//! calculate cognitive complexity and warn about overly complex functions use rustc_ast::ast::Attribute; use rustc_hir::intravisit::{walk_expr, FnKind, NestedVisitorMap, Visitor}; use rustc_hir::{Body, Expr, ExprKind, FnDecl, HirId}; use rustc_lint::{LateContext, LateLintPass, LintContext}; use rustc_middle::hir::map::Map; use rustc_session::{declare_tool_lint, impl_lint_pass}; use rustc_span::source_map::Span; use rustc_span::BytePos; use crate::utils::{is_type_diagnostic_item, snippet_opt, span_lint_and_help, LimitStack}; declare_clippy_lint! { /// **What it does:** Checks for methods with high cognitive complexity. /// /// **Why is this bad?** Methods of high cognitive complexity tend to be hard to /// both read and maintain. Also LLVM will tend to optimize small methods better. /// /// **Known problems:** Sometimes it's hard to find a way to reduce the /// complexity. /// /// **Example:** No. You'll see it when you get the warning. pub COGNITIVE_COMPLEXITY, nursery, "functions that should be split up into multiple functions" } pub struct CognitiveComplexity { limit: LimitStack, } impl CognitiveComplexity { #[must_use] pub fn new(limit: u64) -> Self { Self { limit: LimitStack::new(limit), } } } impl_lint_pass!(CognitiveComplexity => [COGNITIVE_COMPLEXITY]); impl CognitiveComplexity { #[allow(clippy::cast_possible_truncation)] fn check<'tcx>( &mut self, cx: &LateContext<'tcx>, kind: FnKind<'tcx>, decl: &'tcx FnDecl<'_>, body: &'tcx Body<'_>, body_span: Span, ) { if body_span.from_expansion() { return; } let expr = &body.value; let mut helper = CCHelper { cc: 1, returns: 0 }; helper.visit_expr(expr); let CCHelper { cc, returns } = helper; let ret_ty = cx.typeck_results().node_type(expr.hir_id); let ret_adjust = if is_type_diagnostic_item(cx, ret_ty, sym!(result_type)) { returns } else { #[allow(clippy::integer_division)] (returns / 2) }; let mut rust_cc = cc; // prevent degenerate cases where unreachable code contains `return` statements if rust_cc >= ret_adjust { rust_cc -= ret_adjust; } if rust_cc > self.limit.limit() { let fn_span = match kind { FnKind::ItemFn(ident, _, _, _, _) | FnKind::Method(ident, _, _, _) => ident.span, FnKind::Closure(_) => { let header_span = body_span.with_hi(decl.output.span().lo()); let pos = snippet_opt(cx, header_span).and_then(|snip| { let low_offset = snip.find('|')?; let high_offset = 1 + snip.get(low_offset + 1..)?.find('|')?; let low = header_span.lo() + BytePos(low_offset as u32); let high = low + BytePos(high_offset as u32 + 1); Some((low, high)) }); if let Some((low, high)) = pos { Span::new(low, high, header_span.ctxt()) } else { return; } }, }; span_lint_and_help( cx, COGNITIVE_COMPLEXITY, fn_span, &format!( "the function has a cognitive complexity of ({}/{})", rust_cc, self.limit.limit() ), None, "you could split it up into multiple smaller functions", ); } } } impl<'tcx> LateLintPass<'tcx> for CognitiveComplexity { fn check_fn( &mut self, cx: &LateContext<'tcx>, kind: FnKind<'tcx>, decl: &'tcx FnDecl<'_>, body: &'tcx Body<'_>, span: Span, hir_id: HirId, ) { let def_id = cx.tcx.hir().local_def_id(hir_id); if !cx.tcx.has_attr(def_id.to_def_id(), sym!(test)) { self.check(cx, kind, decl, body, span); } } fn enter_lint_attrs(&mut self, cx: &LateContext<'tcx>, attrs: &'tcx [Attribute]) { self.limit.push_attrs(cx.sess(), attrs, "cognitive_complexity"); } fn exit_lint_attrs(&mut self, cx: &LateContext<'tcx>, attrs: &'tcx [Attribute]) { self.limit.pop_attrs(cx.sess(), attrs, "cognitive_complexity"); } } struct CCHelper { cc: u64, returns: u64, } impl<'tcx> Visitor<'tcx> for CCHelper { type Map = Map<'tcx>; fn visit_expr(&mut self, e: &'tcx Expr<'_>) { walk_expr(self, e); match e.kind { ExprKind::Match(_, ref arms, _) => { if arms.len() > 1 { self.cc += 1; } self.cc += arms.iter().filter(|arm| arm.guard.is_some()).count() as u64; }, ExprKind::Ret(_) => self.returns += 1, _ => {}, } } fn nested_visit_map(&mut self) -> NestedVisitorMap { NestedVisitorMap::None } }