use rustc_ast::InlineAsmTemplatePiece; use rustc_data_structures::fx::FxHashSet; use rustc_hir as hir; use rustc_middle::ty::{self, Article, FloatTy, IntTy, Ty, TyCtxt, TypeVisitable, UintTy}; use rustc_session::lint; use rustc_span::{Symbol, DUMMY_SP}; use rustc_target::asm::{InlineAsmReg, InlineAsmRegClass, InlineAsmRegOrRegClass, InlineAsmType}; pub struct InlineAsmCtxt<'a, 'tcx> { tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, get_operand_ty: Box) -> Ty<'tcx> + 'a>, } impl<'a, 'tcx> InlineAsmCtxt<'a, 'tcx> { pub fn new_global_asm(tcx: TyCtxt<'tcx>) -> Self { InlineAsmCtxt { tcx, param_env: ty::ParamEnv::empty(), get_operand_ty: Box::new(|e| bug!("asm operand in global asm: {e:?}")), } } pub fn new_in_fn( tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, get_operand_ty: impl Fn(&'tcx hir::Expr<'tcx>) -> Ty<'tcx> + 'a, ) -> Self { InlineAsmCtxt { tcx, param_env, get_operand_ty: Box::new(get_operand_ty) } } // FIXME(compiler-errors): This could use `<$ty as Pointee>::Metadata == ()` fn is_thin_ptr_ty(&self, ty: Ty<'tcx>) -> bool { // Type still may have region variables, but `Sized` does not depend // on those, so just erase them before querying. if ty.is_sized(self.tcx, self.param_env) { return true; } if let ty::Foreign(..) = ty.kind() { return true; } false } fn check_asm_operand_type( &self, idx: usize, reg: InlineAsmRegOrRegClass, expr: &'tcx hir::Expr<'tcx>, template: &[InlineAsmTemplatePiece], is_input: bool, tied_input: Option<(&'tcx hir::Expr<'tcx>, Option)>, target_features: &FxHashSet, ) -> Option { let ty = (self.get_operand_ty)(expr); if ty.has_non_region_infer() { bug!("inference variable in asm operand ty: {:?} {:?}", expr, ty); } let asm_ty_isize = match self.tcx.sess.target.pointer_width { 16 => InlineAsmType::I16, 32 => InlineAsmType::I32, 64 => InlineAsmType::I64, _ => unreachable!(), }; let asm_ty = match *ty.kind() { // `!` is allowed for input but not for output (issue #87802) ty::Never if is_input => return None, ty::Error(_) => return None, ty::Int(IntTy::I8) | ty::Uint(UintTy::U8) => Some(InlineAsmType::I8), ty::Int(IntTy::I16) | ty::Uint(UintTy::U16) => Some(InlineAsmType::I16), ty::Int(IntTy::I32) | ty::Uint(UintTy::U32) => Some(InlineAsmType::I32), ty::Int(IntTy::I64) | ty::Uint(UintTy::U64) => Some(InlineAsmType::I64), ty::Int(IntTy::I128) | ty::Uint(UintTy::U128) => Some(InlineAsmType::I128), ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize) => Some(asm_ty_isize), ty::Float(FloatTy::F32) => Some(InlineAsmType::F32), ty::Float(FloatTy::F64) => Some(InlineAsmType::F64), ty::FnPtr(_) => Some(asm_ty_isize), ty::RawPtr(ty::TypeAndMut { ty, mutbl: _ }) if self.is_thin_ptr_ty(ty) => { Some(asm_ty_isize) } ty::Adt(adt, substs) if adt.repr().simd() => { let fields = &adt.non_enum_variant().fields; let elem_ty = fields[0].ty(self.tcx, substs); match elem_ty.kind() { ty::Never | ty::Error(_) => return None, ty::Int(IntTy::I8) | ty::Uint(UintTy::U8) => { Some(InlineAsmType::VecI8(fields.len() as u64)) } ty::Int(IntTy::I16) | ty::Uint(UintTy::U16) => { Some(InlineAsmType::VecI16(fields.len() as u64)) } ty::Int(IntTy::I32) | ty::Uint(UintTy::U32) => { Some(InlineAsmType::VecI32(fields.len() as u64)) } ty::Int(IntTy::I64) | ty::Uint(UintTy::U64) => { Some(InlineAsmType::VecI64(fields.len() as u64)) } ty::Int(IntTy::I128) | ty::Uint(UintTy::U128) => { Some(InlineAsmType::VecI128(fields.len() as u64)) } ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize) => { Some(match self.tcx.sess.target.pointer_width { 16 => InlineAsmType::VecI16(fields.len() as u64), 32 => InlineAsmType::VecI32(fields.len() as u64), 64 => InlineAsmType::VecI64(fields.len() as u64), _ => unreachable!(), }) } ty::Float(FloatTy::F32) => Some(InlineAsmType::VecF32(fields.len() as u64)), ty::Float(FloatTy::F64) => Some(InlineAsmType::VecF64(fields.len() as u64)), _ => None, } } ty::Infer(_) => unreachable!(), _ => None, }; let Some(asm_ty) = asm_ty else { let msg = &format!("cannot use value of type `{ty}` for inline assembly"); let mut err = self.tcx.sess.struct_span_err(expr.span, msg); err.note( "only integers, floats, SIMD vectors, pointers and function pointers \ can be used as arguments for inline assembly", ); err.emit(); return None; }; // Check that the type implements Copy. The only case where this can // possibly fail is for SIMD types which don't #[derive(Copy)]. if !ty.is_copy_modulo_regions(self.tcx, self.param_env) { let msg = "arguments for inline assembly must be copyable"; let mut err = self.tcx.sess.struct_span_err(expr.span, msg); err.note(&format!("`{ty}` does not implement the Copy trait")); err.emit(); } // Ideally we wouldn't need to do this, but LLVM's register allocator // really doesn't like it when tied operands have different types. // // This is purely an LLVM limitation, but we have to live with it since // there is no way to hide this with implicit conversions. // // For the purposes of this check we only look at the `InlineAsmType`, // which means that pointers and integers are treated as identical (modulo // size). if let Some((in_expr, Some(in_asm_ty))) = tied_input { if in_asm_ty != asm_ty { let msg = "incompatible types for asm inout argument"; let mut err = self.tcx.sess.struct_span_err(vec![in_expr.span, expr.span], msg); let in_expr_ty = (self.get_operand_ty)(in_expr); err.span_label(in_expr.span, &format!("type `{in_expr_ty}`")); err.span_label(expr.span, &format!("type `{ty}`")); err.note( "asm inout arguments must have the same type, \ unless they are both pointers or integers of the same size", ); err.emit(); } // All of the later checks have already been done on the input, so // let's not emit errors and warnings twice. return Some(asm_ty); } // Check the type against the list of types supported by the selected // register class. let asm_arch = self.tcx.sess.asm_arch.unwrap(); let reg_class = reg.reg_class(); let supported_tys = reg_class.supported_types(asm_arch); let Some((_, feature)) = supported_tys.iter().find(|&&(t, _)| t == asm_ty) else { let msg = &format!("type `{ty}` cannot be used with this register class"); let mut err = self.tcx.sess.struct_span_err(expr.span, msg); let supported_tys: Vec<_> = supported_tys.iter().map(|(t, _)| t.to_string()).collect(); err.note(&format!( "register class `{}` supports these types: {}", reg_class.name(), supported_tys.join(", "), )); if let Some(suggest) = reg_class.suggest_class(asm_arch, asm_ty) { err.help(&format!( "consider using the `{}` register class instead", suggest.name() )); } err.emit(); return Some(asm_ty); }; // Check whether the selected type requires a target feature. Note that // this is different from the feature check we did earlier. While the // previous check checked that this register class is usable at all // with the currently enabled features, some types may only be usable // with a register class when a certain feature is enabled. We check // this here since it depends on the results of typeck. // // Also note that this check isn't run when the operand type is never // (!). In that case we still need the earlier check to verify that the // register class is usable at all. if let Some(feature) = feature { if !target_features.contains(&feature) { let msg = &format!("`{}` target feature is not enabled", feature); let mut err = self.tcx.sess.struct_span_err(expr.span, msg); err.note(&format!( "this is required to use type `{}` with register class `{}`", ty, reg_class.name(), )); err.emit(); return Some(asm_ty); } } // Check whether a modifier is suggested for using this type. if let Some((suggested_modifier, suggested_result)) = reg_class.suggest_modifier(asm_arch, asm_ty) { // Search for any use of this operand without a modifier and emit // the suggestion for them. let mut spans = vec![]; for piece in template { if let &InlineAsmTemplatePiece::Placeholder { operand_idx, modifier, span } = piece { if operand_idx == idx && modifier.is_none() { spans.push(span); } } } if !spans.is_empty() { let (default_modifier, default_result) = reg_class.default_modifier(asm_arch).unwrap(); self.tcx.struct_span_lint_hir( lint::builtin::ASM_SUB_REGISTER, expr.hir_id, spans, "formatting may not be suitable for sub-register argument", |lint| { lint.span_label(expr.span, "for this argument"); lint.help(&format!( "use `{{{idx}:{suggested_modifier}}}` to have the register formatted as `{suggested_result}`", )); lint.help(&format!( "or use `{{{idx}:{default_modifier}}}` to keep the default formatting of `{default_result}`", )); lint }, ); } } Some(asm_ty) } pub fn check_asm(&self, asm: &hir::InlineAsm<'tcx>, enclosing_id: hir::HirId) { let hir = self.tcx.hir(); let enclosing_def_id = hir.local_def_id(enclosing_id).to_def_id(); let target_features = self.tcx.asm_target_features(enclosing_def_id); let Some(asm_arch) = self.tcx.sess.asm_arch else { self.tcx.sess.delay_span_bug(DUMMY_SP, "target architecture does not support asm"); return; }; for (idx, (op, op_sp)) in asm.operands.iter().enumerate() { // Validate register classes against currently enabled target // features. We check that at least one type is available for // the enabled features. // // We ignore target feature requirements for clobbers: if the // feature is disabled then the compiler doesn't care what we // do with the registers. // // Note that this is only possible for explicit register // operands, which cannot be used in the asm string. if let Some(reg) = op.reg() { // Some explicit registers cannot be used depending on the // target. Reject those here. if let InlineAsmRegOrRegClass::Reg(reg) = reg { if let InlineAsmReg::Err = reg { // `validate` will panic on `Err`, as an error must // already have been reported. continue; } if let Err(msg) = reg.validate( asm_arch, self.tcx.sess.relocation_model(), &target_features, &self.tcx.sess.target, op.is_clobber(), ) { let msg = format!("cannot use register `{}`: {}", reg.name(), msg); self.tcx.sess.struct_span_err(*op_sp, &msg).emit(); continue; } } if !op.is_clobber() { let mut missing_required_features = vec![]; let reg_class = reg.reg_class(); if let InlineAsmRegClass::Err = reg_class { continue; } for &(_, feature) in reg_class.supported_types(asm_arch) { match feature { Some(feature) => { if target_features.contains(&feature) { missing_required_features.clear(); break; } else { missing_required_features.push(feature); } } None => { missing_required_features.clear(); break; } } } // We are sorting primitive strs here and can use unstable sort here missing_required_features.sort_unstable(); missing_required_features.dedup(); match &missing_required_features[..] { [] => {} [feature] => { let msg = format!( "register class `{}` requires the `{}` target feature", reg_class.name(), feature ); self.tcx.sess.struct_span_err(*op_sp, &msg).emit(); // register isn't enabled, don't do more checks continue; } features => { let msg = format!( "register class `{}` requires at least one of the following target features: {}", reg_class.name(), features .iter() .map(|f| f.as_str()) .intersperse(", ") .collect::(), ); self.tcx.sess.struct_span_err(*op_sp, &msg).emit(); // register isn't enabled, don't do more checks continue; } } } } match *op { hir::InlineAsmOperand::In { reg, ref expr } => { self.check_asm_operand_type( idx, reg, expr, asm.template, true, None, &target_features, ); } hir::InlineAsmOperand::Out { reg, late: _, ref expr } => { if let Some(expr) = expr { self.check_asm_operand_type( idx, reg, expr, asm.template, false, None, &target_features, ); } } hir::InlineAsmOperand::InOut { reg, late: _, ref expr } => { self.check_asm_operand_type( idx, reg, expr, asm.template, false, None, &target_features, ); } hir::InlineAsmOperand::SplitInOut { reg, late: _, ref in_expr, ref out_expr } => { let in_ty = self.check_asm_operand_type( idx, reg, in_expr, asm.template, true, None, &target_features, ); if let Some(out_expr) = out_expr { self.check_asm_operand_type( idx, reg, out_expr, asm.template, false, Some((in_expr, in_ty)), &target_features, ); } } // No special checking is needed for these: // - Typeck has checked that Const operands are integers. // - AST lowering guarantees that SymStatic points to a static. hir::InlineAsmOperand::Const { .. } | hir::InlineAsmOperand::SymStatic { .. } => {} // Check that sym actually points to a function. Later passes // depend on this. hir::InlineAsmOperand::SymFn { anon_const } => { let ty = self.tcx.typeck_body(anon_const.body).node_type(anon_const.hir_id); match ty.kind() { ty::Never | ty::Error(_) => {} ty::FnDef(..) => {} _ => { let mut err = self.tcx.sess.struct_span_err(*op_sp, "invalid `sym` operand"); err.span_label( self.tcx.hir().span(anon_const.body.hir_id), &format!("is {} `{}`", ty.kind().article(), ty), ); err.help("`sym` operands must refer to either a function or a static"); err.emit(); } }; } } } } }