// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // Code that generates a test runner to run all the tests in a crate #![allow(dead_code)] #![allow(unused_imports)] use self::HasTestSignature::*; use std::iter; use std::slice; use std::mem; use std::vec; use attr::{self, HasAttrs}; use syntax_pos::{self, DUMMY_SP, NO_EXPANSION, Span, FileMap, BytePos}; use codemap::{self, CodeMap, ExpnInfo, NameAndSpan, MacroAttribute, dummy_spanned}; use errors; use config; use entry::{self, EntryPointType}; use ext::base::{ExtCtxt, Resolver}; use ext::build::AstBuilder; use ext::expand::ExpansionConfig; use ext::hygiene::{Mark, SyntaxContext}; use fold::Folder; use feature_gate::Features; use util::move_map::MoveMap; use fold; use parse::{token, ParseSess}; use print::pprust; use ast::{self, Ident}; use ptr::P; use symbol::{self, Symbol, keywords}; use util::small_vector::SmallVector; enum ShouldPanic { No, Yes(Option), } struct Test { span: Span, path: Vec , bench: bool, ignore: bool, should_panic: ShouldPanic, allow_fail: bool, } struct TestCtxt<'a> { span_diagnostic: &'a errors::Handler, path: Vec, ext_cx: ExtCtxt<'a>, testfns: Vec, reexport_test_harness_main: Option, is_libtest: bool, ctxt: SyntaxContext, features: &'a Features, // top-level re-export submodule, filled out after folding is finished toplevel_reexport: Option, } // Traverse the crate, collecting all the test functions, eliding any // existing main functions, and synthesizing a main test harness pub fn modify_for_testing(sess: &ParseSess, resolver: &mut Resolver, should_test: bool, krate: ast::Crate, span_diagnostic: &errors::Handler, features: &Features) -> ast::Crate { // Check for #[reexport_test_harness_main = "some_name"] which // creates a `use __test::main as some_name;`. This needs to be // unconditional, so that the attribute is still marked as used in // non-test builds. let reexport_test_harness_main = attr::first_attr_value_str_by_name(&krate.attrs, "reexport_test_harness_main"); if should_test { generate_test_harness(sess, resolver, reexport_test_harness_main, krate, span_diagnostic, features) } else { krate } } struct TestHarnessGenerator<'a> { cx: TestCtxt<'a>, tests: Vec, // submodule name, gensym'd identifier for re-exports tested_submods: Vec<(Ident, Ident)>, } impl<'a> fold::Folder for TestHarnessGenerator<'a> { fn fold_crate(&mut self, c: ast::Crate) -> ast::Crate { let mut folded = fold::noop_fold_crate(c, self); // Add a special __test module to the crate that will contain code // generated for the test harness let (mod_, reexport) = mk_test_module(&mut self.cx); if let Some(re) = reexport { folded.module.items.push(re) } folded.module.items.push(mod_); folded } fn fold_item(&mut self, i: P) -> SmallVector> { let ident = i.ident; if ident.name != keywords::Invalid.name() { self.cx.path.push(ident); } debug!("current path: {}", path_name_i(&self.cx.path)); if is_test_fn(&self.cx, &i) || is_bench_fn(&self.cx, &i) { match i.node { ast::ItemKind::Fn(_, ast::Unsafety::Unsafe, _, _, _, _) => { let diag = self.cx.span_diagnostic; diag.span_fatal(i.span, "unsafe functions cannot be used for tests").raise(); } _ => { debug!("this is a test function"); let test = Test { span: i.span, path: self.cx.path.clone(), bench: is_bench_fn(&self.cx, &i), ignore: is_ignored(&i), should_panic: should_panic(&i, &self.cx), allow_fail: is_allowed_fail(&i), }; self.cx.testfns.push(test); self.tests.push(i.ident); } } } let mut item = i.into_inner(); // We don't want to recurse into anything other than mods, since // mods or tests inside of functions will break things if let ast::ItemKind::Mod(module) = item.node { let tests = mem::replace(&mut self.tests, Vec::new()); let tested_submods = mem::replace(&mut self.tested_submods, Vec::new()); let mut mod_folded = fold::noop_fold_mod(module, self); let tests = mem::replace(&mut self.tests, tests); let tested_submods = mem::replace(&mut self.tested_submods, tested_submods); if !tests.is_empty() || !tested_submods.is_empty() { let (it, sym) = mk_reexport_mod(&mut self.cx, item.id, tests, tested_submods); mod_folded.items.push(it); if !self.cx.path.is_empty() { self.tested_submods.push((self.cx.path[self.cx.path.len()-1], sym)); } else { debug!("pushing nothing, sym: {:?}", sym); self.cx.toplevel_reexport = Some(sym); } } item.node = ast::ItemKind::Mod(mod_folded); } if ident.name != keywords::Invalid.name() { self.cx.path.pop(); } SmallVector::one(P(item)) } fn fold_mac(&mut self, mac: ast::Mac) -> ast::Mac { mac } } struct EntryPointCleaner { // Current depth in the ast depth: usize, } impl fold::Folder for EntryPointCleaner { fn fold_item(&mut self, i: P) -> SmallVector> { self.depth += 1; let folded = fold::noop_fold_item(i, self).expect_one("noop did something"); self.depth -= 1; // Remove any #[main] or #[start] from the AST so it doesn't // clash with the one we're going to add, but mark it as // #[allow(dead_code)] to avoid printing warnings. let folded = match entry::entry_point_type(&folded, self.depth) { EntryPointType::MainNamed | EntryPointType::MainAttr | EntryPointType::Start => folded.map(|ast::Item {id, ident, attrs, node, vis, span, tokens}| { let allow_str = Symbol::intern("allow"); let dead_code_str = Symbol::intern("dead_code"); let word_vec = vec![attr::mk_list_word_item(dead_code_str)]; let allow_dead_code_item = attr::mk_list_item(allow_str, word_vec); let allow_dead_code = attr::mk_attr_outer(DUMMY_SP, attr::mk_attr_id(), allow_dead_code_item); ast::Item { id, ident, attrs: attrs.into_iter() .filter(|attr| { !attr.check_name("main") && !attr.check_name("start") }) .chain(iter::once(allow_dead_code)) .collect(), node, vis, span, tokens, } }), EntryPointType::None | EntryPointType::OtherMain => folded, }; SmallVector::one(folded) } fn fold_mac(&mut self, mac: ast::Mac) -> ast::Mac { mac } } fn mk_reexport_mod(cx: &mut TestCtxt, parent: ast::NodeId, tests: Vec, tested_submods: Vec<(Ident, Ident)>) -> (P, Ident) { let super_ = Ident::from_str("super"); let items = tests.into_iter().map(|r| { cx.ext_cx.item_use_simple(DUMMY_SP, dummy_spanned(ast::VisibilityKind::Public), cx.ext_cx.path(DUMMY_SP, vec![super_, r])) }).chain(tested_submods.into_iter().map(|(r, sym)| { let path = cx.ext_cx.path(DUMMY_SP, vec![super_, r, sym]); cx.ext_cx.item_use_simple_(DUMMY_SP, dummy_spanned(ast::VisibilityKind::Public), Some(r), path) })).collect(); let reexport_mod = ast::Mod { inner: DUMMY_SP, items, }; let sym = Ident::with_empty_ctxt(Symbol::gensym("__test_reexports")); let parent = if parent == ast::DUMMY_NODE_ID { ast::CRATE_NODE_ID } else { parent }; cx.ext_cx.current_expansion.mark = cx.ext_cx.resolver.get_module_scope(parent); let it = cx.ext_cx.monotonic_expander().fold_item(P(ast::Item { ident: sym, attrs: Vec::new(), id: ast::DUMMY_NODE_ID, node: ast::ItemKind::Mod(reexport_mod), vis: dummy_spanned(ast::VisibilityKind::Public), span: DUMMY_SP, tokens: None, })).pop().unwrap(); (it, sym) } fn generate_test_harness(sess: &ParseSess, resolver: &mut Resolver, reexport_test_harness_main: Option, krate: ast::Crate, sd: &errors::Handler, features: &Features) -> ast::Crate { // Remove the entry points let mut cleaner = EntryPointCleaner { depth: 0 }; let krate = cleaner.fold_crate(krate); let mark = Mark::fresh(Mark::root()); let mut econfig = ExpansionConfig::default("test".to_string()); econfig.features = Some(features); let cx = TestCtxt { span_diagnostic: sd, ext_cx: ExtCtxt::new(sess, econfig, resolver), path: Vec::new(), testfns: Vec::new(), reexport_test_harness_main, // NB: doesn't consider the value of `--crate-name` passed on the command line. is_libtest: attr::find_crate_name(&krate.attrs).map(|s| s == "test").unwrap_or(false), toplevel_reexport: None, ctxt: SyntaxContext::empty().apply_mark(mark), features, }; mark.set_expn_info(ExpnInfo { call_site: DUMMY_SP, callee: NameAndSpan { format: MacroAttribute(Symbol::intern("test")), span: None, allow_internal_unstable: true, allow_internal_unsafe: false, } }); TestHarnessGenerator { cx, tests: Vec::new(), tested_submods: Vec::new(), }.fold_crate(krate) } /// Craft a span that will be ignored by the stability lint's /// call to codemap's `is_internal` check. /// The expanded code calls some unstable functions in the test crate. fn ignored_span(cx: &TestCtxt, sp: Span) -> Span { sp.with_ctxt(cx.ctxt) } #[derive(PartialEq)] enum HasTestSignature { Yes, No, NotEvenAFunction, } fn is_test_fn(cx: &TestCtxt, i: &ast::Item) -> bool { let has_test_attr = attr::contains_name(&i.attrs, "test"); fn has_test_signature(cx: &TestCtxt, i: &ast::Item) -> HasTestSignature { match i.node { ast::ItemKind::Fn(ref decl, _, _, _, ref generics, _) => { // If the termination trait is active, the compiler will check that the output // type implements the `Termination` trait as `libtest` enforces that. let output_matches = if cx.features.termination_trait_test { true } else { let no_output = match decl.output { ast::FunctionRetTy::Default(..) => true, ast::FunctionRetTy::Ty(ref t) if t.node == ast::TyKind::Tup(vec![]) => true, _ => false }; no_output && !generics.is_parameterized() }; if decl.inputs.is_empty() && output_matches { Yes } else { No } } _ => NotEvenAFunction, } } let has_test_signature = if has_test_attr { let diag = cx.span_diagnostic; match has_test_signature(cx, i) { Yes => true, No => { if cx.features.termination_trait_test { diag.span_err(i.span, "functions used as tests can not have any arguments"); } else { diag.span_err(i.span, "functions used as tests must have signature fn() -> ()"); } false }, NotEvenAFunction => { diag.span_err(i.span, "only functions may be used as tests"); false }, } } else { false }; has_test_attr && has_test_signature } fn is_bench_fn(cx: &TestCtxt, i: &ast::Item) -> bool { let has_bench_attr = attr::contains_name(&i.attrs, "bench"); fn has_bench_signature(cx: &TestCtxt, i: &ast::Item) -> bool { match i.node { ast::ItemKind::Fn(ref decl, _, _, _, ref generics, _) => { let input_cnt = decl.inputs.len(); // If the termination trait is active, the compiler will check that the output // type implements the `Termination` trait as `libtest` enforces that. let output_matches = if cx.features.termination_trait_test { true } else { let no_output = match decl.output { ast::FunctionRetTy::Default(..) => true, ast::FunctionRetTy::Ty(ref t) if t.node == ast::TyKind::Tup(vec![]) => true, _ => false }; let tparm_cnt = generics.params.iter() .filter(|param| param.is_type_param()) .count(); no_output && tparm_cnt == 0 }; // NB: inadequate check, but we're running // well before resolve, can't get too deep. input_cnt == 1 && output_matches } _ => false } } let has_bench_signature = has_bench_signature(cx, i); if has_bench_attr && !has_bench_signature { let diag = cx.span_diagnostic; if cx.features.termination_trait_test { diag.span_err(i.span, "functions used as benches must have signature \ `fn(&mut Bencher) -> impl Termination`"); } else { diag.span_err(i.span, "functions used as benches must have signature \ `fn(&mut Bencher) -> ()`"); } } has_bench_attr && has_bench_signature } fn is_ignored(i: &ast::Item) -> bool { attr::contains_name(&i.attrs, "ignore") } fn is_allowed_fail(i: &ast::Item) -> bool { attr::contains_name(&i.attrs, "allow_fail") } fn should_panic(i: &ast::Item, cx: &TestCtxt) -> ShouldPanic { match attr::find_by_name(&i.attrs, "should_panic") { Some(attr) => { let sd = cx.span_diagnostic; if attr.is_value_str() { sd.struct_span_warn( attr.span(), "attribute must be of the form: \ `#[should_panic]` or \ `#[should_panic(expected = \"error message\")]`" ).note("Errors in this attribute were erroneously allowed \ and will become a hard error in a future release.") .emit(); return ShouldPanic::Yes(None); } match attr.meta_item_list() { // Handle #[should_panic] None => ShouldPanic::Yes(None), // Handle #[should_panic(expected = "foo")] Some(list) => { let msg = list.iter() .find(|mi| mi.check_name("expected")) .and_then(|mi| mi.meta_item()) .and_then(|mi| mi.value_str()); if list.len() != 1 || msg.is_none() { sd.struct_span_warn( attr.span(), "argument must be of the form: \ `expected = \"error message\"`" ).note("Errors in this attribute were erroneously \ allowed and will become a hard error in a \ future release.").emit(); ShouldPanic::Yes(None) } else { ShouldPanic::Yes(msg) } }, } } None => ShouldPanic::No, } } /* We're going to be building a module that looks more or less like: mod __test { extern crate test (name = "test", vers = "..."); fn main() { test::test_main_static(&::os::args()[], tests, test::Options::new()) } static tests : &'static [test::TestDescAndFn] = &[ ... the list of tests in the crate ... ]; } */ fn mk_std(cx: &TestCtxt) -> P { let id_test = Ident::from_str("test"); let sp = ignored_span(cx, DUMMY_SP); let (vi, vis, ident) = if cx.is_libtest { (ast::ItemKind::Use(P(ast::UseTree { span: DUMMY_SP, prefix: path_node(vec![id_test]), kind: ast::UseTreeKind::Simple(None), })), ast::VisibilityKind::Public, keywords::Invalid.ident()) } else { (ast::ItemKind::ExternCrate(None), ast::VisibilityKind::Inherited, id_test) }; P(ast::Item { id: ast::DUMMY_NODE_ID, ident, node: vi, attrs: vec![], vis: dummy_spanned(vis), span: sp, tokens: None, }) } fn mk_main(cx: &mut TestCtxt) -> P { // Writing this out by hand with 'ignored_span': // pub fn main() { // #![main] // use std::slice::AsSlice; // test::test_main_static(::std::os::args().as_slice(), TESTS, test::Options::new()); // } let sp = ignored_span(cx, DUMMY_SP); let ecx = &cx.ext_cx; // test::test_main_static let test_main_path = ecx.path(sp, vec![Ident::from_str("test"), Ident::from_str("test_main_static")]); // test::test_main_static(...) let test_main_path_expr = ecx.expr_path(test_main_path); let tests_ident_expr = ecx.expr_ident(sp, Ident::from_str("TESTS")); let call_test_main = ecx.expr_call(sp, test_main_path_expr, vec![tests_ident_expr]); let call_test_main = ecx.stmt_expr(call_test_main); // #![main] let main_meta = ecx.meta_word(sp, Symbol::intern("main")); let main_attr = ecx.attribute(sp, main_meta); // pub fn main() { ... } let main_ret_ty = ecx.ty(sp, ast::TyKind::Tup(vec![])); let main_body = ecx.block(sp, vec![call_test_main]); let main = ast::ItemKind::Fn(ecx.fn_decl(vec![], main_ret_ty), ast::Unsafety::Normal, dummy_spanned(ast::Constness::NotConst), ::abi::Abi::Rust, ast::Generics::default(), main_body); P(ast::Item { ident: Ident::from_str("main"), attrs: vec![main_attr], id: ast::DUMMY_NODE_ID, node: main, vis: dummy_spanned(ast::VisibilityKind::Public), span: sp, tokens: None, }) } fn mk_test_module(cx: &mut TestCtxt) -> (P, Option>) { // Link to test crate let import = mk_std(cx); // A constant vector of test descriptors. let tests = mk_tests(cx); // The synthesized main function which will call the console test runner // with our list of tests let mainfn = mk_main(cx); let testmod = ast::Mod { inner: DUMMY_SP, items: vec![import, mainfn, tests], }; let item_ = ast::ItemKind::Mod(testmod); let mod_ident = Ident::with_empty_ctxt(Symbol::gensym("__test")); let mut expander = cx.ext_cx.monotonic_expander(); let item = expander.fold_item(P(ast::Item { id: ast::DUMMY_NODE_ID, ident: mod_ident, attrs: vec![], node: item_, vis: dummy_spanned(ast::VisibilityKind::Public), span: DUMMY_SP, tokens: None, })).pop().unwrap(); let reexport = cx.reexport_test_harness_main.map(|s| { // building `use __test::main as ;` let rename = Ident::with_empty_ctxt(s); let use_path = ast::UseTree { span: DUMMY_SP, prefix: path_node(vec![mod_ident, Ident::from_str("main")]), kind: ast::UseTreeKind::Simple(Some(rename)), }; expander.fold_item(P(ast::Item { id: ast::DUMMY_NODE_ID, ident: keywords::Invalid.ident(), attrs: vec![], node: ast::ItemKind::Use(P(use_path)), vis: dummy_spanned(ast::VisibilityKind::Inherited), span: DUMMY_SP, tokens: None, })).pop().unwrap() }); debug!("Synthetic test module:\n{}\n", pprust::item_to_string(&item)); (item, reexport) } fn nospan(t: T) -> codemap::Spanned { codemap::Spanned { node: t, span: DUMMY_SP } } fn path_node(ids: Vec) -> ast::Path { ast::Path { span: DUMMY_SP, segments: ids.into_iter().map(|id| ast::PathSegment::from_ident(id, DUMMY_SP)).collect(), } } fn path_name_i(idents: &[Ident]) -> String { let mut path_name = "".to_string(); let mut idents_iter = idents.iter().peekable(); while let Some(ident) = idents_iter.next() { path_name.push_str(&ident.name.as_str()); if let Some(_) = idents_iter.peek() { path_name.push_str("::") } } path_name } fn mk_tests(cx: &TestCtxt) -> P { // The vector of test_descs for this crate let test_descs = mk_test_descs(cx); // FIXME #15962: should be using quote_item, but that stringifies // __test_reexports, causing it to be reinterned, losing the // gensym information. let sp = ignored_span(cx, DUMMY_SP); let ecx = &cx.ext_cx; let struct_type = ecx.ty_path(ecx.path(sp, vec![ecx.ident_of("self"), ecx.ident_of("test"), ecx.ident_of("TestDescAndFn")])); let static_lt = ecx.lifetime(sp, keywords::StaticLifetime.ident()); // &'static [self::test::TestDescAndFn] let static_type = ecx.ty_rptr(sp, ecx.ty(sp, ast::TyKind::Slice(struct_type)), Some(static_lt), ast::Mutability::Immutable); // static TESTS: $static_type = &[...]; ecx.item_const(sp, ecx.ident_of("TESTS"), static_type, test_descs) } fn mk_test_descs(cx: &TestCtxt) -> P { debug!("building test vector from {} tests", cx.testfns.len()); P(ast::Expr { id: ast::DUMMY_NODE_ID, node: ast::ExprKind::AddrOf(ast::Mutability::Immutable, P(ast::Expr { id: ast::DUMMY_NODE_ID, node: ast::ExprKind::Array(cx.testfns.iter().map(|test| { mk_test_desc_and_fn_rec(cx, test) }).collect()), span: DUMMY_SP, attrs: ast::ThinVec::new(), })), span: DUMMY_SP, attrs: ast::ThinVec::new(), }) } fn mk_test_desc_and_fn_rec(cx: &TestCtxt, test: &Test) -> P { // FIXME #15962: should be using quote_expr, but that stringifies // __test_reexports, causing it to be reinterned, losing the // gensym information. let span = ignored_span(cx, test.span); let ecx = &cx.ext_cx; let self_id = ecx.ident_of("self"); let test_id = ecx.ident_of("test"); // creates self::test::$name let test_path = |name| { ecx.path(span, vec![self_id, test_id, ecx.ident_of(name)]) }; // creates $name: $expr let field = |name, expr| ecx.field_imm(span, ecx.ident_of(name), expr); // path to the #[test] function: "foo::bar::baz" let path_string = path_name_i(&test.path[..]); debug!("encoding {}", path_string); let name_expr = ecx.expr_str(span, Symbol::intern(&path_string)); // self::test::StaticTestName($name_expr) let name_expr = ecx.expr_call(span, ecx.expr_path(test_path("StaticTestName")), vec![name_expr]); let ignore_expr = ecx.expr_bool(span, test.ignore); let should_panic_path = |name| { ecx.path(span, vec![self_id, test_id, ecx.ident_of("ShouldPanic"), ecx.ident_of(name)]) }; let fail_expr = match test.should_panic { ShouldPanic::No => ecx.expr_path(should_panic_path("No")), ShouldPanic::Yes(msg) => { match msg { Some(msg) => { let msg = ecx.expr_str(span, msg); let path = should_panic_path("YesWithMessage"); ecx.expr_call(span, ecx.expr_path(path), vec![msg]) } None => ecx.expr_path(should_panic_path("Yes")), } } }; let allow_fail_expr = ecx.expr_bool(span, test.allow_fail); // self::test::TestDesc { ... } let desc_expr = ecx.expr_struct( span, test_path("TestDesc"), vec![field("name", name_expr), field("ignore", ignore_expr), field("should_panic", fail_expr), field("allow_fail", allow_fail_expr)]); let mut visible_path = vec![]; if cx.features.extern_absolute_paths { visible_path.push(keywords::Crate.ident()); } match cx.toplevel_reexport { Some(id) => visible_path.push(id), None => { let diag = cx.span_diagnostic; diag.bug("expected to find top-level re-export name, but found None"); } }; visible_path.extend_from_slice(&test.path[..]); // Rather than directly give the test function to the test // harness, we create a wrapper like one of the following: // // || test::assert_test_result(real_function()) // for test // |b| test::assert_test_result(real_function(b)) // for bench // // this will coerce into a fn pointer that is specialized to the // actual return type of `real_function` (Typically `()`, but not always). let fn_expr = { // construct `real_function()` (this will be inserted into the overall expr) let real_function_expr = ecx.expr_path(ecx.path_global(span, visible_path)); // construct path `test::assert_test_result` let assert_test_result = test_path("assert_test_result"); if test.bench { // construct `|b| {..}` let b_ident = Ident::with_empty_ctxt(Symbol::gensym("b")); let b_expr = ecx.expr_ident(span, b_ident); ecx.lambda( span, vec![b_ident], // construct `assert_test_result(..)` ecx.expr_call( span, ecx.expr_path(assert_test_result), vec![ // construct `real_function(b)` ecx.expr_call( span, real_function_expr, vec![b_expr], ) ], ), ) } else { // construct `|| {..}` ecx.lambda( span, vec![], // construct `assert_test_result(..)` ecx.expr_call( span, ecx.expr_path(assert_test_result), vec![ // construct `real_function()` ecx.expr_call( span, real_function_expr, vec![], ) ], ), ) } }; let variant_name = if test.bench { "StaticBenchFn" } else { "StaticTestFn" }; // self::test::$variant_name($fn_expr) let testfn_expr = ecx.expr_call(span, ecx.expr_path(test_path(variant_name)), vec![fn_expr]); // self::test::TestDescAndFn { ... } ecx.expr_struct(span, test_path("TestDescAndFn"), vec![field("desc", desc_expr), field("testfn", testfn_expr)]) }