// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![allow(dead_code)] // FFI wrappers #![allow(non_snake_case)] use llvm; use llvm::{AtomicBinOp, AtomicOrdering, SynchronizationScope, AsmDialect}; use llvm::{Opcode, IntPredicate, RealPredicate}; use llvm::{ValueRef, BasicBlockRef}; use common::*; use syntax::codemap::Span; use builder::Builder; use type_::Type; use value::Value; use debuginfo::DebugLoc; use libc::{c_uint, c_char}; pub fn terminate(cx: Block, _: &str) { debug!("terminate({})", cx.to_str()); cx.terminated.set(true); } pub fn check_not_terminated(cx: Block) { if cx.terminated.get() { bug!("already terminated!"); } } pub fn B<'blk, 'tcx>(cx: Block<'blk, 'tcx>) -> Builder<'blk, 'tcx> { let b = cx.fcx.ccx.builder(); b.position_at_end(cx.llbb); b } // The difference between a block being unreachable and being terminated is // somewhat obscure, and has to do with error checking. When a block is // terminated, we're saying that trying to add any further statements in the // block is an error. On the other hand, if something is unreachable, that // means that the block was terminated in some way that we don't want to check // for (panic/break/return statements, call to diverging functions, etc), and // further instructions to the block should simply be ignored. pub fn RetVoid(cx: Block, debug_loc: DebugLoc) { if cx.unreachable.get() { return; } check_not_terminated(cx); terminate(cx, "RetVoid"); debug_loc.apply(cx.fcx); B(cx).ret_void(); } pub fn Ret(cx: Block, v: ValueRef, debug_loc: DebugLoc) { if cx.unreachable.get() { return; } check_not_terminated(cx); terminate(cx, "Ret"); debug_loc.apply(cx.fcx); B(cx).ret(v); } pub fn AggregateRet(cx: Block, ret_vals: &[ValueRef], debug_loc: DebugLoc) { if cx.unreachable.get() { return; } check_not_terminated(cx); terminate(cx, "AggregateRet"); debug_loc.apply(cx.fcx); B(cx).aggregate_ret(ret_vals); } pub fn Br(cx: Block, dest: BasicBlockRef, debug_loc: DebugLoc) { if cx.unreachable.get() { return; } check_not_terminated(cx); terminate(cx, "Br"); debug_loc.apply(cx.fcx); B(cx).br(dest); } pub fn CondBr(cx: Block, if_: ValueRef, then: BasicBlockRef, else_: BasicBlockRef, debug_loc: DebugLoc) { if cx.unreachable.get() { return; } check_not_terminated(cx); terminate(cx, "CondBr"); debug_loc.apply(cx.fcx); B(cx).cond_br(if_, then, else_); } pub fn Switch(cx: Block, v: ValueRef, else_: BasicBlockRef, num_cases: usize) -> ValueRef { if cx.unreachable.get() { return _Undef(v); } check_not_terminated(cx); terminate(cx, "Switch"); B(cx).switch(v, else_, num_cases) } pub fn AddCase(s: ValueRef, on_val: ValueRef, dest: BasicBlockRef) { unsafe { if llvm::LLVMIsUndef(s) == llvm::True { return; } llvm::LLVMAddCase(s, on_val, dest); } } pub fn IndirectBr(cx: Block, addr: ValueRef, num_dests: usize, debug_loc: DebugLoc) { if cx.unreachable.get() { return; } check_not_terminated(cx); terminate(cx, "IndirectBr"); debug_loc.apply(cx.fcx); B(cx).indirect_br(addr, num_dests); } pub fn Invoke(cx: Block, fn_: ValueRef, args: &[ValueRef], then: BasicBlockRef, catch: BasicBlockRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return C_null(Type::i8(cx.ccx())); } check_not_terminated(cx); terminate(cx, "Invoke"); debug!("Invoke({:?} with arguments ({}))", Value(fn_), args.iter().map(|a| { format!("{:?}", Value(*a)) }).collect::>().join(", ")); debug_loc.apply(cx.fcx); let bundle = cx.lpad().and_then(|b| b.bundle()); B(cx).invoke(fn_, args, then, catch, bundle) } pub fn Unreachable(cx: Block) { if cx.unreachable.get() { return } cx.unreachable.set(true); if !cx.terminated.get() { B(cx).unreachable(); } } pub fn _Undef(val: ValueRef) -> ValueRef { unsafe { return llvm::LLVMGetUndef(val_ty(val).to_ref()); } } /* Arithmetic */ pub fn Add(cx: Block, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).add(lhs, rhs) } pub fn NSWAdd(cx: Block, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).nswadd(lhs, rhs) } pub fn NUWAdd(cx: Block, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).nuwadd(lhs, rhs) } pub fn FAdd(cx: Block, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).fadd(lhs, rhs) } pub fn FAddFast(cx: Block, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).fadd_fast(lhs, rhs) } pub fn Sub(cx: Block, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).sub(lhs, rhs) } pub fn NSWSub(cx: Block, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).nswsub(lhs, rhs) } pub fn NUWSub(cx: Block, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).nuwsub(lhs, rhs) } pub fn FSub(cx: Block, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).fsub(lhs, rhs) } pub fn FSubFast(cx: Block, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).fsub_fast(lhs, rhs) } pub fn Mul(cx: Block, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).mul(lhs, rhs) } pub fn NSWMul(cx: Block, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).nswmul(lhs, rhs) } pub fn NUWMul(cx: Block, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).nuwmul(lhs, rhs) } pub fn FMul(cx: Block, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).fmul(lhs, rhs) } pub fn FMulFast(cx: Block, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).fmul_fast(lhs, rhs) } pub fn UDiv(cx: Block, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).udiv(lhs, rhs) } pub fn SDiv(cx: Block, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).sdiv(lhs, rhs) } pub fn ExactSDiv(cx: Block, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).exactsdiv(lhs, rhs) } pub fn FDiv(cx: Block, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).fdiv(lhs, rhs) } pub fn FDivFast(cx: Block, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).fdiv_fast(lhs, rhs) } pub fn URem(cx: Block, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).urem(lhs, rhs) } pub fn SRem(cx: Block, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).srem(lhs, rhs) } pub fn FRem(cx: Block, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).frem(lhs, rhs) } pub fn FRemFast(cx: Block, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).frem_fast(lhs, rhs) } pub fn Shl(cx: Block, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).shl(lhs, rhs) } pub fn LShr(cx: Block, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).lshr(lhs, rhs) } pub fn AShr(cx: Block, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).ashr(lhs, rhs) } pub fn And(cx: Block, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).and(lhs, rhs) } pub fn Or(cx: Block, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).or(lhs, rhs) } pub fn Xor(cx: Block, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).xor(lhs, rhs) } pub fn BinOp(cx: Block, op: Opcode, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(lhs); } debug_loc.apply(cx.fcx); B(cx).binop(op, lhs, rhs) } pub fn Neg(cx: Block, v: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(v); } debug_loc.apply(cx.fcx); B(cx).neg(v) } pub fn NSWNeg(cx: Block, v: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(v); } debug_loc.apply(cx.fcx); B(cx).nswneg(v) } pub fn NUWNeg(cx: Block, v: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(v); } debug_loc.apply(cx.fcx); B(cx).nuwneg(v) } pub fn FNeg(cx: Block, v: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(v); } debug_loc.apply(cx.fcx); B(cx).fneg(v) } pub fn Not(cx: Block, v: ValueRef, debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _Undef(v); } debug_loc.apply(cx.fcx); B(cx).not(v) } pub fn Alloca(cx: Block, ty: Type, name: &str) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(ty.ptr_to().to_ref()); } AllocaFcx(cx.fcx, ty, name) } } pub fn AllocaFcx(fcx: &FunctionContext, ty: Type, name: &str) -> ValueRef { let b = fcx.ccx.builder(); b.position_before(fcx.alloca_insert_pt.get().unwrap()); DebugLoc::None.apply(fcx); b.alloca(ty, name) } pub fn Free(cx: Block, pointer_val: ValueRef) { if cx.unreachable.get() { return; } B(cx).free(pointer_val) } pub fn Load(cx: Block, pointer_val: ValueRef) -> ValueRef { unsafe { let ccx = cx.fcx.ccx; if cx.unreachable.get() { let ty = val_ty(pointer_val); let eltty = if ty.kind() == llvm::Array { ty.element_type() } else { ccx.int_type() }; return llvm::LLVMGetUndef(eltty.to_ref()); } B(cx).load(pointer_val) } } pub fn VolatileLoad(cx: Block, pointer_val: ValueRef) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::nil(cx.ccx()).to_ref()); } B(cx).volatile_load(pointer_val) } } pub fn AtomicLoad(cx: Block, pointer_val: ValueRef, order: AtomicOrdering) -> ValueRef { unsafe { let ccx = cx.fcx.ccx; if cx.unreachable.get() { return llvm::LLVMGetUndef(ccx.int_type().to_ref()); } B(cx).atomic_load(pointer_val, order) } } pub fn LoadRangeAssert(cx: Block, pointer_val: ValueRef, lo: u64, hi: u64, signed: llvm::Bool) -> ValueRef { if cx.unreachable.get() { let ccx = cx.fcx.ccx; let ty = val_ty(pointer_val); let eltty = if ty.kind() == llvm::Array { ty.element_type() } else { ccx.int_type() }; unsafe { llvm::LLVMGetUndef(eltty.to_ref()) } } else { B(cx).load_range_assert(pointer_val, lo, hi, signed) } } pub fn LoadNonNull(cx: Block, ptr: ValueRef) -> ValueRef { if cx.unreachable.get() { let ccx = cx.fcx.ccx; let ty = val_ty(ptr); let eltty = if ty.kind() == llvm::Array { ty.element_type() } else { ccx.int_type() }; unsafe { llvm::LLVMGetUndef(eltty.to_ref()) } } else { B(cx).load_nonnull(ptr) } } pub fn Store(cx: Block, val: ValueRef, ptr: ValueRef) -> ValueRef { if cx.unreachable.get() { return C_nil(cx.ccx()); } B(cx).store(val, ptr) } pub fn VolatileStore(cx: Block, val: ValueRef, ptr: ValueRef) -> ValueRef { if cx.unreachable.get() { return C_nil(cx.ccx()); } B(cx).volatile_store(val, ptr) } pub fn AtomicStore(cx: Block, val: ValueRef, ptr: ValueRef, order: AtomicOrdering) { if cx.unreachable.get() { return; } B(cx).atomic_store(val, ptr, order) } pub fn GEP(cx: Block, pointer: ValueRef, indices: &[ValueRef]) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::nil(cx.ccx()).ptr_to().to_ref()); } B(cx).gep(pointer, indices) } } // Simple wrapper around GEP that takes an array of ints and wraps them // in C_i32() #[inline] pub fn GEPi(cx: Block, base: ValueRef, ixs: &[usize]) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::nil(cx.ccx()).ptr_to().to_ref()); } B(cx).gepi(base, ixs) } } pub fn InBoundsGEP(cx: Block, pointer: ValueRef, indices: &[ValueRef]) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::nil(cx.ccx()).ptr_to().to_ref()); } B(cx).inbounds_gep(pointer, indices) } } pub fn StructGEP(cx: Block, pointer: ValueRef, idx: usize) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::nil(cx.ccx()).ptr_to().to_ref()); } B(cx).struct_gep(pointer, idx) } } pub fn GlobalString(cx: Block, _str: *const c_char) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::i8p(cx.ccx()).to_ref()); } B(cx).global_string(_str) } } pub fn GlobalStringPtr(cx: Block, _str: *const c_char) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::i8p(cx.ccx()).to_ref()); } B(cx).global_string_ptr(_str) } } /* Casts */ pub fn Trunc(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); } B(cx).trunc(val, dest_ty) } } pub fn ZExt(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); } B(cx).zext(val, dest_ty) } } pub fn SExt(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); } B(cx).sext(val, dest_ty) } } pub fn FPToUI(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); } B(cx).fptoui(val, dest_ty) } } pub fn FPToSI(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); } B(cx).fptosi(val, dest_ty) } } pub fn UIToFP(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); } B(cx).uitofp(val, dest_ty) } } pub fn SIToFP(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); } B(cx).sitofp(val, dest_ty) } } pub fn FPTrunc(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); } B(cx).fptrunc(val, dest_ty) } } pub fn FPExt(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); } B(cx).fpext(val, dest_ty) } } pub fn PtrToInt(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); } B(cx).ptrtoint(val, dest_ty) } } pub fn IntToPtr(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); } B(cx).inttoptr(val, dest_ty) } } pub fn BitCast(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); } B(cx).bitcast(val, dest_ty) } } pub fn ZExtOrBitCast(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); } B(cx).zext_or_bitcast(val, dest_ty) } } pub fn SExtOrBitCast(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); } B(cx).sext_or_bitcast(val, dest_ty) } } pub fn TruncOrBitCast(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); } B(cx).trunc_or_bitcast(val, dest_ty) } } pub fn Cast(cx: Block, op: Opcode, val: ValueRef, dest_ty: Type, _: *const u8) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); } B(cx).cast(op, val, dest_ty) } } pub fn PointerCast(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); } B(cx).pointercast(val, dest_ty) } } pub fn IntCast(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); } B(cx).intcast(val, dest_ty) } } pub fn FPCast(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); } B(cx).fpcast(val, dest_ty) } } /* Comparisons */ pub fn ICmp(cx: Block, op: IntPredicate, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::i1(cx.ccx()).to_ref()); } debug_loc.apply(cx.fcx); B(cx).icmp(op, lhs, rhs) } } pub fn FCmp(cx: Block, op: RealPredicate, lhs: ValueRef, rhs: ValueRef, debug_loc: DebugLoc) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::i1(cx.ccx()).to_ref()); } debug_loc.apply(cx.fcx); B(cx).fcmp(op, lhs, rhs) } } /* Miscellaneous instructions */ pub fn EmptyPhi(cx: Block, ty: Type) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(ty.to_ref()); } B(cx).empty_phi(ty) } } pub fn Phi(cx: Block, ty: Type, vals: &[ValueRef], bbs: &[BasicBlockRef]) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(ty.to_ref()); } B(cx).phi(ty, vals, bbs) } } pub fn AddIncomingToPhi(phi: ValueRef, val: ValueRef, bb: BasicBlockRef) { unsafe { if llvm::LLVMIsUndef(phi) == llvm::True { return; } llvm::LLVMAddIncoming(phi, &val, &bb, 1 as c_uint); } } pub fn _UndefReturn(cx: Block, fn_: ValueRef) -> ValueRef { unsafe { let ccx = cx.fcx.ccx; let ty = val_ty(fn_); let retty = if ty.kind() == llvm::Function { ty.return_type() } else { ccx.int_type() }; B(cx).count_insn("ret_undef"); llvm::LLVMGetUndef(retty.to_ref()) } } pub fn add_span_comment(cx: Block, sp: Span, text: &str) { B(cx).add_span_comment(sp, text) } pub fn add_comment(cx: Block, text: &str) { B(cx).add_comment(text) } pub fn InlineAsmCall(cx: Block, asm: *const c_char, cons: *const c_char, inputs: &[ValueRef], output: Type, volatile: bool, alignstack: bool, dia: AsmDialect) -> ValueRef { B(cx).inline_asm_call(asm, cons, inputs, output, volatile, alignstack, dia) } pub fn Call(cx: Block, fn_: ValueRef, args: &[ValueRef], debug_loc: DebugLoc) -> ValueRef { if cx.unreachable.get() { return _UndefReturn(cx, fn_); } debug_loc.apply(cx.fcx); let bundle = cx.lpad.get().and_then(|b| b.bundle()); B(cx).call(fn_, args, bundle) } pub fn AtomicFence(cx: Block, order: AtomicOrdering, scope: SynchronizationScope) { if cx.unreachable.get() { return; } B(cx).atomic_fence(order, scope) } pub fn Select(cx: Block, if_: ValueRef, then: ValueRef, else_: ValueRef) -> ValueRef { if cx.unreachable.get() { return _Undef(then); } B(cx).select(if_, then, else_) } pub fn VAArg(cx: Block, list: ValueRef, ty: Type) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(ty.to_ref()); } B(cx).va_arg(list, ty) } } pub fn ExtractElement(cx: Block, vec_val: ValueRef, index: ValueRef) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::nil(cx.ccx()).to_ref()); } B(cx).extract_element(vec_val, index) } } pub fn InsertElement(cx: Block, vec_val: ValueRef, elt_val: ValueRef, index: ValueRef) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::nil(cx.ccx()).to_ref()); } B(cx).insert_element(vec_val, elt_val, index) } } pub fn ShuffleVector(cx: Block, v1: ValueRef, v2: ValueRef, mask: ValueRef) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::nil(cx.ccx()).to_ref()); } B(cx).shuffle_vector(v1, v2, mask) } } pub fn VectorSplat(cx: Block, num_elts: usize, elt_val: ValueRef) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::nil(cx.ccx()).to_ref()); } B(cx).vector_splat(num_elts, elt_val) } } pub fn ExtractValue(cx: Block, agg_val: ValueRef, index: usize) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::nil(cx.ccx()).to_ref()); } B(cx).extract_value(agg_val, index) } } pub fn InsertValue(cx: Block, agg_val: ValueRef, elt_val: ValueRef, index: usize) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::nil(cx.ccx()).to_ref()); } B(cx).insert_value(agg_val, elt_val, index) } } pub fn IsNull(cx: Block, val: ValueRef) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::i1(cx.ccx()).to_ref()); } B(cx).is_null(val) } } pub fn IsNotNull(cx: Block, val: ValueRef) -> ValueRef { unsafe { if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::i1(cx.ccx()).to_ref()); } B(cx).is_not_null(val) } } pub fn PtrDiff(cx: Block, lhs: ValueRef, rhs: ValueRef) -> ValueRef { unsafe { let ccx = cx.fcx.ccx; if cx.unreachable.get() { return llvm::LLVMGetUndef(ccx.int_type().to_ref()); } B(cx).ptrdiff(lhs, rhs) } } pub fn Trap(cx: Block) { if cx.unreachable.get() { return; } B(cx).trap(); } pub fn LandingPad(cx: Block, ty: Type, pers_fn: ValueRef, num_clauses: usize) -> ValueRef { check_not_terminated(cx); assert!(!cx.unreachable.get()); B(cx).landing_pad(ty, pers_fn, num_clauses, cx.fcx.llfn) } pub fn AddClause(cx: Block, landing_pad: ValueRef, clause: ValueRef) { B(cx).add_clause(landing_pad, clause) } pub fn SetCleanup(cx: Block, landing_pad: ValueRef) { B(cx).set_cleanup(landing_pad) } pub fn SetPersonalityFn(cx: Block, f: ValueRef) { B(cx).set_personality_fn(f) } pub fn Resume(cx: Block, exn: ValueRef) -> ValueRef { check_not_terminated(cx); terminate(cx, "Resume"); B(cx).resume(exn) } // Atomic Operations pub fn AtomicCmpXchg(cx: Block, dst: ValueRef, cmp: ValueRef, src: ValueRef, order: AtomicOrdering, failure_order: AtomicOrdering, weak: llvm::Bool) -> ValueRef { B(cx).atomic_cmpxchg(dst, cmp, src, order, failure_order, weak) } pub fn AtomicRMW(cx: Block, op: AtomicBinOp, dst: ValueRef, src: ValueRef, order: AtomicOrdering) -> ValueRef { B(cx).atomic_rmw(op, dst, src, order) } pub fn CleanupPad(cx: Block, parent: Option, args: &[ValueRef]) -> ValueRef { check_not_terminated(cx); assert!(!cx.unreachable.get()); B(cx).cleanup_pad(parent, args) } pub fn CleanupRet(cx: Block, cleanup: ValueRef, unwind: Option) -> ValueRef { check_not_terminated(cx); terminate(cx, "CleanupRet"); B(cx).cleanup_ret(cleanup, unwind) } pub fn CatchPad(cx: Block, parent: ValueRef, args: &[ValueRef]) -> ValueRef { check_not_terminated(cx); assert!(!cx.unreachable.get()); B(cx).catch_pad(parent, args) } pub fn CatchRet(cx: Block, pad: ValueRef, unwind: BasicBlockRef) -> ValueRef { check_not_terminated(cx); terminate(cx, "CatchRet"); B(cx).catch_ret(pad, unwind) } pub fn CatchSwitch(cx: Block, parent: Option, unwind: Option, num_handlers: usize) -> ValueRef { check_not_terminated(cx); terminate(cx, "CatchSwitch"); B(cx).catch_switch(parent, unwind, num_handlers) } pub fn AddHandler(cx: Block, catch_switch: ValueRef, handler: BasicBlockRef) { B(cx).add_handler(catch_switch, handler) }