// The Rust abstract syntax tree. import option; import codemap::{span, filename}; type spanned = {node: T, span: span}; type ident = str; // Functions may or may not have names. type fn_ident = option::t; // FIXME: with typestate constraint, could say // idents and types are the same length, and are // non-empty type path_ = {global: bool, idents: [ident], types: [@ty]}; type path = spanned; type crate_num = int; type node_id = int; type def_id = {crate: crate_num, node: node_id}; const local_crate: crate_num = 0; const crate_node_id: node_id = 0; tag ty_param_bound { bound_copy; bound_send; bound_iface(@ty); } type ty_param = {ident: ident, id: node_id, bounds: @[ty_param_bound]}; tag def { def_fn(def_id, purity); def_self(def_id); def_mod(def_id); def_native_mod(def_id); def_const(def_id); def_arg(def_id, mode); def_local(def_id, let_style); def_variant(def_id /* tag */, def_id /* variant */); def_ty(def_id); def_ty_param(def_id, uint); def_binding(def_id); def_use(def_id); def_native_ty(def_id); def_native_fn(def_id, purity); def_upvar(def_id, @def, node_id); // node_id == expr_fn or expr_fn_block } // The set of meta_items that define the compilation environment of the crate, // used to drive conditional compilation type crate_cfg = [@meta_item]; type crate = spanned; type crate_ = {directives: [@crate_directive], module: _mod, attrs: [attribute], config: crate_cfg}; tag crate_directive_ { cdir_src_mod(ident, [attribute]); cdir_dir_mod(ident, [@crate_directive], [attribute]); // NB: cdir_view_item is *not* processed by the rest of the compiler; the // attached view_items are sunk into the crate's module during parsing, // and processed (resolved, imported, etc.) there. This tag-variant exists // only to preserve the view items in order in case we decide to // pretty-print crates in the future. cdir_view_item(@view_item); cdir_syntax(@path); } type crate_directive = spanned; type meta_item = spanned; tag meta_item_ { meta_word(ident); meta_list(ident, [@meta_item]); meta_name_value(ident, lit); } type blk = spanned; type blk_ = {view_items: [@view_item], stmts: [@stmt], expr: option::t<@expr>, id: node_id, rules: blk_check_mode}; type pat = {id: node_id, node: pat_, span: span}; type field_pat = {ident: ident, pat: @pat}; tag pat_ { pat_wild; // A pat_ident may either be a new bound variable, // or a nullary tag (in which case the second field // is none). // In the nullary tag case, the parser can't determine // which it is. The resolver determines this, and // records this pattern's node_id in an auxiliary // set (of "pat_idents that refer to nullary tags") // After the resolution phase, code should never pattern- // match on a pat directly! Always call pat_util::normalize_pat -- // it turns any pat_idents that refer to nullary tags into pat_tags. pat_ident(@path, option::t<@pat>); pat_tag(@path, [@pat]); pat_rec([field_pat], bool); pat_tup([@pat]); pat_box(@pat); pat_uniq(@pat); pat_lit(@expr); pat_range(@expr, @expr); } tag mutability { mut; imm; maybe_mut; } tag proto { proto_bare; // native fn proto_any; // fn proto_uniq; // fn~ proto_box; // fn@ proto_block; // fn& } pure fn is_blockish(p: ast::proto) -> bool { alt p { proto_any. | proto_block. { true } proto_bare. | proto_uniq. | proto_box. { false } } } tag binop { add; subtract; mul; div; rem; and; or; bitxor; bitand; bitor; lsl; lsr; asr; eq; lt; le; ne; ge; gt; } tag unop { box(mutability); uniq(mutability); deref; not; neg; } tag mode { by_ref; by_val; by_mut_ref; by_move; by_copy; mode_infer; } type stmt = spanned; tag stmt_ { stmt_decl(@decl, node_id); // expr without trailing semi-colon (must have unit type): stmt_expr(@expr, node_id); // expr with trailing semi-colon (may have any type): stmt_semi(@expr, node_id); } tag init_op { init_assign; init_move; } type initializer = {op: init_op, expr: @expr}; type local_ = // FIXME: should really be a refinement on pat {ty: @ty, pat: @pat, init: option::t, id: node_id}; type local = spanned; type decl = spanned; tag let_style { let_copy; let_ref; } tag decl_ { decl_local([(let_style, @local)]); decl_item(@item); } type arm = {pats: [@pat], guard: option::t<@expr>, body: blk}; type field_ = {mut: mutability, ident: ident, expr: @expr}; type field = spanned; tag blk_check_mode { default_blk; unchecked_blk; unsafe_blk; } tag expr_check_mode { claimed_expr; checked_expr; } type expr = {id: node_id, node: expr_, span: span}; tag expr_ { expr_vec([@expr], mutability); expr_rec([field], option::t<@expr>); expr_call(@expr, [@expr], bool); expr_tup([@expr]); expr_bind(@expr, [option::t<@expr>]); expr_binary(binop, @expr, @expr); expr_unary(unop, @expr); expr_lit(@lit); expr_cast(@expr, @ty); expr_if(@expr, blk, option::t<@expr>); expr_ternary(@expr, @expr, @expr); expr_while(@expr, blk); expr_for(@local, @expr, blk); expr_do_while(blk, @expr); expr_alt(@expr, [arm]); expr_fn(proto, fn_decl, blk, @capture_clause); expr_fn_block(fn_decl, blk); expr_block(blk); /* * FIXME: many of these @exprs should be constrained with * is_lval once we have constrained types working. */ expr_copy(@expr); expr_move(@expr, @expr); expr_assign(@expr, @expr); expr_swap(@expr, @expr); expr_assign_op(binop, @expr, @expr); expr_field(@expr, ident, [@ty]); expr_index(@expr, @expr); expr_path(@path); expr_fail(option::t<@expr>); expr_break; expr_cont; expr_ret(option::t<@expr>); expr_be(@expr); expr_log(int, @expr, @expr); /* just an assert, no significance to typestate */ expr_assert(@expr); /* preds that typestate is aware of */ expr_check(expr_check_mode, @expr); /* FIXME Would be nice if expr_check desugared to expr_if_check. */ expr_if_check(@expr, blk, option::t<@expr>); expr_mac(mac); } type capture_item = { id: int, name: ident, // Currently, can only capture a local var. span: span }; type capture_clause = { copies: [@capture_item], moves: [@capture_item] }; /* // Says whether this is a block the user marked as // "unchecked" tag blk_sort { blk_unchecked; // declared as "exception to effect-checking rules" blk_checked; // all typing rules apply } */ type mac = spanned; tag mac_ { mac_invoc(@path, @expr, option::t); mac_embed_type(@ty); mac_embed_block(blk); mac_ellipsis; } type lit = spanned; tag lit_ { lit_str(str); lit_int(i64, int_ty); lit_uint(u64, uint_ty); lit_float(str, float_ty); lit_nil; lit_bool(bool); } // NB: If you change this, you'll probably want to change the corresponding // type structure in middle/ty.rs as well. type mt = {ty: @ty, mut: mutability}; type ty_field_ = {ident: ident, mt: mt}; type ty_field = spanned; type ty_method = {ident: ident, decl: fn_decl, tps: [ty_param], span: span}; tag int_ty { ty_i; ty_char; ty_i8; ty_i16; ty_i32; ty_i64; } tag uint_ty { ty_u; ty_u8; ty_u16; ty_u32; ty_u64; } tag float_ty { ty_f; ty_f32; ty_f64; } type ty = spanned; tag ty_ { ty_nil; ty_bot; /* return type of ! functions and type of ret/fail/break/cont. there is no syntax for this type. */ /* bot represents the value of functions that don't return a value locally to their context. in contrast, things like log that do return, but don't return a meaningful value, have result type nil. */ ty_bool; ty_int(int_ty); ty_uint(uint_ty); ty_float(float_ty); ty_str; ty_box(mt); ty_uniq(mt); ty_vec(mt); ty_ptr(mt); ty_task; ty_port(@ty); ty_chan(@ty); ty_rec([ty_field]); ty_fn(proto, fn_decl); ty_tup([@ty]); ty_path(@path, node_id); ty_type; ty_constr(@ty, [@ty_constr]); ty_mac(mac); // ty_infer means the type should be inferred instead of it having been // specified. This should only appear at the "top level" of a type and not // nested in one. ty_infer; } /* A constraint arg that's a function argument is referred to by its position rather than name. This is so we could have higher-order functions that have constraints (potentially -- right now there's no way to write that), and also so that the typestate pass doesn't have to map a function name onto its decl. So, the constr_arg type is parameterized: it's instantiated with uint for declarations, and ident for uses. */ tag constr_arg_general_ { carg_base; carg_ident(T); carg_lit(@lit); } type fn_constr_arg = constr_arg_general_; type sp_constr_arg = spanned>; type ty_constr_arg = sp_constr_arg<@path>; type constr_arg = spanned; // Constrained types' args are parameterized by paths, since // we refer to paths directly and not by indices. // The implicit root of such path, in the constraint-list for a // constrained type, is * (referring to the base record) type constr_general_ = {path: @path, args: [@spanned>], id: ID}; // In the front end, constraints have a node ID attached. // Typeck turns this to a def_id, using the output of resolve. type constr_general = spanned>; type constr_ = constr_general_; type constr = spanned>; type ty_constr_ = constr_general_<@path, node_id>; type ty_constr = spanned; /* The parser generates ast::constrs; resolve generates a mapping from each function to a list of ty::constr_defs, corresponding to these. */ type arg = {mode: mode, ty: @ty, ident: ident, id: node_id}; type fn_decl = {inputs: [arg], output: @ty, purity: purity, cf: ret_style, constraints: [@constr]}; tag purity { pure_fn; // declared with "pure fn" unsafe_fn; // declared with "unsafe fn" impure_fn; // declared with "fn" } tag ret_style { noreturn; // functions with return type _|_ that always // raise an error or exit (i.e. never return to the caller) return_val; // everything else } type method = {ident: ident, tps: [ty_param], decl: fn_decl, body: blk, id: node_id, span: span}; type _mod = {view_items: [@view_item], items: [@item]}; tag native_abi { native_abi_rust_intrinsic; native_abi_cdecl; native_abi_stdcall; } type native_mod = {view_items: [@view_item], items: [@native_item]}; type variant_arg = {ty: @ty, id: node_id}; type variant_ = {name: ident, args: [variant_arg], id: node_id, disr_expr: option::t<@expr>}; type variant = spanned; type view_item = spanned; // FIXME: May want to just use path here, which would allow things like // 'import ::foo' type simple_path = [ident]; type import_ident_ = {name: ident, id: node_id}; type import_ident = spanned; tag view_item_ { view_item_use(ident, [@meta_item], node_id); view_item_import(ident, @simple_path, node_id); view_item_import_glob(@simple_path, node_id); view_item_import_from(@simple_path, [import_ident], node_id); view_item_export([ident], node_id); } // Meta-data associated with an item type attribute = spanned; // Distinguishes between attributes that decorate items and attributes that // are contained as statements within items. These two cases need to be // distinguished for pretty-printing. tag attr_style { attr_outer; attr_inner; } type attribute_ = {style: attr_style, value: meta_item}; type item = {ident: ident, attrs: [attribute], id: node_id, node: item_, span: span}; tag item_ { item_const(@ty, @expr); item_fn(fn_decl, [ty_param], blk); item_mod(_mod); item_native_mod(native_mod); item_ty(@ty, [ty_param]); item_tag([variant], [ty_param]); item_res(fn_decl /* dtor */, [ty_param], blk, node_id /* dtor id */, node_id /* ctor id */); item_iface([ty_param], [ty_method]); item_impl([ty_param], option::t<@ty> /* iface */, @ty /* self */, [@method]); } type native_item = {ident: ident, attrs: [attribute], node: native_item_, id: node_id, span: span}; tag native_item_ { native_item_ty; native_item_fn(fn_decl, [ty_param]); } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: //