// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A priority queue implemented with a binary heap #[allow(missing_doc)]; use core::prelude::*; use core::old_iter::BaseIter; use core::unstable::intrinsics::{move_val_init, init}; use core::util::{replace, swap}; use core::vec; #[allow(missing_doc)] pub struct PriorityQueue { priv data: ~[T], } impl BaseIter for PriorityQueue { /// Visit all values in the underlying vector. /// /// The values are **not** visited in order. fn each(&self, f: &fn(&T) -> bool) -> bool { self.data.each(f) } fn size_hint(&self) -> Option { self.data.size_hint() } } impl Container for PriorityQueue { /// Returns the length of the queue fn len(&const self) -> uint { vec::uniq_len(&const self.data) } /// Returns true if a queue contains no elements fn is_empty(&const self) -> bool { self.len() == 0 } } impl Mutable for PriorityQueue { /// Drop all items from the queue fn clear(&mut self) { self.data.truncate(0) } } impl PriorityQueue { /// Returns the greatest item in the queue - fails if empty pub fn top<'a>(&'a self) -> &'a T { &self.data[0] } /// Returns the greatest item in the queue - None if empty pub fn maybe_top<'a>(&'a self) -> Option<&'a T> { if self.is_empty() { None } else { Some(self.top()) } } /// Returns the number of elements the queue can hold without reallocating pub fn capacity(&self) -> uint { vec::capacity(&self.data) } pub fn reserve(&mut self, n: uint) { vec::reserve(&mut self.data, n) } pub fn reserve_at_least(&mut self, n: uint) { vec::reserve_at_least(&mut self.data, n) } /// Pop the greatest item from the queue - fails if empty pub fn pop(&mut self) -> T { let mut item = self.data.pop(); if !self.is_empty() { swap(&mut item, &mut self.data[0]); self.siftdown(0); } item } /// Pop the greatest item from the queue - None if empty pub fn maybe_pop(&mut self) -> Option { if self.is_empty() { None } else { Some(self.pop()) } } /// Push an item onto the queue pub fn push(&mut self, item: T) { self.data.push(item); let new_len = self.len() - 1; self.siftup(0, new_len); } /// Optimized version of a push followed by a pop pub fn push_pop(&mut self, mut item: T) -> T { if !self.is_empty() && self.data[0] > item { swap(&mut item, &mut self.data[0]); self.siftdown(0); } item } /// Optimized version of a pop followed by a push - fails if empty pub fn replace(&mut self, mut item: T) -> T { swap(&mut item, &mut self.data[0]); self.siftdown(0); item } /// Consume the PriorityQueue and return the underlying vector pub fn to_vec(self) -> ~[T] { let PriorityQueue{data: v} = self; v } /// Consume the PriorityQueue and return a vector in sorted /// (ascending) order pub fn to_sorted_vec(self) -> ~[T] { let mut q = self; let mut end = q.len(); while end > 1 { end -= 1; vec::swap(q.data, 0, end); q.siftdown_range(0, end) } q.to_vec() } /// Create an empty PriorityQueue pub fn new() -> PriorityQueue { PriorityQueue{data: ~[],} } /// Create a PriorityQueue from a vector (heapify) pub fn from_vec(xs: ~[T]) -> PriorityQueue { let mut q = PriorityQueue{data: xs,}; let mut n = q.len() / 2; while n > 0 { n -= 1; q.siftdown(n) } q } // The implementations of siftup and siftdown use unsafe blocks in // order to move an element out of the vector (leaving behind a // zeroed element), shift along the others and move it back into the // vector over the junk element. This reduces the constant factor // compared to using swaps, which involves twice as many moves. fn siftup(&mut self, start: uint, mut pos: uint) { unsafe { let new = replace(&mut self.data[pos], init()); while pos > start { let parent = (pos - 1) >> 1; if new > self.data[parent] { let x = replace(&mut self.data[parent], init()); move_val_init(&mut self.data[pos], x); pos = parent; loop } break } move_val_init(&mut self.data[pos], new); } } fn siftdown_range(&mut self, mut pos: uint, end: uint) { unsafe { let start = pos; let new = replace(&mut self.data[pos], init()); let mut child = 2 * pos + 1; while child < end { let right = child + 1; if right < end && !(self.data[child] > self.data[right]) { child = right; } let x = replace(&mut self.data[child], init()); move_val_init(&mut self.data[pos], x); pos = child; child = 2 * pos + 1; } move_val_init(&mut self.data[pos], new); self.siftup(start, pos); } } fn siftdown(&mut self, pos: uint) { let len = self.len(); self.siftdown_range(pos, len); } } #[cfg(test)] mod tests { use sort::merge_sort; use core::cmp::le; use priority_queue::PriorityQueue; #[test] fn test_top_and_pop() { let data = ~[2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1]; let mut sorted = merge_sort(data, le); let mut heap = PriorityQueue::from_vec(data); while !heap.is_empty() { assert_eq!(heap.top(), sorted.last()); assert_eq!(heap.pop(), sorted.pop()); } } #[test] fn test_push() { let mut heap = PriorityQueue::from_vec(~[2, 4, 9]); assert_eq!(heap.len(), 3); assert!(*heap.top() == 9); heap.push(11); assert_eq!(heap.len(), 4); assert!(*heap.top() == 11); heap.push(5); assert_eq!(heap.len(), 5); assert!(*heap.top() == 11); heap.push(27); assert_eq!(heap.len(), 6); assert!(*heap.top() == 27); heap.push(3); assert_eq!(heap.len(), 7); assert!(*heap.top() == 27); heap.push(103); assert_eq!(heap.len(), 8); assert!(*heap.top() == 103); } #[test] fn test_push_unique() { let mut heap = PriorityQueue::from_vec(~[~2, ~4, ~9]); assert_eq!(heap.len(), 3); assert!(*heap.top() == ~9); heap.push(~11); assert_eq!(heap.len(), 4); assert!(*heap.top() == ~11); heap.push(~5); assert_eq!(heap.len(), 5); assert!(*heap.top() == ~11); heap.push(~27); assert_eq!(heap.len(), 6); assert!(*heap.top() == ~27); heap.push(~3); assert_eq!(heap.len(), 7); assert!(*heap.top() == ~27); heap.push(~103); assert_eq!(heap.len(), 8); assert!(*heap.top() == ~103); } #[test] fn test_push_pop() { let mut heap = PriorityQueue::from_vec(~[5, 5, 2, 1, 3]); assert_eq!(heap.len(), 5); assert_eq!(heap.push_pop(6), 6); assert_eq!(heap.len(), 5); assert_eq!(heap.push_pop(0), 5); assert_eq!(heap.len(), 5); assert_eq!(heap.push_pop(4), 5); assert_eq!(heap.len(), 5); assert_eq!(heap.push_pop(1), 4); assert_eq!(heap.len(), 5); } #[test] fn test_replace() { let mut heap = PriorityQueue::from_vec(~[5, 5, 2, 1, 3]); assert_eq!(heap.len(), 5); assert_eq!(heap.replace(6), 5); assert_eq!(heap.len(), 5); assert_eq!(heap.replace(0), 6); assert_eq!(heap.len(), 5); assert_eq!(heap.replace(4), 5); assert_eq!(heap.len(), 5); assert_eq!(heap.replace(1), 4); assert_eq!(heap.len(), 5); } fn check_to_vec(data: ~[int]) { let heap = PriorityQueue::from_vec(copy data); assert_eq!(merge_sort((copy heap).to_vec(), le), merge_sort(data, le)); assert_eq!(heap.to_sorted_vec(), merge_sort(data, le)); } #[test] fn test_to_vec() { check_to_vec(~[]); check_to_vec(~[5]); check_to_vec(~[3, 2]); check_to_vec(~[2, 3]); check_to_vec(~[5, 1, 2]); check_to_vec(~[1, 100, 2, 3]); check_to_vec(~[1, 3, 5, 7, 9, 2, 4, 6, 8, 0]); check_to_vec(~[2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1]); check_to_vec(~[9, 11, 9, 9, 9, 9, 11, 2, 3, 4, 11, 9, 0, 0, 0, 0]); check_to_vec(~[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]); check_to_vec(~[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]); check_to_vec(~[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, 1, 2]); check_to_vec(~[5, 4, 3, 2, 1, 5, 4, 3, 2, 1, 5, 4, 3, 2, 1]); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_empty_pop() { let mut heap = PriorityQueue::new::(); heap.pop(); } #[test] fn test_empty_maybe_pop() { let mut heap = PriorityQueue::new::(); assert!(heap.maybe_pop().is_none()); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_empty_top() { let empty = PriorityQueue::new::(); empty.top(); } #[test] fn test_empty_maybe_top() { let empty = PriorityQueue::new::(); assert!(empty.maybe_top().is_none()); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_empty_replace() { let mut heap = PriorityQueue::new(); heap.replace(5); } }