// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![allow(non_camel_case_types)] use middle::const_eval::{compare_const_vals, const_bool, const_float, const_nil, const_val}; use middle::const_eval::{eval_const_expr, lookup_const_by_id}; use middle::def::*; use middle::pat_util::*; use middle::ty::*; use middle::ty; use std::gc::{Gc, GC}; use std::iter; use syntax::ast::*; use syntax::ast_util::{is_unguarded, walk_pat}; use syntax::codemap::{Span, Spanned, DUMMY_SP}; use syntax::owned_slice::OwnedSlice; use syntax::print::pprust::pat_to_str; use syntax::visit; use syntax::visit::{Visitor, FnKind}; use util::ppaux::ty_to_str; type Matrix = Vec>>; #[deriving(Clone)] enum Usefulness { Useful(Vec>), NotUseful } enum WitnessPreference { ConstructWitness, LeaveOutWitness } impl Usefulness { fn useful(self) -> Option>> { match self { Useful(pats) => Some(pats), _ => None } } } fn def_to_path(tcx: &ty::ctxt, id: DefId) -> Path { ty::with_path(tcx, id, |mut path| Path { global: false, segments: path.last().map(|elem| PathSegment { identifier: Ident::new(elem.name()), lifetimes: vec!(), types: OwnedSlice::empty() }).move_iter().collect(), span: DUMMY_SP, }) } struct MatchCheckCtxt<'a> { tcx: &'a ty::ctxt, } impl<'a> Visitor<()> for MatchCheckCtxt<'a> { fn visit_expr(&mut self, ex: &Expr, _: ()) { check_expr(self, ex); } fn visit_local(&mut self, l: &Local, _: ()) { check_local(self, l); } fn visit_fn(&mut self, fk: &FnKind, fd: &FnDecl, b: &Block, s: Span, _: NodeId, _: ()) { check_fn(self, fk, fd, b, s); } } pub fn check_crate(tcx: &ty::ctxt, krate: &Crate) { let mut cx = MatchCheckCtxt { tcx: tcx, }; visit::walk_crate(&mut cx, krate, ()); tcx.sess.abort_if_errors(); } fn check_expr(cx: &mut MatchCheckCtxt, ex: &Expr) { visit::walk_expr(cx, ex, ()); match ex.node { ExprMatch(scrut, ref arms) => { // First, check legality of move bindings. for arm in arms.iter() { check_legality_of_move_bindings(cx, arm.guard.is_some(), arm.pats.as_slice()); } // Second, check for unreachable arms. check_arms(cx, arms.as_slice()); // Finally, check if the whole match expression is exhaustive. // Check for empty enum, because is_useful only works on inhabited types. let pat_ty = node_id_to_type(cx.tcx, scrut.id); if (*arms).is_empty() { if !type_is_empty(cx.tcx, pat_ty) { // We know the type is inhabited, so this must be wrong cx.tcx.sess.span_err(ex.span, format!("non-exhaustive patterns: \ type {} is non-empty", ty_to_str(cx.tcx, pat_ty)).as_slice()); } // If the type *is* empty, it's vacuously exhaustive return; } let m: Matrix = arms .iter() .filter(|&arm| is_unguarded(arm)) .flat_map(|arm| arm.pats.iter()) .map(|pat| vec!(pat.clone())) .collect(); check_exhaustive(cx, ex.span, &m); }, _ => () } } // Check for unreachable patterns fn check_arms(cx: &MatchCheckCtxt, arms: &[Arm]) { let mut seen = Vec::new(); for arm in arms.iter() { for pat in arm.pats.iter() { // Check that we do not match against a static NaN (#6804) let pat_matches_nan: |&Pat| -> bool = |p| { let opt_def = cx.tcx.def_map.borrow().find_copy(&p.id); match opt_def { Some(DefStatic(did, false)) => { let const_expr = lookup_const_by_id(cx.tcx, did).unwrap(); match eval_const_expr(cx.tcx, &*const_expr) { const_float(f) if f.is_nan() => true, _ => false } } _ => false } }; walk_pat(&**pat, |p| { if pat_matches_nan(p) { cx.tcx.sess.span_warn(p.span, "unmatchable NaN in pattern, \ use the is_nan method in a guard instead"); } true }); let v = vec!(*pat); match is_useful(cx, &seen, v.as_slice(), LeaveOutWitness) { NotUseful => cx.tcx.sess.span_err(pat.span, "unreachable pattern"), _ => () } if arm.guard.is_none() { seen.push(v); } } } } fn raw_pat(p: Gc) -> Gc { match p.node { PatIdent(_, _, Some(s)) => { raw_pat(s) } _ => { p } } } fn check_exhaustive(cx: &MatchCheckCtxt, sp: Span, m: &Matrix) { match is_useful(cx, m, [wild()], ConstructWitness) { NotUseful => { // This is good, wildcard pattern isn't reachable return; } Useful(pats) => { let witness = match pats.as_slice() { [witness] => witness, [] => wild(), _ => unreachable!() }; let msg = format!("non-exhaustive patterns: `{0}` not covered", pat_to_str(&*witness)); cx.tcx.sess.span_err(sp, msg.as_slice()); } } } #[deriving(Clone, PartialEq)] enum ctor { single, variant(DefId), val(const_val), range(const_val, const_val), vec(uint) } fn const_val_to_expr(value: &const_val) -> Gc { let node = match value { &const_bool(b) => LitBool(b), &const_nil => LitNil, _ => unreachable!() }; box(GC) Expr { id: 0, node: ExprLit(box(GC) Spanned { node: node, span: DUMMY_SP }), span: DUMMY_SP } } fn construct_witness(cx: &MatchCheckCtxt, ctor: &ctor, pats: Vec>, lty: ty::t) -> Gc { let pat = match ty::get(lty).sty { ty::ty_tup(_) => PatTup(pats), ty::ty_enum(cid, _) | ty::ty_struct(cid, _) => { let (vid, is_structure) = match ctor { &variant(vid) => (vid, ty::enum_variant_with_id(cx.tcx, cid, vid).arg_names.is_some()), _ => (cid, true) }; if is_structure { let fields = ty::lookup_struct_fields(cx.tcx, vid); let field_pats = fields.move_iter() .zip(pats.iter()) .map(|(field, pat)| FieldPat { ident: Ident::new(field.name), pat: pat.clone() }).collect(); PatStruct(def_to_path(cx.tcx, vid), field_pats, false) } else { PatEnum(def_to_path(cx.tcx, vid), Some(pats)) } }, ty::ty_rptr(_, ty::mt { ty: ty, .. }) => { match ty::get(ty).sty { ty::ty_vec(_, None) => match ctor { &vec(_) => PatVec(pats, None, vec!()), _ => unreachable!() }, ty::ty_str => PatWild, _ => { assert_eq!(pats.len(), 1); PatRegion(pats.get(0).clone()) } } }, ty::ty_box(_) => { assert_eq!(pats.len(), 1); PatBox(pats.get(0).clone()) }, _ => { match ctor { &vec(_) => PatVec(pats, None, vec!()), &val(ref v) => PatLit(const_val_to_expr(v)), _ => PatWild } } }; box(GC) Pat { id: 0, node: pat, span: DUMMY_SP } } fn missing_constructor(cx: &MatchCheckCtxt, m: &Matrix, left_ty: ty::t) -> Option { let used_constructors: Vec = m.iter() .filter_map(|r| pat_ctor_id(cx, left_ty, *r.get(0))) .collect(); all_constructors(cx, m, left_ty) .move_iter() .find(|c| !used_constructors.contains(c)) } fn all_constructors(cx: &MatchCheckCtxt, m: &Matrix, left_ty: ty::t) -> Vec { // This produces a list of all vector constructors that we would expect to appear // in an exhaustive set of patterns. Because such a list would normally be infinite, // we narrow it down to only those constructors that actually appear in the inspected // column, plus, any that are missing and not covered by a pattern with a destructured slice. fn vec_constructors(m: &Matrix) -> Vec { let max_vec_len = m.iter().map(|r| match r.get(0).node { PatVec(ref before, _, ref after) => before.len() + after.len(), _ => 0u }).max().unwrap_or(0u); let min_vec_len_with_slice = m.iter().map(|r| match r.get(0).node { PatVec(ref before, Some(_), ref after) => before.len() + after.len(), _ => max_vec_len + 1 }).min().unwrap_or(max_vec_len + 1); let other_lengths = m.iter().map(|r| match r.get(0).node { PatVec(ref before, _, ref after) => before.len() + after.len(), _ => 0u }).filter(|&len| len > min_vec_len_with_slice); iter::range_inclusive(0u, min_vec_len_with_slice) .chain(other_lengths) .map(|len| vec(len)) .collect() } match ty::get(left_ty).sty { ty::ty_bool => [true, false].iter().map(|b| val(const_bool(*b))).collect(), ty::ty_nil => vec!(val(const_nil)), ty::ty_rptr(_, ty::mt { ty: ty, .. }) => match ty::get(ty).sty { ty::ty_vec(_, None) => vec_constructors(m), _ => vec!(single) }, ty::ty_enum(eid, _) => ty::enum_variants(cx.tcx, eid) .iter() .map(|va| variant(va.id)) .collect(), ty::ty_vec(_, None) => vec_constructors(m), ty::ty_vec(_, Some(n)) => vec!(vec(n)), _ => vec!(single) } } // Algorithm from http://moscova.inria.fr/~maranget/papers/warn/index.html // // Whether a vector `v` of patterns is 'useful' in relation to a set of such // vectors `m` is defined as there being a set of inputs that will match `v` // but not any of the sets in `m`. // // This is used both for reachability checking (if a pattern isn't useful in // relation to preceding patterns, it is not reachable) and exhaustiveness // checking (if a wildcard pattern is useful in relation to a matrix, the // matrix isn't exhaustive). // Note: is_useful doesn't work on empty types, as the paper notes. // So it assumes that v is non-empty. fn is_useful(cx: &MatchCheckCtxt, m: &Matrix, v: &[Gc], witness: WitnessPreference) -> Usefulness { if m.len() == 0u { return Useful(vec!()); } if m.get(0).len() == 0u { return NotUseful; } let real_pat = match m.iter().find(|r| r.get(0).id != 0) { Some(r) => { match r.get(0).node { // An arm of the form `ref x @ sub_pat` has type // `sub_pat`, not `&sub_pat` as `x` itself does. PatIdent(BindByRef(_), _, Some(sub)) => sub, _ => *r.get(0) } } None if v.len() == 0 => return NotUseful, None => v[0] }; let left_ty = if real_pat.id == 0 { ty::mk_nil() } else { ty::pat_ty(cx.tcx, &*real_pat) }; match pat_ctor_id(cx, left_ty, v[0]) { None => match missing_constructor(cx, m, left_ty) { None => { all_constructors(cx, m, left_ty).move_iter().filter_map(|c| { is_useful_specialized(cx, m, v, c.clone(), left_ty, witness).useful().map(|pats| { Useful(match witness { ConstructWitness => { let arity = constructor_arity(cx, &c, left_ty); let subpats = { let pat_slice = pats.as_slice(); Vec::from_fn(arity, |i| { pat_slice.get(i).map(|p| p.clone()) .unwrap_or_else(|| wild()) }) }; let mut result = vec!(construct_witness(cx, &c, subpats, left_ty)); result.extend(pats.move_iter().skip(arity)); result } LeaveOutWitness => vec!() }) }) }).nth(0).unwrap_or(NotUseful) }, Some(ctor) => { let matrix = m.iter().filter_map(|r| default(cx, r.as_slice())).collect(); match is_useful(cx, &matrix, v.tail(), witness) { Useful(pats) => Useful(match witness { ConstructWitness => { let arity = constructor_arity(cx, &ctor, left_ty); let wild_pats = Vec::from_elem(arity, wild()); let enum_pat = construct_witness(cx, &ctor, wild_pats, left_ty); (vec!(enum_pat)).append(pats.as_slice()) } LeaveOutWitness => vec!() }), result => result } } }, Some(v0_ctor) => is_useful_specialized(cx, m, v, v0_ctor, left_ty, witness) } } fn is_useful_specialized(cx: &MatchCheckCtxt, m: &Matrix, v: &[Gc], ctor: ctor, lty: ty::t, witness: WitnessPreference) -> Usefulness { let arity = constructor_arity(cx, &ctor, lty); let matrix = m.iter().filter_map(|r| { specialize(cx, r.as_slice(), &ctor, arity) }).collect(); match specialize(cx, v, &ctor, arity) { Some(v) => is_useful(cx, &matrix, v.as_slice(), witness), None => NotUseful } } fn pat_ctor_id(cx: &MatchCheckCtxt, left_ty: ty::t, p: Gc) -> Option { let pat = raw_pat(p); match pat.node { PatIdent(..) => match cx.tcx.def_map.borrow().find(&pat.id) { Some(&DefStatic(did, false)) => { let const_expr = lookup_const_by_id(cx.tcx, did).unwrap(); Some(val(eval_const_expr(cx.tcx, &*const_expr))) }, Some(&DefVariant(_, id, _)) => Some(variant(id)), _ => None }, PatEnum(..) => match cx.tcx.def_map.borrow().find(&pat.id) { Some(&DefStatic(did, false)) => { let const_expr = lookup_const_by_id(cx.tcx, did).unwrap(); Some(val(eval_const_expr(cx.tcx, &*const_expr))) }, Some(&DefVariant(_, id, _)) => Some(variant(id)), _ => Some(single) }, PatStruct(..) => match cx.tcx.def_map.borrow().find(&pat.id) { Some(&DefVariant(_, id, _)) => Some(variant(id)), _ => Some(single) }, PatLit(expr) => Some(val(eval_const_expr(cx.tcx, &*expr))), PatRange(lo, hi) => Some(range(eval_const_expr(cx.tcx, &*lo), eval_const_expr(cx.tcx, &*hi))), PatVec(ref before, _, ref after) => match ty::get(left_ty).sty { ty::ty_vec(_, Some(n)) => Some(vec(n)), _ => Some(vec(before.len() + after.len())) }, PatBox(_) | PatTup(_) | PatRegion(..) => Some(single), PatWild | PatWildMulti => None, PatMac(_) => cx.tcx.sess.bug("unexpanded macro") } } fn is_wild(cx: &MatchCheckCtxt, p: Gc) -> bool { let pat = raw_pat(p); match pat.node { PatWild | PatWildMulti => true, PatIdent(_, _, _) => { match cx.tcx.def_map.borrow().find(&pat.id) { Some(&DefVariant(_, _, _)) | Some(&DefStatic(..)) => false, _ => true } } _ => false } } fn constructor_arity(cx: &MatchCheckCtxt, ctor: &ctor, ty: ty::t) -> uint { match ty::get(ty).sty { ty::ty_tup(ref fs) => fs.len(), ty::ty_box(_) | ty::ty_uniq(_) => 1u, ty::ty_rptr(_, ty::mt { ty: ty, .. }) => match ty::get(ty).sty { ty::ty_vec(_, None) => match *ctor { vec(n) => n, _ => 0u }, ty::ty_str => 0u, _ => 1u }, ty::ty_enum(eid, _) => { match *ctor { variant(id) => enum_variant_with_id(cx.tcx, eid, id).args.len(), _ => unreachable!() } } ty::ty_struct(cid, _) => ty::lookup_struct_fields(cx.tcx, cid).len(), ty::ty_vec(_, _) => match *ctor { vec(n) => n, _ => 0u }, _ => 0u } } fn wild() -> Gc { box(GC) Pat {id: 0, node: PatWild, span: DUMMY_SP} } fn range_covered_by_constructor(ctor_id: &ctor, from: &const_val, to: &const_val) -> Option { let (c_from, c_to) = match *ctor_id { val(ref value) => (value, value), range(ref from, ref to) => (from, to), single => return Some(true), _ => unreachable!() }; let cmp_from = compare_const_vals(c_from, from); let cmp_to = compare_const_vals(c_to, to); match (cmp_from, cmp_to) { (Some(val1), Some(val2)) => Some(val1 >= 0 && val2 <= 0), _ => None } } fn specialize(cx: &MatchCheckCtxt, r: &[Gc], ctor_id: &ctor, arity: uint) -> Option>> { let &Pat { id: ref pat_id, node: ref n, span: ref pat_span } = &(*raw_pat(r[0])); let head: Option>> = match n { &PatWild => { Some(Vec::from_elem(arity, wild())) } &PatWildMulti => { Some(Vec::from_elem(arity, wild())) } &PatIdent(_, _, _) => { let opt_def = cx.tcx.def_map.borrow().find_copy(pat_id); match opt_def { Some(DefVariant(_, id, _)) => if *ctor_id == variant(id) { Some(vec!()) } else { None }, Some(DefStatic(did, _)) => { let const_expr = lookup_const_by_id(cx.tcx, did).unwrap(); let e_v = eval_const_expr(cx.tcx, &*const_expr); match range_covered_by_constructor(ctor_id, &e_v, &e_v) { Some(true) => Some(vec!()), Some(false) => None, None => { cx.tcx.sess.span_err(*pat_span, "mismatched types between arms"); None } } } _ => { Some(Vec::from_elem(arity, wild())) } } } &PatEnum(_, ref args) => { let def = cx.tcx.def_map.borrow().get_copy(pat_id); match def { DefStatic(did, _) => { let const_expr = lookup_const_by_id(cx.tcx, did).unwrap(); let e_v = eval_const_expr(cx.tcx, &*const_expr); match range_covered_by_constructor(ctor_id, &e_v, &e_v) { Some(true) => Some(vec!()), Some(false) => None, None => { cx.tcx.sess.span_err(*pat_span, "mismatched types between arms"); None } } } DefVariant(_, id, _) if *ctor_id != variant(id) => None, DefVariant(..) | DefFn(..) | DefStruct(..) => { Some(match args { &Some(ref args) => args.clone(), &None => Vec::from_elem(arity, wild()) }) } _ => None } } &PatStruct(_, ref pattern_fields, _) => { // Is this a struct or an enum variant? let def = cx.tcx.def_map.borrow().get_copy(pat_id); let class_id = match def { DefVariant(_, variant_id, _) => if *ctor_id == variant(variant_id) { Some(variant_id) } else { None }, DefStruct(struct_id) => Some(struct_id), _ => None }; class_id.map(|variant_id| { let struct_fields = ty::lookup_struct_fields(cx.tcx, variant_id); let args = struct_fields.iter().map(|sf| { match pattern_fields.iter().find(|f| f.ident.name == sf.name) { Some(f) => f.pat, _ => wild() } }).collect(); args }) } &PatTup(ref args) => Some(args.clone()), &PatBox(ref inner) | &PatRegion(ref inner) => Some(vec!(inner.clone())), &PatLit(ref expr) => { let expr_value = eval_const_expr(cx.tcx, &**expr); match range_covered_by_constructor(ctor_id, &expr_value, &expr_value) { Some(true) => Some(vec!()), Some(false) => None, None => { cx.tcx.sess.span_err(*pat_span, "mismatched types between arms"); None } } } &PatRange(ref from, ref to) => { let from_value = eval_const_expr(cx.tcx, &**from); let to_value = eval_const_expr(cx.tcx, &**to); match range_covered_by_constructor(ctor_id, &from_value, &to_value) { Some(true) => Some(vec!()), Some(false) => None, None => { cx.tcx.sess.span_err(*pat_span, "mismatched types between arms"); None } } } &PatVec(ref before, ref slice, ref after) => { match *ctor_id { vec(_) => { let num_elements = before.len() + after.len(); if num_elements < arity && slice.is_some() { let mut result = Vec::new(); result.push_all(before.as_slice()); result.grow_fn(arity - num_elements, |_| wild()); result.push_all(after.as_slice()); Some(result) } else if num_elements == arity { let mut result = Vec::new(); result.push_all(before.as_slice()); result.push_all(after.as_slice()); Some(result) } else { None } } _ => None } } &PatMac(_) => { cx.tcx.sess.span_err(*pat_span, "unexpanded macro"); None } }; head.map(|head| head.append(r.tail())) } fn default(cx: &MatchCheckCtxt, r: &[Gc]) -> Option>> { if is_wild(cx, r[0]) { Some(Vec::from_slice(r.tail())) } else { None } } fn check_local(cx: &mut MatchCheckCtxt, loc: &Local) { visit::walk_local(cx, loc, ()); let name = match loc.source { LocalLet => "local", LocalFor => "`for` loop" }; match is_refutable(cx, loc.pat) { Some(pat) => { let msg = format!( "refutable pattern in {} binding: `{}` not covered", name, pat_to_str(&*pat) ); cx.tcx.sess.span_err(loc.pat.span, msg.as_slice()); }, None => () } // Check legality of move bindings. check_legality_of_move_bindings(cx, false, [ loc.pat ]); } fn check_fn(cx: &mut MatchCheckCtxt, kind: &FnKind, decl: &FnDecl, body: &Block, sp: Span) { visit::walk_fn(cx, kind, decl, body, sp, ()); for input in decl.inputs.iter() { match is_refutable(cx, input.pat) { Some(pat) => { let msg = format!( "refutable pattern in function argument: `{}` not covered", pat_to_str(&*pat) ); cx.tcx.sess.span_err(input.pat.span, msg.as_slice()); }, None => () } } } fn is_refutable(cx: &MatchCheckCtxt, pat: Gc) -> Option> { let pats = vec!(vec!(pat)); is_useful(cx, &pats, [wild()], ConstructWitness) .useful() .map(|pats| { assert_eq!(pats.len(), 1); pats.get(0).clone() }) } // Legality of move bindings checking fn check_legality_of_move_bindings(cx: &MatchCheckCtxt, has_guard: bool, pats: &[Gc]) { let tcx = cx.tcx; let def_map = &tcx.def_map; let mut by_ref_span = None; for pat in pats.iter() { pat_bindings(def_map, &**pat, |bm, _, span, _path| { match bm { BindByRef(_) => { by_ref_span = Some(span); } BindByValue(_) => { } } }) } let check_move: |&Pat, Option>| = |p, sub| { // check legality of moving out of the enum // x @ Foo(..) is legal, but x @ Foo(y) isn't. if sub.map_or(false, |p| pat_contains_bindings(def_map, &*p)) { tcx.sess.span_err( p.span, "cannot bind by-move with sub-bindings"); } else if has_guard { tcx.sess.span_err( p.span, "cannot bind by-move into a pattern guard"); } else if by_ref_span.is_some() { tcx.sess.span_err( p.span, "cannot bind by-move and by-ref \ in the same pattern"); tcx.sess.span_note( by_ref_span.unwrap(), "by-ref binding occurs here"); } }; for pat in pats.iter() { walk_pat(&**pat, |p| { if pat_is_binding(def_map, &*p) { match p.node { PatIdent(BindByValue(_), _, sub) => { let pat_ty = ty::node_id_to_type(tcx, p.id); if ty::type_moves_by_default(tcx, pat_ty) { check_move(p, sub); } } PatIdent(BindByRef(_), _, _) => { } _ => { cx.tcx.sess.span_bug( p.span, format!("binding pattern {} is not an \ identifier: {:?}", p.id, p.node).as_slice()); } } } true }); } }