThinTokenStream(Option>>); impl ThinTokenStream { pub fn stream(&self) -> TokenStream { self.clone().into() } } impl From for ThinTokenStream { fn from(stream: TokenStream) -> ThinTokenStream { ThinTokenStream(match stream { TokenStream::Empty => None, TokenStream::Tree(tree) => Some(Lrc::new(vec![tree.into()])), TokenStream::JointTree(tree) => Some(Lrc::new(vec![tree.joint()])), TokenStream::Stream(stream) => Some(stream), }) } } impl From for TokenStream { fn from(stream: ThinTokenStream) -> TokenStream { stream.0.map(TokenStream::Stream).unwrap_or_else(TokenStream::empty) } } impl Eq for ThinTokenStream {} impl PartialEq for ThinTokenStream { fn eq(&self, other: &ThinTokenStream) -> bool { TokenStream::from(self.clone()) == TokenStream::from(other.clone()) } } impl fmt::Display for TokenStream { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.write_str(&pprust::tokens_to_string(self.clone())) } } impl Encodable for TokenStream { fn encode(&self, encoder: &mut E) -> Result<(), E::Error> { self.trees().collect::>().encode(encoder) } } impl Decodable for TokenStream { fn decode(decoder: &mut D) -> Result { Vec::::decode(decoder).map(|vec| vec.into_iter().collect()) } } impl Encodable for ThinTokenStream { fn encode(&self, encoder: &mut E) -> Result<(), E::Error> { TokenStream::from(self.clone()).encode(encoder) } } impl Decodable for ThinTokenStream { fn decode(decoder: &mut D) -> Result { TokenStream::decode(decoder).map(Into::into) } } #[derive(Debug, Copy, Clone, PartialEq, RustcEncodable, RustcDecodable)] pub struct DelimSpan { pub open: Span, pub close: Span, } impl DelimSpan { pub fn from_single(sp: Span) -> Self { DelimSpan { open: sp, close: sp, } } pub fn from_pair(open: Span, close: Span) -> Self { DelimSpan { open, close } } pub fn dummy() -> Self { Self::from_single(DUMMY_SP) } pub fn entire(self) -> Span { self.open.with_hi(self.close.hi()) } pub fn apply_mark(self, mark: Mark) -> Self { DelimSpan { open: self.open.apply_mark(mark), close: self.close.apply_mark(mark), } } } #[cfg(test)] mod tests { use super::*; use syntax::ast::Ident; use with_globals; use syntax_pos::{Span, BytePos, NO_EXPANSION}; use parse::token::Token; use util::parser_testing::string_to_stream; fn string_to_ts(string: &str) -> TokenStream { string_to_stream(string.to_owned()) } fn sp(a: u32, b: u32) -> Span { Span::new(BytePos(a), BytePos(b), NO_EXPANSION) } #[test] fn test_concat() { with_globals(|| { let test_res = string_to_ts("foo::bar::baz"); let test_fst = string_to_ts("foo::bar"); let test_snd = string_to_ts("::baz"); let eq_res = TokenStream::new(vec![test_fst, test_snd]); assert_eq!(test_res.trees().count(), 5); assert_eq!(eq_res.trees().count(), 5); assert_eq!(test_res.eq_unspanned(&eq_res), true); }) } #[test] fn test_to_from_bijection() { with_globals(|| { let test_start = string_to_ts("foo::bar(baz)"); let test_end = test_start.trees().collect(); assert_eq!(test_start, test_end) }) } #[test] fn test_eq_0() { with_globals(|| { let test_res = string_to_ts("foo"); let test_eqs = string_to_ts("foo"); assert_eq!(test_res, test_eqs) }) } #[test] fn test_eq_1() { with_globals(|| { let test_res = string_to_ts("::bar::baz"); let test_eqs = string_to_ts("::bar::baz"); assert_eq!(test_res, test_eqs) }) } #[test] fn test_eq_3() { with_globals(|| { let test_res = string_to_ts(""); let test_eqs = string_to_ts(""); assert_eq!(test_res, test_eqs) }) } #[test] fn test_diseq_0() { with_globals(|| { let test_res = string_to_ts("::bar::baz"); let test_eqs = string_to_ts("bar::baz"); assert_eq!(test_res == test_eqs, false) }) } #[test] fn test_diseq_1() { with_globals(|| { let test_res = string_to_ts("(bar,baz)"); let test_eqs = string_to_ts("bar,baz"); assert_eq!(test_res == test_eqs, false) }) } #[test] fn test_is_empty() { with_globals(|| { let test0: TokenStream = Vec::::new().into_iter().collect(); let test1: TokenStream = TokenTree::Token(sp(0, 1), Token::Ident(Ident::from_str("a"), false)).into(); let test2 = string_to_ts("foo(bar::baz)"); assert_eq!(test0.is_empty(), true); assert_eq!(test1.is_empty(), false); assert_eq!(test2.is_empty(), false); }) } #[test] fn test_dotdotdot() { let mut builder = TokenStreamBuilder::new(); builder.push(TokenTree::Token(sp(0, 1), Token::Dot).joint()); builder.push(TokenTree::Token(sp(1, 2), Token::Dot).joint()); builder.push(TokenTree::Token(sp(2, 3), Token::Dot)); let stream = builder.build(); assert!(stream.eq_unspanned(&string_to_ts("..."))); assert_eq!(stream.trees().count(), 1); } #[test] fn test_extend_empty() { with_globals(|| { // Append a token onto an empty token stream. let mut stream = TokenStream::empty(); stream.extend(vec![string_to_ts("t")]); let expected = string_to_ts("t"); assert!(stream.eq_unspanned(&expected)); }); } #[test] fn test_extend_nothing() { with_globals(|| { // Append nothing onto a token stream containing one token. let mut stream = string_to_ts("t"); stream.extend(vec![]); let expected = string_to_ts("t"); assert!(stream.eq_unspanned(&expected)); }); } #[test] fn test_extend_single() { with_globals(|| { // Append a token onto token stream containing a single token. let mut stream = string_to_ts("t1"); stream.extend(vec![string_to_ts("t2")]); let expected = string_to_ts("t1 t2"); assert!(stream.eq_unspanned(&expected)); }); } #[test] fn test_extend_in_place() { with_globals(|| { // Append a token onto token stream containing a reference counted // vec of tokens. The token stream has a reference count of 1 so // this can happen in place. let mut stream = string_to_ts("t1 t2"); stream.extend(vec![string_to_ts("t3")]); let expected = string_to_ts("t1 t2 t3"); assert!(stream.eq_unspanned(&expected)); }); } #[test] fn test_extend_copy() { with_globals(|| { // Append a token onto token stream containing a reference counted // vec of tokens. The token stream is shared so the extend takes // place on a copy. let mut stream = string_to_ts("t1 t2"); let _incref = stream.clone(); stream.extend(vec![string_to_ts("t3")]); let expected = string_to_ts("t1 t2 t3"); assert!(stream.eq_unspanned(&expected)); }); } #[test] fn test_extend_no_join() { with_globals(|| { let first = TokenTree::Token(DUMMY_SP, Token::Dot); let second = TokenTree::Token(DUMMY_SP, Token::Dot); // Append a dot onto a token stream containing a dot, but do not // join them. let mut stream = TokenStream::from(first); stream.extend(vec![TokenStream::from(second)]); let expected = string_to_ts(". ."); assert!(stream.eq_unspanned(&expected)); let unexpected = string_to_ts(".."); assert!(!stream.eq_unspanned(&unexpected)); }); } #[test] fn test_extend_join() { with_globals(|| { let first = TokenTree::Token(DUMMY_SP, Token::Dot).joint(); let second = TokenTree::Token(DUMMY_SP, Token::Dot); // Append a dot onto a token stream containing a dot, forming a // dotdot. let mut stream = first; stream.extend(vec![TokenStream::from(second)]); let expected = string_to_ts(".."); assert!(stream.eq_unspanned(&expected)); let unexpected = string_to_ts(". ."); assert!(!stream.eq_unspanned(&unexpected)); }); } }