// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use T = self::inst::T; use char; use cmp::{Eq, Ord}; use cmp; use to_str::ToStr; use from_str::FromStr; use num::{ToStrRadix, FromStrRadix}; use num; use prelude::*; use str; use uint; use vec; use i8; use i16; use i32; pub use cmp::{min, max}; pub const bits : uint = inst::bits; pub const bytes : uint = (inst::bits / 8); pub const min_value: T = (-1 as T) << (bits - 1); pub const max_value: T = min_value - 1 as T; #[inline(always)] pub pure fn add(x: T, y: T) -> T { x + y } #[inline(always)] pub pure fn sub(x: T, y: T) -> T { x - y } #[inline(always)] pub pure fn mul(x: T, y: T) -> T { x * y } #[inline(always)] pub pure fn div(x: T, y: T) -> T { x / y } /** * Returns the remainder of y / x. * * # Examples * ~~~ * assert int::rem(5 / 2) == 1; * ~~~ * * When faced with negative numbers, the result copies the sign of the * dividend. * * ~~~ * assert int::rem(2 / -3) == 2; * ~~~ * * ~~~ * assert int::rem(-2 / 3) == -2; * ~~~ * */ #[inline(always)] pub pure fn rem(x: T, y: T) -> T { x % y } #[inline(always)] pub pure fn lt(x: T, y: T) -> bool { x < y } #[inline(always)] pub pure fn le(x: T, y: T) -> bool { x <= y } #[inline(always)] pub pure fn eq(x: T, y: T) -> bool { x == y } #[inline(always)] pub pure fn ne(x: T, y: T) -> bool { x != y } #[inline(always)] pub pure fn ge(x: T, y: T) -> bool { x >= y } #[inline(always)] pub pure fn gt(x: T, y: T) -> bool { x > y } #[inline(always)] pub pure fn is_positive(x: T) -> bool { x > 0 as T } #[inline(always)] pub pure fn is_negative(x: T) -> bool { x < 0 as T } #[inline(always)] pub pure fn is_nonpositive(x: T) -> bool { x <= 0 as T } #[inline(always)] pub pure fn is_nonnegative(x: T) -> bool { x >= 0 as T } /** * Iterate over the range [`lo`..`hi`) * * # Arguments * * * `lo` - lower bound, inclusive * * `hi` - higher bound, exclusive * * # Examples * ~~~ * let mut sum = 0; * for int::range(1, 5) |i| { * sum += i; * } * assert sum == 10; * ~~~ */ #[inline(always)] /// Iterate over the range [`start`,`start`+`step`..`stop`) pub pure fn range_step(start: T, stop: T, step: T, it: fn(T) -> bool) { let mut i = start; if step == 0 { die!(~"range_step called with step == 0"); } else if step > 0 { // ascending while i < stop { if !it(i) { break } i += step; } } else { // descending while i > stop { if !it(i) { break } i += step; } } } #[inline(always)] /// Iterate over the range [`lo`..`hi`) pub pure fn range(lo: T, hi: T, it: fn(T) -> bool) { range_step(lo, hi, 1 as T, it); } #[inline(always)] /// Iterate over the range [`hi`..`lo`) pub pure fn range_rev(hi: T, lo: T, it: fn(T) -> bool) { range_step(hi, lo, -1 as T, it); } /// Computes the bitwise complement #[inline(always)] pub pure fn compl(i: T) -> T { -1 as T ^ i } /// Computes the absolute value #[inline(always)] pub pure fn abs(i: T) -> T { if is_negative(i) { -i } else { i } } #[cfg(notest)] impl T : Ord { #[inline(always)] pure fn lt(&self, other: &T) -> bool { return (*self) < (*other); } #[inline(always)] pure fn le(&self, other: &T) -> bool { return (*self) <= (*other); } #[inline(always)] pure fn ge(&self, other: &T) -> bool { return (*self) >= (*other); } #[inline(always)] pure fn gt(&self, other: &T) -> bool { return (*self) > (*other); } } #[cfg(notest)] impl T : Eq { #[inline(always)] pure fn eq(&self, other: &T) -> bool { return (*self) == (*other); } #[inline(always)] pure fn ne(&self, other: &T) -> bool { return (*self) != (*other); } } impl T: num::Num { #[inline(always)] pure fn add(&self, other: &T) -> T { return *self + *other; } #[inline(always)] pure fn sub(&self, other: &T) -> T { return *self - *other; } #[inline(always)] pure fn mul(&self, other: &T) -> T { return *self * *other; } #[inline(always)] pure fn div(&self, other: &T) -> T { return *self / *other; } #[inline(always)] pure fn modulo(&self, other: &T) -> T { return *self % *other; } #[inline(always)] pure fn neg(&self) -> T { return -*self; } } impl T: num::Zero { #[inline(always)] static pure fn zero() -> T { 0 } } impl T: num::One { #[inline(always)] static pure fn one() -> T { 1 } } impl T: num::Round { #[inline(always)] pure fn round(&self, _: num::RoundMode) -> T { *self } #[inline(always)] pure fn floor(&self) -> T { *self } #[inline(always)] pure fn ceil(&self) -> T { *self } #[inline(always)] pure fn fract(&self) -> T { 0 } } // String conversion functions and impl str -> num /// Parse a string as a number in base 10. #[inline(always)] pub pure fn from_str(s: &str) -> Option { num::from_str_common(s, 10u, true, false, false, num::ExpNone, false) } /// Parse a string as a number in the given base. #[inline(always)] pub pure fn from_str_radix(s: &str, radix: uint) -> Option { num::from_str_common(s, radix, true, false, false, num::ExpNone, false) } /// Parse a byte slice as a number in the given base. #[inline(always)] pub pure fn parse_bytes(buf: &[u8], radix: uint) -> Option { num::from_str_bytes_common(buf, radix, true, false, false, num::ExpNone, false) } impl T : FromStr { #[inline(always)] static pure fn from_str(s: &str) -> Option { from_str(s) } } impl T : FromStrRadix { #[inline(always)] static pure fn from_str_radix(&self, s: &str, radix: uint) -> Option { from_str_radix(s, radix) } } // String conversion functions and impl num -> str /// Convert to a string as a byte slice in a given base. #[inline(always)] pub pure fn to_str_bytes(n: T, radix: uint, f: fn(v: &[u8]) -> U) -> U { let (buf, _) = num::to_str_bytes_common(&n, radix, false, false, num::SignNeg, num::DigAll); f(buf) } /// Convert to a string in base 10. #[inline(always)] pub pure fn to_str(num: T) -> ~str { let (buf, _) = num::to_str_common(&num, 10u, false, false, num::SignNeg, num::DigAll); buf } /// Convert to a string in a given base. #[inline(always)] pub pure fn to_str_radix(num: T, radix: uint) -> ~str { let (buf, _) = num::to_str_common(&num, radix, false, false, num::SignNeg, num::DigAll); buf } /// Convert to a string. /// *Deprecated*, use to_str() instead. #[inline(always)] pub pure fn str(i: T) -> ~str { to_str(i) } impl T : ToStr { #[inline(always)] pure fn to_str(&self) -> ~str { to_str(*self) } } impl T : ToStrRadix { #[inline(always)] pure fn to_str_radix(&self, radix: uint) -> ~str { to_str_radix(*self, radix) } } #[test] fn test_from_str() { assert from_str(~"0") == Some(0 as T); assert from_str(~"3") == Some(3 as T); assert from_str(~"10") == Some(10 as T); assert i32::from_str(~"123456789") == Some(123456789 as i32); assert from_str(~"00100") == Some(100 as T); assert from_str(~"-1") == Some(-1 as T); assert from_str(~"-3") == Some(-3 as T); assert from_str(~"-10") == Some(-10 as T); assert i32::from_str(~"-123456789") == Some(-123456789 as i32); assert from_str(~"-00100") == Some(-100 as T); assert from_str(~" ").is_none(); assert from_str(~"x").is_none(); } #[test] fn test_parse_bytes() { use str::to_bytes; assert parse_bytes(to_bytes(~"123"), 10u) == Some(123 as T); assert parse_bytes(to_bytes(~"1001"), 2u) == Some(9 as T); assert parse_bytes(to_bytes(~"123"), 8u) == Some(83 as T); assert i32::parse_bytes(to_bytes(~"123"), 16u) == Some(291 as i32); assert i32::parse_bytes(to_bytes(~"ffff"), 16u) == Some(65535 as i32); assert i32::parse_bytes(to_bytes(~"FFFF"), 16u) == Some(65535 as i32); assert parse_bytes(to_bytes(~"z"), 36u) == Some(35 as T); assert parse_bytes(to_bytes(~"Z"), 36u) == Some(35 as T); assert parse_bytes(to_bytes(~"-123"), 10u) == Some(-123 as T); assert parse_bytes(to_bytes(~"-1001"), 2u) == Some(-9 as T); assert parse_bytes(to_bytes(~"-123"), 8u) == Some(-83 as T); assert i32::parse_bytes(to_bytes(~"-123"), 16u) == Some(-291 as i32); assert i32::parse_bytes(to_bytes(~"-ffff"), 16u) == Some(-65535 as i32); assert i32::parse_bytes(to_bytes(~"-FFFF"), 16u) == Some(-65535 as i32); assert parse_bytes(to_bytes(~"-z"), 36u) == Some(-35 as T); assert parse_bytes(to_bytes(~"-Z"), 36u) == Some(-35 as T); assert parse_bytes(to_bytes(~"Z"), 35u).is_none(); assert parse_bytes(to_bytes(~"-9"), 2u).is_none(); } #[test] fn test_to_str() { assert (to_str_radix(0 as T, 10u) == ~"0"); assert (to_str_radix(1 as T, 10u) == ~"1"); assert (to_str_radix(-1 as T, 10u) == ~"-1"); assert (to_str_radix(127 as T, 16u) == ~"7f"); assert (to_str_radix(100 as T, 10u) == ~"100"); } #[test] fn test_int_to_str_overflow() { let mut i8_val: i8 = 127_i8; assert (i8::to_str(i8_val) == ~"127"); i8_val += 1 as i8; assert (i8::to_str(i8_val) == ~"-128"); let mut i16_val: i16 = 32_767_i16; assert (i16::to_str(i16_val) == ~"32767"); i16_val += 1 as i16; assert (i16::to_str(i16_val) == ~"-32768"); let mut i32_val: i32 = 2_147_483_647_i32; assert (i32::to_str(i32_val) == ~"2147483647"); i32_val += 1 as i32; assert (i32::to_str(i32_val) == ~"-2147483648"); let mut i64_val: i64 = 9_223_372_036_854_775_807_i64; assert (i64::to_str(i64_val) == ~"9223372036854775807"); i64_val += 1 as i64; assert (i64::to_str(i64_val) == ~"-9223372036854775808"); } #[test] fn test_int_from_str_overflow() { let mut i8_val: i8 = 127_i8; assert (i8::from_str(~"127") == Some(i8_val)); assert (i8::from_str(~"128").is_none()); i8_val += 1 as i8; assert (i8::from_str(~"-128") == Some(i8_val)); assert (i8::from_str(~"-129").is_none()); let mut i16_val: i16 = 32_767_i16; assert (i16::from_str(~"32767") == Some(i16_val)); assert (i16::from_str(~"32768").is_none()); i16_val += 1 as i16; assert (i16::from_str(~"-32768") == Some(i16_val)); assert (i16::from_str(~"-32769").is_none()); let mut i32_val: i32 = 2_147_483_647_i32; assert (i32::from_str(~"2147483647") == Some(i32_val)); assert (i32::from_str(~"2147483648").is_none()); i32_val += 1 as i32; assert (i32::from_str(~"-2147483648") == Some(i32_val)); assert (i32::from_str(~"-2147483649").is_none()); let mut i64_val: i64 = 9_223_372_036_854_775_807_i64; assert (i64::from_str(~"9223372036854775807") == Some(i64_val)); assert (i64::from_str(~"9223372036854775808").is_none()); i64_val += 1 as i64; assert (i64::from_str(~"-9223372036854775808") == Some(i64_val)); assert (i64::from_str(~"-9223372036854775809").is_none()); } #[test] pub fn test_num() { let ten: T = num::cast(10); let two: T = num::cast(2); assert (ten.add(&two) == num::cast(12)); assert (ten.sub(&two) == num::cast(8)); assert (ten.mul(&two) == num::cast(20)); assert (ten.div(&two) == num::cast(5)); assert (ten.modulo(&two) == num::cast(0)); } #[test] pub fn test_ranges() { let mut l = ~[]; for range(0,3) |i| { l.push(i); } for range_rev(13,10) |i| { l.push(i); } for range_step(20,26,2) |i| { l.push(i); } for range_step(36,30,-2) |i| { l.push(i); } assert l == ~[0,1,2, 13,12,11, 20,22,24, 36,34,32]; // None of the `fail`s should execute. for range(10,0) |_i| { die!(~"unreachable"); } for range_rev(0,10) |_i| { die!(~"unreachable"); } for range_step(10,0,1) |_i| { die!(~"unreachable"); } for range_step(0,10,-1) |_i| { die!(~"unreachable"); } } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_range_step_zero_step() { for range_step(0,10,0) |_i| {} }