//! Partitioning Codegen Units for Incremental Compilation //! ====================================================== //! //! The task of this module is to take the complete set of monomorphizations of //! a crate and produce a set of codegen units from it, where a codegen unit //! is a named set of (mono-item, linkage) pairs. That is, this module //! decides which monomorphization appears in which codegen units with which //! linkage. The following paragraphs describe some of the background on the //! partitioning scheme. //! //! The most important opportunity for saving on compilation time with //! incremental compilation is to avoid re-codegenning and re-optimizing code. //! Since the unit of codegen and optimization for LLVM is "modules" or, how //! we call them "codegen units", the particulars of how much time can be saved //! by incremental compilation are tightly linked to how the output program is //! partitioned into these codegen units prior to passing it to LLVM -- //! especially because we have to treat codegen units as opaque entities once //! they are created: There is no way for us to incrementally update an existing //! LLVM module and so we have to build any such module from scratch if it was //! affected by some change in the source code. //! //! From that point of view it would make sense to maximize the number of //! codegen units by, for example, putting each function into its own module. //! That way only those modules would have to be re-compiled that were actually //! affected by some change, minimizing the number of functions that could have //! been re-used but just happened to be located in a module that is //! re-compiled. //! //! However, since LLVM optimization does not work across module boundaries, //! using such a highly granular partitioning would lead to very slow runtime //! code since it would effectively prohibit inlining and other inter-procedure //! optimizations. We want to avoid that as much as possible. //! //! Thus we end up with a trade-off: The bigger the codegen units, the better //! LLVM's optimizer can do its work, but also the smaller the compilation time //! reduction we get from incremental compilation. //! //! Ideally, we would create a partitioning such that there are few big codegen //! units with few interdependencies between them. For now though, we use the //! following heuristic to determine the partitioning: //! //! - There are two codegen units for every source-level module: //! - One for "stable", that is non-generic, code //! - One for more "volatile" code, i.e., monomorphized instances of functions //! defined in that module //! //! In order to see why this heuristic makes sense, let's take a look at when a //! codegen unit can get invalidated: //! //! 1. The most straightforward case is when the BODY of a function or global //! changes. Then any codegen unit containing the code for that item has to be //! re-compiled. Note that this includes all codegen units where the function //! has been inlined. //! //! 2. The next case is when the SIGNATURE of a function or global changes. In //! this case, all codegen units containing a REFERENCE to that item have to be //! re-compiled. This is a superset of case 1. //! //! 3. The final and most subtle case is when a REFERENCE to a generic function //! is added or removed somewhere. Even though the definition of the function //! might be unchanged, a new REFERENCE might introduce a new monomorphized //! instance of this function which has to be placed and compiled somewhere. //! Conversely, when removing a REFERENCE, it might have been the last one with //! that particular set of generic arguments and thus we have to remove it. //! //! From the above we see that just using one codegen unit per source-level //! module is not such a good idea, since just adding a REFERENCE to some //! generic item somewhere else would invalidate everything within the module //! containing the generic item. The heuristic above reduces this detrimental //! side-effect of references a little by at least not touching the non-generic //! code of the module. //! //! A Note on Inlining //! ------------------ //! As briefly mentioned above, in order for LLVM to be able to inline a //! function call, the body of the function has to be available in the LLVM //! module where the call is made. This has a few consequences for partitioning: //! //! - The partitioning algorithm has to take care of placing functions into all //! codegen units where they should be available for inlining. It also has to //! decide on the correct linkage for these functions. //! //! - The partitioning algorithm has to know which functions are likely to get //! inlined, so it can distribute function instantiations accordingly. Since //! there is no way of knowing for sure which functions LLVM will decide to //! inline in the end, we apply a heuristic here: Only functions marked with //! `#[inline]` are considered for inlining by the partitioner. The current //! implementation will not try to determine if a function is likely to be //! inlined by looking at the functions definition. //! //! Note though that as a side-effect of creating a codegen units per //! source-level module, functions from the same module will be available for //! inlining, even when they are not marked `#[inline]`. use std::cmp; use std::collections::hash_map::Entry; use std::fs::{self, File}; use std::io::{BufWriter, Write}; use std::path::{Path, PathBuf}; use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_data_structures::sync; use rustc_hir::def::DefKind; use rustc_hir::def_id::{DefId, DefIdSet, LOCAL_CRATE}; use rustc_hir::definitions::DefPathDataName; use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags; use rustc_middle::middle::exported_symbols::{SymbolExportInfo, SymbolExportLevel}; use rustc_middle::mir; use rustc_middle::mir::mono::{ CodegenUnit, CodegenUnitNameBuilder, InstantiationMode, Linkage, MonoItem, MonoItemData, Visibility, }; use rustc_middle::query::Providers; use rustc_middle::ty::print::{characteristic_def_id_of_type, with_no_trimmed_paths}; use rustc_middle::ty::{self, visit::TypeVisitableExt, InstanceDef, TyCtxt}; use rustc_session::config::{DumpMonoStatsFormat, SwitchWithOptPath}; use rustc_session::CodegenUnits; use rustc_span::symbol::Symbol; use crate::collector::UsageMap; use crate::collector::{self, MonoItemCollectionMode}; use crate::errors::{CouldntDumpMonoStats, SymbolAlreadyDefined, UnknownCguCollectionMode}; struct PartitioningCx<'a, 'tcx> { tcx: TyCtxt<'tcx>, usage_map: &'a UsageMap<'tcx>, } struct PlacedMonoItems<'tcx> { /// The codegen units, sorted by name to make things deterministic. codegen_units: Vec>, internalization_candidates: FxHashSet>, } // The output CGUs are sorted by name. fn partition<'tcx, I>( tcx: TyCtxt<'tcx>, mono_items: I, usage_map: &UsageMap<'tcx>, ) -> Vec> where I: Iterator>, { let _prof_timer = tcx.prof.generic_activity("cgu_partitioning"); let cx = &PartitioningCx { tcx, usage_map }; // Place all mono items into a codegen unit. `place_mono_items` is // responsible for initializing the CGU size estimates. let PlacedMonoItems { mut codegen_units, internalization_candidates } = { let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_place_items"); let placed = place_mono_items(cx, mono_items); debug_dump(tcx, "PLACE", &placed.codegen_units); placed }; // Merge until we have at most `max_cgu_count` codegen units. // `merge_codegen_units` is responsible for updating the CGU size // estimates. { let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_merge_cgus"); merge_codegen_units(cx, &mut codegen_units); debug_dump(tcx, "MERGE", &codegen_units); } // Make as many symbols "internal" as possible, so LLVM has more freedom to // optimize. if !tcx.sess.link_dead_code() { let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_internalize_symbols"); internalize_symbols(cx, &mut codegen_units, internalization_candidates); debug_dump(tcx, "INTERNALIZE", &codegen_units); } // Mark one CGU for dead code, if necessary. let instrument_dead_code = tcx.sess.instrument_coverage() && !tcx.sess.instrument_coverage_except_unused_functions(); if instrument_dead_code { mark_code_coverage_dead_code_cgu(&mut codegen_units); } // Ensure CGUs are sorted by name, so that we get deterministic results. if !codegen_units.is_sorted_by(|a, b| Some(a.name().as_str().cmp(b.name().as_str()))) { let mut names = String::new(); for cgu in codegen_units.iter() { names += &format!("- {}\n", cgu.name()); } bug!("unsorted CGUs:\n{names}"); } codegen_units } fn place_mono_items<'tcx, I>(cx: &PartitioningCx<'_, 'tcx>, mono_items: I) -> PlacedMonoItems<'tcx> where I: Iterator>, { let mut codegen_units = FxHashMap::default(); let is_incremental_build = cx.tcx.sess.opts.incremental.is_some(); let mut internalization_candidates = FxHashSet::default(); // Determine if monomorphizations instantiated in this crate will be made // available to downstream crates. This depends on whether we are in // share-generics mode and whether the current crate can even have // downstream crates. let export_generics = cx.tcx.sess.opts.share_generics() && cx.tcx.local_crate_exports_generics(); let cgu_name_builder = &mut CodegenUnitNameBuilder::new(cx.tcx); let cgu_name_cache = &mut FxHashMap::default(); for mono_item in mono_items { // Handle only root items directly here. Inlined items are handled at // the bottom of the loop based on reachability. match mono_item.instantiation_mode(cx.tcx) { InstantiationMode::GloballyShared { .. } => {} InstantiationMode::LocalCopy => continue, } let characteristic_def_id = characteristic_def_id_of_mono_item(cx.tcx, mono_item); let is_volatile = is_incremental_build && mono_item.is_generic_fn(); let cgu_name = match characteristic_def_id { Some(def_id) => compute_codegen_unit_name( cx.tcx, cgu_name_builder, def_id, is_volatile, cgu_name_cache, ), None => fallback_cgu_name(cgu_name_builder), }; let cgu = codegen_units.entry(cgu_name).or_insert_with(|| CodegenUnit::new(cgu_name)); let mut can_be_internalized = true; let (linkage, visibility) = mono_item_linkage_and_visibility( cx.tcx, &mono_item, &mut can_be_internalized, export_generics, ); if visibility == Visibility::Hidden && can_be_internalized { internalization_candidates.insert(mono_item); } let size_estimate = mono_item.size_estimate(cx.tcx); cgu.items_mut().insert(mono_item, MonoItemData { linkage, visibility, size_estimate }); // Get all inlined items that are reachable from `mono_item` without // going via another root item. This includes drop-glue, functions from // external crates, and local functions the definition of which is // marked with `#[inline]`. let mut reachable_inlined_items = FxHashSet::default(); get_reachable_inlined_items(cx.tcx, mono_item, cx.usage_map, &mut reachable_inlined_items); // Add those inlined items. It's possible an inlined item is reachable // from multiple root items within a CGU, which is fine, it just means // the `insert` will be a no-op. for inlined_item in reachable_inlined_items { // This is a CGU-private copy. cgu.items_mut().entry(inlined_item).or_insert_with(|| MonoItemData { linkage: Linkage::Internal, visibility: Visibility::Default, size_estimate: inlined_item.size_estimate(cx.tcx), }); } } // Always ensure we have at least one CGU; otherwise, if we have a // crate with just types (for example), we could wind up with no CGU. if codegen_units.is_empty() { let cgu_name = fallback_cgu_name(cgu_name_builder); codegen_units.insert(cgu_name, CodegenUnit::new(cgu_name)); } let mut codegen_units: Vec<_> = codegen_units.into_values().collect(); codegen_units.sort_by(|a, b| a.name().as_str().cmp(b.name().as_str())); for cgu in codegen_units.iter_mut() { cgu.compute_size_estimate(); } return PlacedMonoItems { codegen_units, internalization_candidates }; fn get_reachable_inlined_items<'tcx>( tcx: TyCtxt<'tcx>, item: MonoItem<'tcx>, usage_map: &UsageMap<'tcx>, visited: &mut FxHashSet>, ) { usage_map.for_each_inlined_used_item(tcx, item, |inlined_item| { let is_new = visited.insert(inlined_item); if is_new { get_reachable_inlined_items(tcx, inlined_item, usage_map, visited); } }); } } // This function requires the CGUs to be sorted by name on input, and ensures // they are sorted by name on return, for deterministic behaviour. fn merge_codegen_units<'tcx>( cx: &PartitioningCx<'_, 'tcx>, codegen_units: &mut Vec>, ) { assert!(cx.tcx.sess.codegen_units().as_usize() >= 1); // A sorted order here ensures merging is deterministic. assert!(codegen_units.is_sorted_by(|a, b| Some(a.name().as_str().cmp(b.name().as_str())))); // This map keeps track of what got merged into what. let mut cgu_contents: FxHashMap> = codegen_units.iter().map(|cgu| (cgu.name(), vec![cgu.name()])).collect(); // Having multiple CGUs can drastically speed up compilation. But for // non-incremental builds, tiny CGUs slow down compilation *and* result in // worse generated code. So we don't allow CGUs smaller than this (unless // there is just one CGU, of course). Note that CGU sizes of 100,000+ are // common in larger programs, so this isn't all that large. const NON_INCR_MIN_CGU_SIZE: usize = 1800; // Repeatedly merge the two smallest codegen units as long as: // - we have more CGUs than the upper limit, or // - (Non-incremental builds only) the user didn't specify a CGU count, and // there are multiple CGUs, and some are below the minimum size. // // The "didn't specify a CGU count" condition is because when an explicit // count is requested we observe it as closely as possible. For example, // the `compiler_builtins` crate sets `codegen-units = 10000` and it's // critical they aren't merged. Also, some tests use explicit small values // and likewise won't work if small CGUs are merged. while codegen_units.len() > cx.tcx.sess.codegen_units().as_usize() || (cx.tcx.sess.opts.incremental.is_none() && matches!(cx.tcx.sess.codegen_units(), CodegenUnits::Default(_)) && codegen_units.len() > 1 && codegen_units.iter().any(|cgu| cgu.size_estimate() < NON_INCR_MIN_CGU_SIZE)) { // Sort small cgus to the back. codegen_units.sort_by_key(|cgu| cmp::Reverse(cgu.size_estimate())); let mut smallest = codegen_units.pop().unwrap(); let second_smallest = codegen_units.last_mut().unwrap(); // Move the items from `smallest` to `second_smallest`. Some of them // may be duplicate inlined items, in which case the destination CGU is // unaffected. Recalculate size estimates afterwards. second_smallest.items_mut().extend(smallest.items_mut().drain()); second_smallest.compute_size_estimate(); // Record that `second_smallest` now contains all the stuff that was // in `smallest` before. let mut consumed_cgu_names = cgu_contents.remove(&smallest.name()).unwrap(); cgu_contents.get_mut(&second_smallest.name()).unwrap().append(&mut consumed_cgu_names); debug!( "CodegenUnit {} merged into CodegenUnit {}", smallest.name(), second_smallest.name() ); } let cgu_name_builder = &mut CodegenUnitNameBuilder::new(cx.tcx); // Rename the newly merged CGUs. if cx.tcx.sess.opts.incremental.is_some() { // If we are doing incremental compilation, we want CGU names to // reflect the path of the source level module they correspond to. // For CGUs that contain the code of multiple modules because of the // merging done above, we use a concatenation of the names of all // contained CGUs. let new_cgu_names: FxHashMap = cgu_contents .into_iter() // This `filter` makes sure we only update the name of CGUs that // were actually modified by merging. .filter(|(_, cgu_contents)| cgu_contents.len() > 1) .map(|(current_cgu_name, cgu_contents)| { let mut cgu_contents: Vec<&str> = cgu_contents.iter().map(|s| s.as_str()).collect(); // Sort the names, so things are deterministic and easy to // predict. We are sorting primitive `&str`s here so we can // use unstable sort. cgu_contents.sort_unstable(); (current_cgu_name, cgu_contents.join("--")) }) .collect(); for cgu in codegen_units.iter_mut() { if let Some(new_cgu_name) = new_cgu_names.get(&cgu.name()) { if cx.tcx.sess.opts.unstable_opts.human_readable_cgu_names { cgu.set_name(Symbol::intern(&new_cgu_name)); } else { // If we don't require CGU names to be human-readable, // we use a fixed length hash of the composite CGU name // instead. let new_cgu_name = CodegenUnit::mangle_name(&new_cgu_name); cgu.set_name(Symbol::intern(&new_cgu_name)); } } } // A sorted order here ensures what follows can be deterministic. codegen_units.sort_by(|a, b| a.name().as_str().cmp(b.name().as_str())); } else { // When compiling non-incrementally, we rename the CGUS so they have // identical names except for the numeric suffix, something like // `regex.f10ba03eb5ec7975-cgu.N`, where `N` varies. // // It is useful for debugging and profiling purposes if the resulting // CGUs are sorted by name *and* reverse sorted by size. (CGU 0 is the // biggest, CGU 1 is the second biggest, etc.) // // So first we reverse sort by size. Then we generate the names with // zero-padded suffixes, which means they are automatically sorted by // names. The numeric suffix width depends on the number of CGUs, which // is always greater than zero: // - [1,9] CGUs: `0`, `1`, `2`, ... // - [10,99] CGUs: `00`, `01`, `02`, ... // - [100,999] CGUs: `000`, `001`, `002`, ... // - etc. // // If we didn't zero-pad the sorted-by-name order would be `XYZ-cgu.0`, // `XYZ-cgu.1`, `XYZ-cgu.10`, `XYZ-cgu.11`, ..., `XYZ-cgu.2`, etc. codegen_units.sort_by_key(|cgu| cmp::Reverse(cgu.size_estimate())); let num_digits = codegen_units.len().ilog10() as usize + 1; for (index, cgu) in codegen_units.iter_mut().enumerate() { // Note: `WorkItem::short_description` depends on this name ending // with `-cgu.` followed by a numeric suffix. Please keep it in // sync with this code. let suffix = format!("{index:0num_digits$}"); let numbered_codegen_unit_name = cgu_name_builder.build_cgu_name_no_mangle(LOCAL_CRATE, &["cgu"], Some(suffix)); cgu.set_name(numbered_codegen_unit_name); } } } fn internalize_symbols<'tcx>( cx: &PartitioningCx<'_, 'tcx>, codegen_units: &mut [CodegenUnit<'tcx>], internalization_candidates: FxHashSet>, ) { /// For symbol internalization, we need to know whether a symbol/mono-item /// is used from outside the codegen unit it is defined in. This type is /// used to keep track of that. #[derive(Clone, PartialEq, Eq, Debug)] enum MonoItemPlacement { SingleCgu(Symbol), MultipleCgus, } let mut mono_item_placements = FxHashMap::default(); let single_codegen_unit = codegen_units.len() == 1; if !single_codegen_unit { for cgu in codegen_units.iter() { for item in cgu.items().keys() { // If there is more than one codegen unit, we need to keep track // in which codegen units each monomorphization is placed. match mono_item_placements.entry(*item) { Entry::Occupied(e) => { let placement = e.into_mut(); debug_assert!(match *placement { MonoItemPlacement::SingleCgu(cgu_name) => cgu_name != cgu.name(), MonoItemPlacement::MultipleCgus => true, }); *placement = MonoItemPlacement::MultipleCgus; } Entry::Vacant(e) => { e.insert(MonoItemPlacement::SingleCgu(cgu.name())); } } } } } // For each internalization candidates in each codegen unit, check if it is // used from outside its defining codegen unit. for cgu in codegen_units { let home_cgu = MonoItemPlacement::SingleCgu(cgu.name()); for (item, data) in cgu.items_mut() { if !internalization_candidates.contains(item) { // This item is no candidate for internalizing, so skip it. continue; } if !single_codegen_unit { debug_assert_eq!(mono_item_placements[item], home_cgu); if cx .usage_map .get_user_items(*item) .iter() .filter_map(|user_item| { // Some user mono items might not have been // instantiated. We can safely ignore those. mono_item_placements.get(user_item) }) .any(|placement| *placement != home_cgu) { // Found a user from another CGU, so skip to the next item // without marking this one as internal. continue; } } // If we got here, we did not find any uses from other CGUs, so // it's fine to make this monomorphization internal. data.linkage = Linkage::Internal; data.visibility = Visibility::Default; } } } fn mark_code_coverage_dead_code_cgu<'tcx>(codegen_units: &mut [CodegenUnit<'tcx>]) { assert!(!codegen_units.is_empty()); // Find the smallest CGU that has exported symbols and put the dead // function stubs in that CGU. We look for exported symbols to increase // the likelihood the linker won't throw away the dead functions. // FIXME(#92165): In order to truly resolve this, we need to make sure // the object file (CGU) containing the dead function stubs is included // in the final binary. This will probably require forcing these // function symbols to be included via `-u` or `/include` linker args. let dead_code_cgu = codegen_units .iter_mut() .filter(|cgu| cgu.items().iter().any(|(_, data)| data.linkage == Linkage::External)) .min_by_key(|cgu| cgu.size_estimate()); // If there are no CGUs that have externally linked items, then we just // pick the first CGU as a fallback. let dead_code_cgu = if let Some(cgu) = dead_code_cgu { cgu } else { &mut codegen_units[0] }; dead_code_cgu.make_code_coverage_dead_code_cgu(); } fn characteristic_def_id_of_mono_item<'tcx>( tcx: TyCtxt<'tcx>, mono_item: MonoItem<'tcx>, ) -> Option { match mono_item { MonoItem::Fn(instance) => { let def_id = match instance.def { ty::InstanceDef::Item(def) => def, ty::InstanceDef::VTableShim(..) | ty::InstanceDef::ReifyShim(..) | ty::InstanceDef::FnPtrShim(..) | ty::InstanceDef::ClosureOnceShim { .. } | ty::InstanceDef::Intrinsic(..) | ty::InstanceDef::DropGlue(..) | ty::InstanceDef::Virtual(..) | ty::InstanceDef::CloneShim(..) | ty::InstanceDef::ThreadLocalShim(..) | ty::InstanceDef::FnPtrAddrShim(..) => return None, }; // If this is a method, we want to put it into the same module as // its self-type. If the self-type does not provide a characteristic // DefId, we use the location of the impl after all. if tcx.trait_of_item(def_id).is_some() { let self_ty = instance.args.type_at(0); // This is a default implementation of a trait method. return characteristic_def_id_of_type(self_ty).or(Some(def_id)); } if let Some(impl_def_id) = tcx.impl_of_method(def_id) { if tcx.sess.opts.incremental.is_some() && tcx.trait_id_of_impl(impl_def_id) == tcx.lang_items().drop_trait() { // Put `Drop::drop` into the same cgu as `drop_in_place` // since `drop_in_place` is the only thing that can // call it. return None; } // When polymorphization is enabled, methods which do not depend on their generic // parameters, but the self-type of their impl block do will fail to normalize. if !tcx.sess.opts.unstable_opts.polymorphize || !instance.has_param() { // This is a method within an impl, find out what the self-type is: let impl_self_ty = tcx.subst_and_normalize_erasing_regions( instance.args, ty::ParamEnv::reveal_all(), tcx.type_of(impl_def_id), ); if let Some(def_id) = characteristic_def_id_of_type(impl_self_ty) { return Some(def_id); } } } Some(def_id) } MonoItem::Static(def_id) => Some(def_id), MonoItem::GlobalAsm(item_id) => Some(item_id.owner_id.to_def_id()), } } fn compute_codegen_unit_name( tcx: TyCtxt<'_>, name_builder: &mut CodegenUnitNameBuilder<'_>, def_id: DefId, volatile: bool, cache: &mut CguNameCache, ) -> Symbol { // Find the innermost module that is not nested within a function. let mut current_def_id = def_id; let mut cgu_def_id = None; // Walk backwards from the item we want to find the module for. loop { if current_def_id.is_crate_root() { if cgu_def_id.is_none() { // If we have not found a module yet, take the crate root. cgu_def_id = Some(def_id.krate.as_def_id()); } break; } else if tcx.def_kind(current_def_id) == DefKind::Mod { if cgu_def_id.is_none() { cgu_def_id = Some(current_def_id); } } else { // If we encounter something that is not a module, throw away // any module that we've found so far because we now know that // it is nested within something else. cgu_def_id = None; } current_def_id = tcx.parent(current_def_id); } let cgu_def_id = cgu_def_id.unwrap(); *cache.entry((cgu_def_id, volatile)).or_insert_with(|| { let def_path = tcx.def_path(cgu_def_id); let components = def_path.data.iter().map(|part| match part.data.name() { DefPathDataName::Named(name) => name, DefPathDataName::Anon { .. } => unreachable!(), }); let volatile_suffix = volatile.then_some("volatile"); name_builder.build_cgu_name(def_path.krate, components, volatile_suffix) }) } // Anything we can't find a proper codegen unit for goes into this. fn fallback_cgu_name(name_builder: &mut CodegenUnitNameBuilder<'_>) -> Symbol { name_builder.build_cgu_name(LOCAL_CRATE, &["fallback"], Some("cgu")) } fn mono_item_linkage_and_visibility<'tcx>( tcx: TyCtxt<'tcx>, mono_item: &MonoItem<'tcx>, can_be_internalized: &mut bool, export_generics: bool, ) -> (Linkage, Visibility) { if let Some(explicit_linkage) = mono_item.explicit_linkage(tcx) { return (explicit_linkage, Visibility::Default); } let vis = mono_item_visibility(tcx, mono_item, can_be_internalized, export_generics); (Linkage::External, vis) } type CguNameCache = FxHashMap<(DefId, bool), Symbol>; fn static_visibility<'tcx>( tcx: TyCtxt<'tcx>, can_be_internalized: &mut bool, def_id: DefId, ) -> Visibility { if tcx.is_reachable_non_generic(def_id) { *can_be_internalized = false; default_visibility(tcx, def_id, false) } else { Visibility::Hidden } } fn mono_item_visibility<'tcx>( tcx: TyCtxt<'tcx>, mono_item: &MonoItem<'tcx>, can_be_internalized: &mut bool, export_generics: bool, ) -> Visibility { let instance = match mono_item { // This is pretty complicated; see below. MonoItem::Fn(instance) => instance, // Misc handling for generics and such, but otherwise: MonoItem::Static(def_id) => return static_visibility(tcx, can_be_internalized, *def_id), MonoItem::GlobalAsm(item_id) => { return static_visibility(tcx, can_be_internalized, item_id.owner_id.to_def_id()); } }; let def_id = match instance.def { InstanceDef::Item(def_id) | InstanceDef::DropGlue(def_id, Some(_)) => def_id, // We match the visibility of statics here InstanceDef::ThreadLocalShim(def_id) => { return static_visibility(tcx, can_be_internalized, def_id); } // These are all compiler glue and such, never exported, always hidden. InstanceDef::VTableShim(..) | InstanceDef::ReifyShim(..) | InstanceDef::FnPtrShim(..) | InstanceDef::Virtual(..) | InstanceDef::Intrinsic(..) | InstanceDef::ClosureOnceShim { .. } | InstanceDef::DropGlue(..) | InstanceDef::CloneShim(..) | InstanceDef::FnPtrAddrShim(..) => return Visibility::Hidden, }; // The `start_fn` lang item is actually a monomorphized instance of a // function in the standard library, used for the `main` function. We don't // want to export it so we tag it with `Hidden` visibility but this symbol // is only referenced from the actual `main` symbol which we unfortunately // don't know anything about during partitioning/collection. As a result we // forcibly keep this symbol out of the `internalization_candidates` set. // // FIXME: eventually we don't want to always force this symbol to have // hidden visibility, it should indeed be a candidate for // internalization, but we have to understand that it's referenced // from the `main` symbol we'll generate later. // // This may be fixable with a new `InstanceDef` perhaps? Unsure! if tcx.lang_items().start_fn() == Some(def_id) { *can_be_internalized = false; return Visibility::Hidden; } let is_generic = instance.args.non_erasable_generics().next().is_some(); // Upstream `DefId` instances get different handling than local ones. let Some(def_id) = def_id.as_local() else { return if export_generics && is_generic { // If it is an upstream monomorphization and we export generics, we must make // it available to downstream crates. *can_be_internalized = false; default_visibility(tcx, def_id, true) } else { Visibility::Hidden }; }; if is_generic { if export_generics { if tcx.is_unreachable_local_definition(def_id) { // This instance cannot be used from another crate. Visibility::Hidden } else { // This instance might be useful in a downstream crate. *can_be_internalized = false; default_visibility(tcx, def_id.to_def_id(), true) } } else { // We are not exporting generics or the definition is not reachable // for downstream crates, we can internalize its instantiations. Visibility::Hidden } } else { // If this isn't a generic function then we mark this a `Default` if // this is a reachable item, meaning that it's a symbol other crates may // use when they link to us. if tcx.is_reachable_non_generic(def_id.to_def_id()) { *can_be_internalized = false; debug_assert!(!is_generic); return default_visibility(tcx, def_id.to_def_id(), false); } // If this isn't reachable then we're gonna tag this with `Hidden` // visibility. In some situations though we'll want to prevent this // symbol from being internalized. // // There's two categories of items here: // // * First is weak lang items. These are basically mechanisms for // libcore to forward-reference symbols defined later in crates like // the standard library or `#[panic_handler]` definitions. The // definition of these weak lang items needs to be referencable by // libcore, so we're no longer a candidate for internalization. // Removal of these functions can't be done by LLVM but rather must be // done by the linker as it's a non-local decision. // // * Second is "std internal symbols". Currently this is primarily used // for allocator symbols. Allocators are a little weird in their // implementation, but the idea is that the compiler, at the last // minute, defines an allocator with an injected object file. The // `alloc` crate references these symbols (`__rust_alloc`) and the // definition doesn't get hooked up until a linked crate artifact is // generated. // // The symbols synthesized by the compiler (`__rust_alloc`) are thin // veneers around the actual implementation, some other symbol which // implements the same ABI. These symbols (things like `__rg_alloc`, // `__rdl_alloc`, `__rde_alloc`, etc), are all tagged with "std // internal symbols". // // The std-internal symbols here **should not show up in a dll as an // exported interface**, so they return `false` from // `is_reachable_non_generic` above and we'll give them `Hidden` // visibility below. Like the weak lang items, though, we can't let // LLVM internalize them as this decision is left up to the linker to // omit them, so prevent them from being internalized. let attrs = tcx.codegen_fn_attrs(def_id); if attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) { *can_be_internalized = false; } Visibility::Hidden } } fn default_visibility(tcx: TyCtxt<'_>, id: DefId, is_generic: bool) -> Visibility { if !tcx.sess.target.default_hidden_visibility { return Visibility::Default; } // Generic functions never have export-level C. if is_generic { return Visibility::Hidden; } // Things with export level C don't get instantiated in // downstream crates. if !id.is_local() { return Visibility::Hidden; } // C-export level items remain at `Default`, all other internal // items become `Hidden`. match tcx.reachable_non_generics(id.krate).get(&id) { Some(SymbolExportInfo { level: SymbolExportLevel::C, .. }) => Visibility::Default, _ => Visibility::Hidden, } } fn debug_dump<'a, 'tcx: 'a>(tcx: TyCtxt<'tcx>, label: &str, cgus: &[CodegenUnit<'tcx>]) { let dump = move || { use std::fmt::Write; let mut num_cgus = 0; let mut all_cgu_sizes = Vec::new(); // Note: every unique root item is placed exactly once, so the number // of unique root items always equals the number of placed root items. // // Also, unreached inlined items won't be counted here. This is fine. let mut inlined_items = FxHashSet::default(); let mut root_items = 0; let mut unique_inlined_items = 0; let mut placed_inlined_items = 0; let mut root_size = 0; let mut unique_inlined_size = 0; let mut placed_inlined_size = 0; for cgu in cgus.iter() { num_cgus += 1; all_cgu_sizes.push(cgu.size_estimate()); for (item, data) in cgu.items() { match item.instantiation_mode(tcx) { InstantiationMode::GloballyShared { .. } => { root_items += 1; root_size += data.size_estimate; } InstantiationMode::LocalCopy => { if inlined_items.insert(item) { unique_inlined_items += 1; unique_inlined_size += data.size_estimate; } placed_inlined_items += 1; placed_inlined_size += data.size_estimate; } } } } all_cgu_sizes.sort_unstable_by_key(|&n| cmp::Reverse(n)); let unique_items = root_items + unique_inlined_items; let placed_items = root_items + placed_inlined_items; let items_ratio = placed_items as f64 / unique_items as f64; let unique_size = root_size + unique_inlined_size; let placed_size = root_size + placed_inlined_size; let size_ratio = placed_size as f64 / unique_size as f64; let mean_cgu_size = placed_size as f64 / num_cgus as f64; assert_eq!(placed_size, all_cgu_sizes.iter().sum::()); let s = &mut String::new(); let _ = writeln!(s, "{label}"); let _ = writeln!( s, "- unique items: {unique_items} ({root_items} root + {unique_inlined_items} inlined), \ unique size: {unique_size} ({root_size} root + {unique_inlined_size} inlined)\n\ - placed items: {placed_items} ({root_items} root + {placed_inlined_items} inlined), \ placed size: {placed_size} ({root_size} root + {placed_inlined_size} inlined)\n\ - placed/unique items ratio: {items_ratio:.2}, \ placed/unique size ratio: {size_ratio:.2}\n\ - CGUs: {num_cgus}, mean size: {mean_cgu_size:.1}, sizes: {}", list(&all_cgu_sizes), ); let _ = writeln!(s); for (i, cgu) in cgus.iter().enumerate() { let name = cgu.name(); let size = cgu.size_estimate(); let num_items = cgu.items().len(); let mean_size = size as f64 / num_items as f64; let mut placed_item_sizes: Vec<_> = cgu.items().values().map(|data| data.size_estimate).collect(); placed_item_sizes.sort_unstable_by_key(|&n| cmp::Reverse(n)); let sizes = list(&placed_item_sizes); let _ = writeln!(s, "- CGU[{i}]"); let _ = writeln!(s, " - {name}, size: {size}"); let _ = writeln!(s, " - items: {num_items}, mean size: {mean_size:.1}, sizes: {sizes}",); for (item, data) in cgu.items_in_deterministic_order(tcx) { let linkage = data.linkage; let symbol_name = item.symbol_name(tcx).name; let symbol_hash_start = symbol_name.rfind('h'); let symbol_hash = symbol_hash_start.map_or("", |i| &symbol_name[i..]); let kind = match item.instantiation_mode(tcx) { InstantiationMode::GloballyShared { .. } => "root", InstantiationMode::LocalCopy => "inlined", }; let size = data.size_estimate; let _ = with_no_trimmed_paths!(writeln!( s, " - {item} [{linkage:?}] [{symbol_hash}] ({kind}, size: {size})" )); } let _ = writeln!(s); } return std::mem::take(s); // Converts a slice to a string, capturing repetitions to save space. // E.g. `[4, 4, 4, 3, 2, 1, 1, 1, 1, 1]` -> "[4 (x3), 3, 2, 1 (x5)]". fn list(ns: &[usize]) -> String { let mut v = Vec::new(); if ns.is_empty() { return "[]".to_string(); } let mut elem = |curr, curr_count| { if curr_count == 1 { v.push(format!("{curr}")); } else { v.push(format!("{curr} (x{curr_count})")); } }; let mut curr = ns[0]; let mut curr_count = 1; for &n in &ns[1..] { if n != curr { elem(curr, curr_count); curr = n; curr_count = 1; } else { curr_count += 1; } } elem(curr, curr_count); let mut s = "[".to_string(); s.push_str(&v.join(", ")); s.push_str("]"); s } }; debug!("{}", dump()); } #[inline(never)] // give this a place in the profiler fn assert_symbols_are_distinct<'a, 'tcx, I>(tcx: TyCtxt<'tcx>, mono_items: I) where I: Iterator>, 'tcx: 'a, { let _prof_timer = tcx.prof.generic_activity("assert_symbols_are_distinct"); let mut symbols: Vec<_> = mono_items.map(|mono_item| (mono_item, mono_item.symbol_name(tcx))).collect(); symbols.sort_by_key(|sym| sym.1); for &[(mono_item1, ref sym1), (mono_item2, ref sym2)] in symbols.array_windows() { if sym1 == sym2 { let span1 = mono_item1.local_span(tcx); let span2 = mono_item2.local_span(tcx); // Deterministically select one of the spans for error reporting let span = match (span1, span2) { (Some(span1), Some(span2)) => { Some(if span1.lo().0 > span2.lo().0 { span1 } else { span2 }) } (span1, span2) => span1.or(span2), }; tcx.sess.emit_fatal(SymbolAlreadyDefined { span, symbol: sym1.to_string() }); } } } fn collect_and_partition_mono_items(tcx: TyCtxt<'_>, (): ()) -> (&DefIdSet, &[CodegenUnit<'_>]) { let collection_mode = match tcx.sess.opts.unstable_opts.print_mono_items { Some(ref s) => { let mode = s.to_lowercase(); let mode = mode.trim(); if mode == "eager" { MonoItemCollectionMode::Eager } else { if mode != "lazy" { tcx.sess.emit_warning(UnknownCguCollectionMode { mode }); } MonoItemCollectionMode::Lazy } } None => { if tcx.sess.link_dead_code() { MonoItemCollectionMode::Eager } else { MonoItemCollectionMode::Lazy } } }; let (items, usage_map) = collector::collect_crate_mono_items(tcx, collection_mode); tcx.sess.abort_if_errors(); let (codegen_units, _) = tcx.sess.time("partition_and_assert_distinct_symbols", || { sync::join( || { let mut codegen_units = partition(tcx, items.iter().copied(), &usage_map); codegen_units[0].make_primary(); &*tcx.arena.alloc_from_iter(codegen_units) }, || assert_symbols_are_distinct(tcx, items.iter()), ) }); if tcx.prof.enabled() { // Record CGU size estimates for self-profiling. for cgu in codegen_units { tcx.prof.artifact_size( "codegen_unit_size_estimate", cgu.name().as_str(), cgu.size_estimate() as u64, ); } } let mono_items: DefIdSet = items .iter() .filter_map(|mono_item| match *mono_item { MonoItem::Fn(ref instance) => Some(instance.def_id()), MonoItem::Static(def_id) => Some(def_id), _ => None, }) .collect(); // Output monomorphization stats per def_id if let SwitchWithOptPath::Enabled(ref path) = tcx.sess.opts.unstable_opts.dump_mono_stats { if let Err(err) = dump_mono_items_stats(tcx, &codegen_units, path, tcx.crate_name(LOCAL_CRATE)) { tcx.sess.emit_fatal(CouldntDumpMonoStats { error: err.to_string() }); } } if tcx.sess.opts.unstable_opts.print_mono_items.is_some() { let mut item_to_cgus: FxHashMap<_, Vec<_>> = Default::default(); for cgu in codegen_units { for (&mono_item, &data) in cgu.items() { item_to_cgus.entry(mono_item).or_default().push((cgu.name(), data.linkage)); } } let mut item_keys: Vec<_> = items .iter() .map(|i| { let mut output = with_no_trimmed_paths!(i.to_string()); output.push_str(" @@"); let mut empty = Vec::new(); let cgus = item_to_cgus.get_mut(i).unwrap_or(&mut empty); cgus.sort_by_key(|(name, _)| *name); cgus.dedup(); for &(ref cgu_name, linkage) in cgus.iter() { output.push(' '); output.push_str(cgu_name.as_str()); let linkage_abbrev = match linkage { Linkage::External => "External", Linkage::AvailableExternally => "Available", Linkage::LinkOnceAny => "OnceAny", Linkage::LinkOnceODR => "OnceODR", Linkage::WeakAny => "WeakAny", Linkage::WeakODR => "WeakODR", Linkage::Appending => "Appending", Linkage::Internal => "Internal", Linkage::Private => "Private", Linkage::ExternalWeak => "ExternalWeak", Linkage::Common => "Common", }; output.push('['); output.push_str(linkage_abbrev); output.push(']'); } output }) .collect(); item_keys.sort(); for item in item_keys { println!("MONO_ITEM {item}"); } } (tcx.arena.alloc(mono_items), codegen_units) } /// Outputs stats about instantiation counts and estimated size, per `MonoItem`'s /// def, to a file in the given output directory. fn dump_mono_items_stats<'tcx>( tcx: TyCtxt<'tcx>, codegen_units: &[CodegenUnit<'tcx>], output_directory: &Option, crate_name: Symbol, ) -> Result<(), Box> { let output_directory = if let Some(ref directory) = output_directory { fs::create_dir_all(directory)?; directory } else { Path::new(".") }; let format = tcx.sess.opts.unstable_opts.dump_mono_stats_format; let ext = format.extension(); let filename = format!("{crate_name}.mono_items.{ext}"); let output_path = output_directory.join(&filename); let file = File::create(&output_path)?; let mut file = BufWriter::new(file); // Gather instantiated mono items grouped by def_id let mut items_per_def_id: FxHashMap<_, Vec<_>> = Default::default(); for cgu in codegen_units { for (&mono_item, _) in cgu.items() { // Avoid variable-sized compiler-generated shims if mono_item.is_user_defined() { items_per_def_id.entry(mono_item.def_id()).or_default().push(mono_item); } } } #[derive(serde::Serialize)] struct MonoItem { name: String, instantiation_count: usize, size_estimate: usize, total_estimate: usize, } // Output stats sorted by total instantiated size, from heaviest to lightest let mut stats: Vec<_> = items_per_def_id .into_iter() .map(|(def_id, items)| { let name = with_no_trimmed_paths!(tcx.def_path_str(def_id)); let instantiation_count = items.len(); let size_estimate = items[0].size_estimate(tcx); let total_estimate = instantiation_count * size_estimate; MonoItem { name, instantiation_count, size_estimate, total_estimate } }) .collect(); stats.sort_unstable_by_key(|item| cmp::Reverse(item.total_estimate)); if !stats.is_empty() { match format { DumpMonoStatsFormat::Json => serde_json::to_writer(file, &stats)?, DumpMonoStatsFormat::Markdown => { writeln!( file, "| Item | Instantiation count | Estimated Cost Per Instantiation | Total Estimated Cost |" )?; writeln!(file, "| --- | ---: | ---: | ---: |")?; for MonoItem { name, instantiation_count, size_estimate, total_estimate } in stats { writeln!( file, "| `{name}` | {instantiation_count} | {size_estimate} | {total_estimate} |" )?; } } } } Ok(()) } fn codegened_and_inlined_items(tcx: TyCtxt<'_>, (): ()) -> &DefIdSet { let (items, cgus) = tcx.collect_and_partition_mono_items(()); let mut visited = DefIdSet::default(); let mut result = items.clone(); for cgu in cgus { for (item, _) in cgu.items() { if let MonoItem::Fn(ref instance) = item { let did = instance.def_id(); if !visited.insert(did) { continue; } let body = tcx.instance_mir(instance.def); for block in body.basic_blocks.iter() { for statement in &block.statements { let mir::StatementKind::Coverage(_) = statement.kind else { continue }; let scope = statement.source_info.scope; if let Some(inlined) = scope.inlined_instance(&body.source_scopes) { result.insert(inlined.def_id()); } } } } } } tcx.arena.alloc(result) } pub fn provide(providers: &mut Providers) { providers.collect_and_partition_mono_items = collect_and_partition_mono_items; providers.codegened_and_inlined_items = codegened_and_inlined_items; providers.is_codegened_item = |tcx, def_id| { let (all_mono_items, _) = tcx.collect_and_partition_mono_items(()); all_mono_items.contains(&def_id) }; providers.codegen_unit = |tcx, name| { let (_, all) = tcx.collect_and_partition_mono_items(()); all.iter() .find(|cgu| cgu.name() == name) .unwrap_or_else(|| panic!("failed to find cgu with name {name:?}")) }; }