/* * The compiler code necessary to support the #fmt extension. Eventually this * should all get sucked into either the standard library extfmt module or the * compiler syntax extension plugin interface. */ import util::common; import std::str; import std::vec; import std::option; import std::option::none; import std::option::some; import std::extfmt::ct::*; import ext::*; export expand_syntax_ext; fn expand_syntax_ext(&ext_ctxt cx, common::span sp, &vec[@ast::expr] args, option::t[str] body) -> @ast::expr { if (vec::len[@ast::expr](args) == 0u) { cx.span_fatal(sp, "#fmt requires a format string"); } auto fmt = expr_to_str(cx, args.(0), "first argument to #fmt must be a " + "string literal."); auto fmtspan = args.(0).span; log "Format string:"; log fmt; fn parse_fmt_err_(&ext_ctxt cx, common::span sp, str msg) -> ! { cx.span_fatal(sp, msg); } auto parse_fmt_err = bind parse_fmt_err_(cx, fmtspan, _); auto pieces = parse_fmt_string(fmt, parse_fmt_err); ret pieces_to_expr(cx, sp, pieces, args); } // FIXME: A lot of these functions for producing expressions can probably // be factored out in common with other code that builds expressions. // FIXME: Cleanup the naming of these functions fn pieces_to_expr(&ext_ctxt cx, common::span sp, vec[piece] pieces, vec[@ast::expr] args) -> @ast::expr { fn make_new_lit(&ext_ctxt cx, common::span sp, ast::lit_ lit) -> @ast::expr { auto sp_lit = @rec(node=lit, span=sp); ret @rec(id=cx.next_id(), node=ast::expr_lit(sp_lit), span=sp); } fn make_new_str(&ext_ctxt cx, common::span sp, str s) -> @ast::expr { auto lit = ast::lit_str(s, ast::sk_rc); ret make_new_lit(cx, sp, lit); } fn make_new_int(&ext_ctxt cx, common::span sp, int i) -> @ast::expr { auto lit = ast::lit_int(i); ret make_new_lit(cx, sp, lit); } fn make_new_uint(&ext_ctxt cx, common::span sp, uint u) -> @ast::expr { auto lit = ast::lit_uint(u); ret make_new_lit(cx, sp, lit); } fn make_add_expr(&ext_ctxt cx, common::span sp, @ast::expr lhs, @ast::expr rhs) -> @ast::expr { auto binexpr = ast::expr_binary(ast::add, lhs, rhs); ret @rec(id=cx.next_id(), node=binexpr, span=sp); } fn make_path_expr(&ext_ctxt cx, common::span sp, vec[ast::ident] idents) -> @ast::expr { let vec[@ast::ty] types = []; auto path = rec(idents=idents, types=types); auto sp_path = rec(node=path, span=sp); auto pathexpr = ast::expr_path(sp_path); ret @rec(id=cx.next_id(), node=pathexpr, span=sp); } fn make_vec_expr(&ext_ctxt cx, common::span sp, vec[@ast::expr] exprs) -> @ast::expr { auto vecexpr = ast::expr_vec(exprs, ast::imm, ast::sk_rc); ret @rec(id=cx.next_id(), node=vecexpr, span=sp); } fn make_call(&ext_ctxt cx, common::span sp, vec[ast::ident] fn_path, vec[@ast::expr] args) -> @ast::expr { auto pathexpr = make_path_expr(cx, sp, fn_path); auto callexpr = ast::expr_call(pathexpr, args); ret @rec(id=cx.next_id(), node=callexpr, span=sp); } fn make_rec_expr(&ext_ctxt cx, common::span sp, vec[tup(ast::ident, @ast::expr)] fields) -> @ast::expr { let vec[ast::field] astfields = []; for (tup(ast::ident, @ast::expr) field in fields) { auto ident = field._0; auto val = field._1; auto astfield = rec(node=rec(mut=ast::imm, ident=ident, expr=val), span=sp); astfields += [astfield]; } auto recexpr = ast::expr_rec(astfields, option::none[@ast::expr]); ret @rec(id=cx.next_id(), node=recexpr, span=sp); } fn make_path_vec(str ident) -> vec[str] { // FIXME: #fmt can't currently be used from within std // because we're explicitly referencing the 'std' crate here ret ["std", "extfmt", "rt", ident]; } fn make_rt_path_expr(&ext_ctxt cx, common::span sp, str ident) -> @ast::expr { auto path = make_path_vec(ident); ret make_path_expr(cx, sp, path); } // Produces an AST expression that represents a RT::conv record, // which tells the RT::conv* functions how to perform the conversion fn make_rt_conv_expr(&ext_ctxt cx, common::span sp, &conv cnv) -> @ast::expr { fn make_flags(&ext_ctxt cx, common::span sp, vec[flag] flags) -> @ast::expr { let vec[@ast::expr] flagexprs = []; for (flag f in flags) { auto fstr; alt (f) { case (flag_left_justify) { fstr = "flag_left_justify"; } case (flag_left_zero_pad) { fstr = "flag_left_zero_pad"; } case (flag_space_for_sign) { fstr = "flag_space_for_sign"; } case (flag_sign_always) { fstr = "flag_sign_always"; } case (flag_alternate) { fstr = "flag_alternate"; } } flagexprs += [make_rt_path_expr(cx, sp, fstr)]; } // FIXME: 0-length vectors can't have their type inferred // through the rec that these flags are a member of, so // this is a hack placeholder flag if (vec::len[@ast::expr](flagexprs) == 0u) { flagexprs += [make_rt_path_expr(cx, sp, "flag_none")]; } ret make_vec_expr(cx, sp, flagexprs); } fn make_count(&ext_ctxt cx, common::span sp, &count cnt) -> @ast::expr { alt (cnt) { case (count_implied) { ret make_rt_path_expr(cx, sp, "count_implied"); } case (count_is(?c)) { auto count_lit = make_new_int(cx, sp, c); auto count_is_path = make_path_vec("count_is"); auto count_is_args = [count_lit]; ret make_call(cx, sp, count_is_path, count_is_args); } case (_) { cx.span_unimpl(sp, "unimplemented #fmt conversion"); } } } fn make_ty(&ext_ctxt cx, common::span sp, &ty t) -> @ast::expr { auto rt_type; alt (t) { case (ty_hex(?c)) { alt (c) { case (case_upper) { rt_type = "ty_hex_upper"; } case (case_lower) { rt_type = "ty_hex_lower"; } } } case (ty_bits) { rt_type = "ty_bits"; } case (ty_octal) { rt_type = "ty_octal"; } case (_) { rt_type = "ty_default"; } } ret make_rt_path_expr(cx, sp, rt_type); } fn make_conv_rec(&ext_ctxt cx, common::span sp, @ast::expr flags_expr, @ast::expr width_expr, @ast::expr precision_expr, @ast::expr ty_expr) -> @ast::expr { ret make_rec_expr(cx, sp, [tup("flags", flags_expr), tup("width", width_expr), tup("precision", precision_expr), tup("ty", ty_expr)]); } auto rt_conv_flags = make_flags(cx, sp, cnv.flags); auto rt_conv_width = make_count(cx, sp, cnv.width); auto rt_conv_precision = make_count(cx, sp, cnv.precision); auto rt_conv_ty = make_ty(cx, sp, cnv.ty); ret make_conv_rec(cx, sp, rt_conv_flags, rt_conv_width, rt_conv_precision, rt_conv_ty); } fn make_conv_call(&ext_ctxt cx, common::span sp, str conv_type, &conv cnv, @ast::expr arg) -> @ast::expr { auto fname = "conv_" + conv_type; auto path = make_path_vec(fname); auto cnv_expr = make_rt_conv_expr(cx, sp, cnv); auto args = [cnv_expr, arg]; ret make_call(cx, arg.span, path, args); } fn make_new_conv(&ext_ctxt cx, common::span sp, conv cnv, @ast::expr arg) -> @ast::expr { // FIXME: Extract all this validation into extfmt::ct fn is_signed_type(conv cnv) -> bool { alt (cnv.ty) { case (ty_int(?s)) { alt (s) { case (signed) { ret true; } case (unsigned) { ret false; } } } case (_) { ret false; } } } auto unsupported = "conversion not supported in #fmt string"; alt (cnv.param) { case (option::none) { } case (_) { cx.span_unimpl(sp, unsupported); } } for (flag f in cnv.flags) { alt (f) { case (flag_left_justify) { } case (flag_sign_always) { if (!is_signed_type(cnv)) { cx.span_fatal(sp, "+ flag only valid in " + "signed #fmt conversion"); } } case (flag_space_for_sign) { if (!is_signed_type(cnv)) { cx.span_fatal(sp, "space flag only valid in " + "signed #fmt conversions"); } } case (flag_left_zero_pad) { } case (_) { cx.span_unimpl(sp, unsupported); } } } alt (cnv.width) { case (count_implied) { } case (count_is(_)) { } case (_) { cx.span_unimpl(sp, unsupported); } } alt (cnv.precision) { case (count_implied) { } case (count_is(_)) { } case (_) { cx.span_unimpl(sp, unsupported); } } alt (cnv.ty) { case (ty_str) { ret make_conv_call(cx, arg.span, "str", cnv, arg); } case (ty_int(?sign)) { alt (sign) { case (signed) { ret make_conv_call(cx, arg.span, "int", cnv, arg); } case (unsigned) { ret make_conv_call(cx, arg.span, "uint", cnv, arg); } } } case (ty_bool) { ret make_conv_call(cx, arg.span, "bool", cnv, arg); } case (ty_char) { ret make_conv_call(cx, arg.span, "char", cnv, arg); } case (ty_hex(_)) { ret make_conv_call(cx, arg.span, "uint", cnv, arg); } case (ty_bits) { ret make_conv_call(cx, arg.span, "uint", cnv, arg); } case (ty_octal) { ret make_conv_call(cx, arg.span, "uint", cnv, arg); } case (_) { cx.span_unimpl(sp, unsupported); } } } fn log_conv(conv c) { alt (c.param) { case (some(?p)) { log "param: " + std::int::to_str(p, 10u); } case (_) { log "param: none"; } } for (flag f in c.flags) { alt (f) { case (flag_left_justify) { log "flag: left justify"; } case (flag_left_zero_pad) { log "flag: left zero pad"; } case (flag_space_for_sign) { log "flag: left space pad"; } case (flag_sign_always) { log "flag: sign always"; } case (flag_alternate) { log "flag: alternate"; } } } alt (c.width) { case (count_is(?i)) { log "width: count is " + std::int::to_str(i, 10u); } case (count_is_param(?i)) { log "width: count is param " + std::int::to_str(i, 10u); } case (count_is_next_param) { log "width: count is next param"; } case (count_implied) { log "width: count is implied"; } } alt (c.precision) { case (count_is(?i)) { log "prec: count is " + std::int::to_str(i, 10u); } case (count_is_param(?i)) { log "prec: count is param " + std::int::to_str(i, 10u); } case (count_is_next_param) { log "prec: count is next param"; } case (count_implied) { log "prec: count is implied"; } } alt (c.ty) { case (ty_bool) { log "type: bool"; } case (ty_str) { log "type: str"; } case (ty_char) { log "type: char"; } case (ty_int(?s)) { alt (s) { case (signed) { log "type: signed"; } case (unsigned) { log "type: unsigned"; } } } case (ty_bits) { log "type: bits"; } case (ty_hex(?cs)) { alt (cs) { case (case_upper) { log "type: uhex"; } case (case_lower) { log "type: lhex"; } } } case (ty_octal) { log "type: octal"; } } } auto fmt_sp = args.(0).span; auto n = 0u; auto tmp_expr = make_new_str(cx, sp, ""); auto nargs = vec::len[@ast::expr](args); for (piece pc in pieces) { alt (pc) { case (piece_string(?s)) { auto s_expr = make_new_str(cx, fmt_sp, s); tmp_expr = make_add_expr(cx, fmt_sp, tmp_expr, s_expr); } case (piece_conv(?conv)) { n += 1u; if (n >= nargs) { cx.span_fatal(sp, "not enough arguments to #fmt " + "for the given format string"); } log "Building conversion:"; log_conv(conv); auto arg_expr = args.(n); auto c_expr = make_new_conv(cx, fmt_sp, conv, arg_expr); tmp_expr = make_add_expr(cx, fmt_sp, tmp_expr, c_expr); } } } auto expected_nargs = n + 1u; // n conversions + the fmt string if (expected_nargs < nargs) { cx.span_fatal(sp, #fmt("too many arguments to #fmt. found %u, expected %u", nargs, expected_nargs)); } ret tmp_expr; } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // compile-command: "make -k -C $RBUILD 2>&1 | sed -e 's/\\/x\\//x:\\//g'"; // End: //