// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! This file actually contains two passes related to regions. The first //! pass builds up the `scope_map`, which describes the parent links in //! the region hierarchy. The second pass infers which types must be //! region parameterized. //! //! Most of the documentation on regions can be found in //! `middle/typeck/infer/region_inference.rs` use session::Session; use middle::ty::{self, Ty, FreeRegion}; use util::nodemap::{FnvHashMap, FnvHashSet, NodeMap}; use util::common::can_reach; use std::cell::RefCell; use std::hash::{Hash}; use syntax::codemap::Span; use syntax::{ast, visit}; use syntax::ast::{Block, Item, FnDecl, NodeId, Arm, Pat, Stmt, Expr, Local}; use syntax::ast_util::{stmt_id}; use syntax::visit::{Visitor, FnKind}; /// CodeExtent represents a statically-describable extent that can be /// used to bound the lifetime/region for values. /// /// FIXME (pnkfelix): This currently derives `PartialOrd` and `Ord` to /// placate the same deriving in `ty::FreeRegion`, but we may want to /// actually attach a more meaningful ordering to scopes than the one /// generated via deriving here. #[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, RustcEncodable, RustcDecodable, Show, Copy)] pub enum CodeExtent { Misc(ast::NodeId) } impl CodeExtent { /// Creates a scope that represents the dynamic extent associated /// with `node_id`. pub fn from_node_id(node_id: ast::NodeId) -> CodeExtent { CodeExtent::Misc(node_id) } /// Returns a node id associated with this scope. /// /// NB: likely to be replaced as API is refined; e.g. pnkfelix /// anticipates `fn entry_node_id` and `fn each_exit_node_id`. pub fn node_id(&self) -> ast::NodeId { match *self { CodeExtent::Misc(node_id) => node_id, } } /// Maps this scope to a potentially new one according to the /// NodeId transformer `f_id`. pub fn map_id(&self, f_id: F) -> CodeExtent where F: FnOnce(ast::NodeId) -> ast::NodeId, { match *self { CodeExtent::Misc(node_id) => CodeExtent::Misc(f_id(node_id)), } } } /// The region maps encode information about region relationships. /// /// - `scope_map` maps from a scope id to the enclosing scope id; this is /// usually corresponding to the lexical nesting, though in the case of /// closures the parent scope is the innermost conditional expression or repeating /// block /// /// - `var_map` maps from a variable or binding id to the block in which /// that variable is declared. /// /// - `free_region_map` maps from a free region `a` to a list of free /// regions `bs` such that `a <= b for all b in bs` /// - the free region map is populated during type check as we check /// each function. See the function `relate_free_regions` for /// more information. /// /// - `rvalue_scopes` includes entries for those expressions whose cleanup /// scope is larger than the default. The map goes from the expression /// id to the cleanup scope id. For rvalues not present in this table, /// the appropriate cleanup scope is the innermost enclosing statement, /// conditional expression, or repeating block (see `terminating_scopes`). /// /// - `terminating_scopes` is a set containing the ids of each statement, /// or conditional/repeating expression. These scopes are calling "terminating /// scopes" because, when attempting to find the scope of a temporary, by /// default we search up the enclosing scopes until we encounter the /// terminating scope. A conditional/repeating /// expression is one which is not guaranteed to execute exactly once /// upon entering the parent scope. This could be because the expression /// only executes conditionally, such as the expression `b` in `a && b`, /// or because the expression may execute many times, such as a loop /// body. The reason that we distinguish such expressions is that, upon /// exiting the parent scope, we cannot statically know how many times /// the expression executed, and thus if the expression creates /// temporaries we cannot know statically how many such temporaries we /// would have to cleanup. Therefore we ensure that the temporaries never /// outlast the conditional/repeating expression, preventing the need /// for dynamic checks and/or arbitrary amounts of stack space. pub struct RegionMaps { scope_map: RefCell>, var_map: RefCell>, free_region_map: RefCell>>, rvalue_scopes: RefCell>, terminating_scopes: RefCell>, } #[derive(Copy)] pub struct Context { var_parent: Option, // Innermost enclosing expression parent: Option, } struct RegionResolutionVisitor<'a> { sess: &'a Session, // Generated maps: region_maps: &'a RegionMaps, cx: Context } impl RegionMaps { pub fn relate_free_regions(&self, sub: FreeRegion, sup: FreeRegion) { match self.free_region_map.borrow_mut().get_mut(&sub) { Some(sups) => { if !sups.iter().any(|x| x == &sup) { sups.push(sup); } return; } None => {} } debug!("relate_free_regions(sub={:?}, sup={:?})", sub, sup); self.free_region_map.borrow_mut().insert(sub, vec!(sup)); } pub fn record_encl_scope(&self, sub: CodeExtent, sup: CodeExtent) { debug!("record_encl_scope(sub={:?}, sup={:?})", sub, sup); assert!(sub != sup); self.scope_map.borrow_mut().insert(sub, sup); } pub fn record_var_scope(&self, var: ast::NodeId, lifetime: CodeExtent) { debug!("record_var_scope(sub={:?}, sup={:?})", var, lifetime); assert!(var != lifetime.node_id()); self.var_map.borrow_mut().insert(var, lifetime); } pub fn record_rvalue_scope(&self, var: ast::NodeId, lifetime: CodeExtent) { debug!("record_rvalue_scope(sub={:?}, sup={:?})", var, lifetime); assert!(var != lifetime.node_id()); self.rvalue_scopes.borrow_mut().insert(var, lifetime); } /// Records that a scope is a TERMINATING SCOPE. Whenever we create automatic temporaries -- /// e.g. by an expression like `a().f` -- they will be freed within the innermost terminating /// scope. pub fn mark_as_terminating_scope(&self, scope_id: CodeExtent) { debug!("record_terminating_scope(scope_id={:?})", scope_id); self.terminating_scopes.borrow_mut().insert(scope_id); } pub fn opt_encl_scope(&self, id: CodeExtent) -> Option { //! Returns the narrowest scope that encloses `id`, if any. self.scope_map.borrow().get(&id).map(|x| *x) } #[allow(dead_code)] // used in middle::cfg pub fn encl_scope(&self, id: CodeExtent) -> CodeExtent { //! Returns the narrowest scope that encloses `id`, if any. match self.scope_map.borrow().get(&id) { Some(&r) => r, None => { panic!("no enclosing scope for id {:?}", id); } } } /// Returns the lifetime of the local variable `var_id` pub fn var_scope(&self, var_id: ast::NodeId) -> CodeExtent { match self.var_map.borrow().get(&var_id) { Some(&r) => r, None => { panic!("no enclosing scope for id {:?}", var_id); } } } pub fn temporary_scope(&self, expr_id: ast::NodeId) -> Option { //! Returns the scope when temp created by expr_id will be cleaned up // check for a designated rvalue scope match self.rvalue_scopes.borrow().get(&expr_id) { Some(&s) => { debug!("temporary_scope({:?}) = {:?} [custom]", expr_id, s); return Some(s); } None => { } } // else, locate the innermost terminating scope // if there's one. Static items, for instance, won't // have an enclosing scope, hence no scope will be // returned. let mut id = match self.opt_encl_scope(CodeExtent::from_node_id(expr_id)) { Some(i) => i, None => { return None; } }; while !self.terminating_scopes.borrow().contains(&id) { match self.opt_encl_scope(id) { Some(p) => { id = p; } None => { debug!("temporary_scope({:?}) = None", expr_id); return None; } } } debug!("temporary_scope({:?}) = {:?} [enclosing]", expr_id, id); return Some(id); } pub fn var_region(&self, id: ast::NodeId) -> ty::Region { //! Returns the lifetime of the variable `id`. let scope = ty::ReScope(self.var_scope(id)); debug!("var_region({:?}) = {:?}", id, scope); scope } pub fn scopes_intersect(&self, scope1: CodeExtent, scope2: CodeExtent) -> bool { self.is_subscope_of(scope1, scope2) || self.is_subscope_of(scope2, scope1) } /// Returns true if `subscope` is equal to or is lexically nested inside `superscope` and false /// otherwise. pub fn is_subscope_of(&self, subscope: CodeExtent, superscope: CodeExtent) -> bool { let mut s = subscope; while superscope != s { match self.scope_map.borrow().get(&s) { None => { debug!("is_subscope_of({:?}, {:?}, s={:?})=false", subscope, superscope, s); return false; } Some(&scope) => s = scope } } debug!("is_subscope_of({:?}, {:?})=true", subscope, superscope); return true; } /// Determines whether two free regions have a subregion relationship /// by walking the graph encoded in `free_region_map`. Note that /// it is possible that `sub != sup` and `sub <= sup` and `sup <= sub` /// (that is, the user can give two different names to the same lifetime). pub fn sub_free_region(&self, sub: FreeRegion, sup: FreeRegion) -> bool { can_reach(&*self.free_region_map.borrow(), sub, sup) } /// Determines whether one region is a subregion of another. This is intended to run *after /// inference* and sadly the logic is somewhat duplicated with the code in infer.rs. pub fn is_subregion_of(&self, sub_region: ty::Region, super_region: ty::Region) -> bool { debug!("is_subregion_of(sub_region={:?}, super_region={:?})", sub_region, super_region); sub_region == super_region || { match (sub_region, super_region) { (ty::ReEmpty, _) | (_, ty::ReStatic) => { true } (ty::ReScope(sub_scope), ty::ReScope(super_scope)) => { self.is_subscope_of(sub_scope, super_scope) } (ty::ReScope(sub_scope), ty::ReFree(ref fr)) => { self.is_subscope_of(sub_scope, fr.scope) } (ty::ReFree(sub_fr), ty::ReFree(super_fr)) => { self.sub_free_region(sub_fr, super_fr) } (ty::ReEarlyBound(param_id_a, param_space_a, index_a, _), ty::ReEarlyBound(param_id_b, param_space_b, index_b, _)) => { // This case is used only to make sure that explicitly- // specified `Self` types match the real self type in // implementations. param_id_a == param_id_b && param_space_a == param_space_b && index_a == index_b } _ => { false } } } } /// Finds the nearest common ancestor (if any) of two scopes. That is, finds the smallest /// scope which is greater than or equal to both `scope_a` and `scope_b`. pub fn nearest_common_ancestor(&self, scope_a: CodeExtent, scope_b: CodeExtent) -> Option { if scope_a == scope_b { return Some(scope_a); } let a_ancestors = ancestors_of(self, scope_a); let b_ancestors = ancestors_of(self, scope_b); let mut a_index = a_ancestors.len() - 1u; let mut b_index = b_ancestors.len() - 1u; // Here, ~[ab]_ancestors is a vector going from narrow to broad. // The end of each vector will be the item where the scope is // defined; if there are any common ancestors, then the tails of // the vector will be the same. So basically we want to walk // backwards from the tail of each vector and find the first point // where they diverge. If one vector is a suffix of the other, // then the corresponding scope is a superscope of the other. if a_ancestors[a_index] != b_ancestors[b_index] { return None; } loop { // Loop invariant: a_ancestors[a_index] == b_ancestors[b_index] // for all indices between a_index and the end of the array if a_index == 0u { return Some(scope_a); } if b_index == 0u { return Some(scope_b); } a_index -= 1u; b_index -= 1u; if a_ancestors[a_index] != b_ancestors[b_index] { return Some(a_ancestors[a_index + 1]); } } fn ancestors_of(this: &RegionMaps, scope: CodeExtent) -> Vec { // debug!("ancestors_of(scope={:?})", scope); let mut result = vec!(scope); let mut scope = scope; loop { match this.scope_map.borrow().get(&scope) { None => return result, Some(&superscope) => { result.push(superscope); scope = superscope; } } // debug!("ancestors_of_loop(scope={:?})", scope); } } } } /// Records the current parent (if any) as the parent of `child_id`. fn record_superlifetime(visitor: &mut RegionResolutionVisitor, child_id: ast::NodeId, _sp: Span) { match visitor.cx.parent { Some(parent_id) => { let child_scope = CodeExtent::from_node_id(child_id); let parent_scope = CodeExtent::from_node_id(parent_id); visitor.region_maps.record_encl_scope(child_scope, parent_scope); } None => {} } } /// Records the lifetime of a local variable as `cx.var_parent` fn record_var_lifetime(visitor: &mut RegionResolutionVisitor, var_id: ast::NodeId, _sp: Span) { match visitor.cx.var_parent { Some(parent_id) => { let parent_scope = CodeExtent::from_node_id(parent_id); visitor.region_maps.record_var_scope(var_id, parent_scope); } None => { // this can happen in extern fn declarations like // // extern fn isalnum(c: c_int) -> c_int } } } fn resolve_block(visitor: &mut RegionResolutionVisitor, blk: &ast::Block) { debug!("resolve_block(blk.id={:?})", blk.id); // Record the parent of this block. record_superlifetime(visitor, blk.id, blk.span); // We treat the tail expression in the block (if any) somewhat // differently from the statements. The issue has to do with // temporary lifetimes. If the user writes: // // { // ... (&foo()) ... // } // let prev_cx = visitor.cx; visitor.cx = Context {var_parent: Some(blk.id), parent: Some(blk.id)}; visit::walk_block(visitor, blk); visitor.cx = prev_cx; } fn resolve_arm(visitor: &mut RegionResolutionVisitor, arm: &ast::Arm) { let arm_body_scope = CodeExtent::from_node_id(arm.body.id); visitor.region_maps.mark_as_terminating_scope(arm_body_scope); match arm.guard { Some(ref expr) => { let guard_scope = CodeExtent::from_node_id(expr.id); visitor.region_maps.mark_as_terminating_scope(guard_scope); } None => { } } visit::walk_arm(visitor, arm); } fn resolve_pat(visitor: &mut RegionResolutionVisitor, pat: &ast::Pat) { record_superlifetime(visitor, pat.id, pat.span); // If this is a binding (or maybe a binding, I'm too lazy to check // the def map) then record the lifetime of that binding. match pat.node { ast::PatIdent(..) => { record_var_lifetime(visitor, pat.id, pat.span); } _ => { } } visit::walk_pat(visitor, pat); } fn resolve_stmt(visitor: &mut RegionResolutionVisitor, stmt: &ast::Stmt) { let stmt_id = stmt_id(stmt); debug!("resolve_stmt(stmt.id={:?})", stmt_id); let stmt_scope = CodeExtent::from_node_id(stmt_id); visitor.region_maps.mark_as_terminating_scope(stmt_scope); record_superlifetime(visitor, stmt_id, stmt.span); let prev_parent = visitor.cx.parent; visitor.cx.parent = Some(stmt_id); visit::walk_stmt(visitor, stmt); visitor.cx.parent = prev_parent; } fn resolve_expr(visitor: &mut RegionResolutionVisitor, expr: &ast::Expr) { debug!("resolve_expr(expr.id={:?})", expr.id); record_superlifetime(visitor, expr.id, expr.span); let prev_cx = visitor.cx; visitor.cx.parent = Some(expr.id); { let region_maps = &mut visitor.region_maps; let terminating = |&: id| { let scope = CodeExtent::from_node_id(id); region_maps.mark_as_terminating_scope(scope) }; match expr.node { // Conditional or repeating scopes are always terminating // scopes, meaning that temporaries cannot outlive them. // This ensures fixed size stacks. ast::ExprBinary(ast::BiAnd, _, ref r) | ast::ExprBinary(ast::BiOr, _, ref r) => { // For shortcircuiting operators, mark the RHS as a terminating // scope since it only executes conditionally. terminating(r.id); } ast::ExprIf(_, ref then, Some(ref otherwise)) => { terminating(then.id); terminating(otherwise.id); } ast::ExprIf(ref expr, ref then, None) => { terminating(expr.id); terminating(then.id); } ast::ExprLoop(ref body, _) => { terminating(body.id); } ast::ExprWhile(ref expr, ref body, _) => { terminating(expr.id); terminating(body.id); } ast::ExprForLoop(ref _pat, ref _head, ref body, _) => { terminating(body.id); // The variable parent of everything inside (most importantly, the // pattern) is the body. visitor.cx.var_parent = Some(body.id); } ast::ExprMatch(..) => { visitor.cx.var_parent = Some(expr.id); } ast::ExprAssignOp(..) | ast::ExprIndex(..) | ast::ExprUnary(..) | ast::ExprCall(..) | ast::ExprMethodCall(..) => { // FIXME(#6268) Nested method calls // // The lifetimes for a call or method call look as follows: // // call.id // - arg0.id // - ... // - argN.id // - call.callee_id // // The idea is that call.callee_id represents *the time when // the invoked function is actually running* and call.id // represents *the time to prepare the arguments and make the // call*. See the section "Borrows in Calls" borrowck/doc.rs // for an extended explanation of why this distinction is // important. // // record_superlifetime(new_cx, expr.callee_id); } _ => {} } } visit::walk_expr(visitor, expr); visitor.cx = prev_cx; } fn resolve_local(visitor: &mut RegionResolutionVisitor, local: &ast::Local) { debug!("resolve_local(local.id={:?},local.init={:?})", local.id,local.init.is_some()); let blk_id = match visitor.cx.var_parent { Some(id) => id, None => { visitor.sess.span_bug( local.span, "local without enclosing block"); } }; // For convenience in trans, associate with the local-id the var // scope that will be used for any bindings declared in this // pattern. let blk_scope = CodeExtent::from_node_id(blk_id); visitor.region_maps.record_var_scope(local.id, blk_scope); // As an exception to the normal rules governing temporary // lifetimes, initializers in a let have a temporary lifetime // of the enclosing block. This means that e.g. a program // like the following is legal: // // let ref x = HashMap::new(); // // Because the hash map will be freed in the enclosing block. // // We express the rules more formally based on 3 grammars (defined // fully in the helpers below that implement them): // // 1. `E&`, which matches expressions like `&` that // own a pointer into the stack. // // 2. `P&`, which matches patterns like `ref x` or `(ref x, ref // y)` that produce ref bindings into the value they are // matched against or something (at least partially) owned by // the value they are matched against. (By partially owned, // I mean that creating a binding into a ref-counted or managed value // would still count.) // // 3. `ET`, which matches both rvalues like `foo()` as well as lvalues // based on rvalues like `foo().x[2].y`. // // A subexpression `` that appears in a let initializer // `let pat [: ty] = expr` has an extended temporary lifetime if // any of the following conditions are met: // // A. `pat` matches `P&` and `expr` matches `ET` // (covers cases where `pat` creates ref bindings into an rvalue // produced by `expr`) // B. `ty` is a borrowed pointer and `expr` matches `ET` // (covers cases where coercion creates a borrow) // C. `expr` matches `E&` // (covers cases `expr` borrows an rvalue that is then assigned // to memory (at least partially) owned by the binding) // // Here are some examples hopefully giving an intuition where each // rule comes into play and why: // // Rule A. `let (ref x, ref y) = (foo().x, 44)`. The rvalue `(22, 44)` // would have an extended lifetime, but not `foo()`. // // Rule B. `let x: &[...] = [foo().x]`. The rvalue `[foo().x]` // would have an extended lifetime, but not `foo()`. // // Rule C. `let x = &foo().x`. The rvalue ``foo()` would have extended // lifetime. // // In some cases, multiple rules may apply (though not to the same // rvalue). For example: // // let ref x = [&a(), &b()]; // // Here, the expression `[...]` has an extended lifetime due to rule // A, but the inner rvalues `a()` and `b()` have an extended lifetime // due to rule C. // // FIXME(#6308) -- Note that `.index(&FullRange)` patterns work more smoothly post-DST. match local.init { Some(ref expr) => { record_rvalue_scope_if_borrow_expr(visitor, &**expr, blk_scope); let is_borrow = if let Some(ref ty) = local.ty { is_borrowed_ty(&**ty) } else { false }; if is_binding_pat(&*local.pat) || is_borrow { record_rvalue_scope(visitor, &**expr, blk_scope); } } None => { } } visit::walk_local(visitor, local); /// True if `pat` match the `P&` nonterminal: /// /// P& = ref X /// | StructName { ..., P&, ... } /// | VariantName(..., P&, ...) /// | [ ..., P&, ... ] /// | ( ..., P&, ... ) /// | box P& fn is_binding_pat(pat: &ast::Pat) -> bool { match pat.node { ast::PatIdent(ast::BindByRef(_), _, _) => true, ast::PatStruct(_, ref field_pats, _) => { field_pats.iter().any(|fp| is_binding_pat(&*fp.node.pat)) } ast::PatVec(ref pats1, ref pats2, ref pats3) => { pats1.iter().any(|p| is_binding_pat(&**p)) || pats2.iter().any(|p| is_binding_pat(&**p)) || pats3.iter().any(|p| is_binding_pat(&**p)) } ast::PatEnum(_, Some(ref subpats)) | ast::PatTup(ref subpats) => { subpats.iter().any(|p| is_binding_pat(&**p)) } ast::PatBox(ref subpat) => { is_binding_pat(&**subpat) } _ => false, } } /// True if `ty` is a borrowed pointer type like `&int` or `&[...]`. fn is_borrowed_ty(ty: &ast::Ty) -> bool { match ty.node { ast::TyRptr(..) => true, _ => false } } /// If `expr` matches the `E&` grammar, then records an extended rvalue scope as appropriate: /// /// E& = & ET /// | StructName { ..., f: E&, ... } /// | [ ..., E&, ... ] /// | ( ..., E&, ... ) /// | {...; E&} /// | box E& /// | E& as ... /// | ( E& ) fn record_rvalue_scope_if_borrow_expr(visitor: &mut RegionResolutionVisitor, expr: &ast::Expr, blk_id: CodeExtent) { match expr.node { ast::ExprAddrOf(_, ref subexpr) => { record_rvalue_scope_if_borrow_expr(visitor, &**subexpr, blk_id); record_rvalue_scope(visitor, &**subexpr, blk_id); } ast::ExprStruct(_, ref fields, _) => { for field in fields.iter() { record_rvalue_scope_if_borrow_expr( visitor, &*field.expr, blk_id); } } ast::ExprVec(ref subexprs) | ast::ExprTup(ref subexprs) => { for subexpr in subexprs.iter() { record_rvalue_scope_if_borrow_expr( visitor, &**subexpr, blk_id); } } ast::ExprUnary(ast::UnUniq, ref subexpr) => { record_rvalue_scope_if_borrow_expr(visitor, &**subexpr, blk_id); } ast::ExprCast(ref subexpr, _) | ast::ExprParen(ref subexpr) => { record_rvalue_scope_if_borrow_expr(visitor, &**subexpr, blk_id) } ast::ExprBlock(ref block) => { match block.expr { Some(ref subexpr) => { record_rvalue_scope_if_borrow_expr( visitor, &**subexpr, blk_id); } None => { } } } _ => { } } } /// Applied to an expression `expr` if `expr` -- or something owned or partially owned by /// `expr` -- is going to be indirectly referenced by a variable in a let statement. In that /// case, the "temporary lifetime" or `expr` is extended to be the block enclosing the `let` /// statement. /// /// More formally, if `expr` matches the grammar `ET`, record the rvalue scope of the matching /// `` as `blk_id`: /// /// ET = *ET /// | ET[...] /// | ET.f /// | (ET) /// | /// /// Note: ET is intended to match "rvalues or lvalues based on rvalues". fn record_rvalue_scope<'a>(visitor: &mut RegionResolutionVisitor, expr: &'a ast::Expr, blk_scope: CodeExtent) { let mut expr = expr; loop { // Note: give all the expressions matching `ET` with the // extended temporary lifetime, not just the innermost rvalue, // because in trans if we must compile e.g. `*rvalue()` // into a temporary, we request the temporary scope of the // outer expression. visitor.region_maps.record_rvalue_scope(expr.id, blk_scope); match expr.node { ast::ExprAddrOf(_, ref subexpr) | ast::ExprUnary(ast::UnDeref, ref subexpr) | ast::ExprField(ref subexpr, _) | ast::ExprTupField(ref subexpr, _) | ast::ExprIndex(ref subexpr, _) | ast::ExprParen(ref subexpr) => { expr = &**subexpr; } _ => { return; } } } } } fn resolve_item(visitor: &mut RegionResolutionVisitor, item: &ast::Item) { // Items create a new outer block scope as far as we're concerned. let prev_cx = visitor.cx; visitor.cx = Context {var_parent: None, parent: None}; visit::walk_item(visitor, item); visitor.cx = prev_cx; } fn resolve_fn(visitor: &mut RegionResolutionVisitor, fk: FnKind, decl: &ast::FnDecl, body: &ast::Block, sp: Span, id: ast::NodeId) { debug!("region::resolve_fn(id={:?}, \ span={:?}, \ body.id={:?}, \ cx.parent={:?})", id, visitor.sess.codemap().span_to_string(sp), body.id, visitor.cx.parent); let body_scope = CodeExtent::from_node_id(body.id); visitor.region_maps.mark_as_terminating_scope(body_scope); let outer_cx = visitor.cx; // The arguments and `self` are parented to the body of the fn. visitor.cx = Context { parent: Some(body.id), var_parent: Some(body.id) }; visit::walk_fn_decl(visitor, decl); // The body of the fn itself is either a root scope (top-level fn) // or it continues with the inherited scope (closures). match fk { visit::FkItemFn(..) | visit::FkMethod(..) => { visitor.cx = Context { parent: None, var_parent: None }; visitor.visit_block(body); visitor.cx = outer_cx; } visit::FkFnBlock(..) => { // FIXME(#3696) -- at present we are place the closure body // within the region hierarchy exactly where it appears lexically. // This is wrong because the closure may live longer // than the enclosing expression. We should probably fix this, // but the correct fix is a bit subtle, and I am also not sure // that the present approach is unsound -- it may not permit // any illegal programs. See issue for more details. visitor.cx = outer_cx; visitor.visit_block(body); } } } impl<'a, 'v> Visitor<'v> for RegionResolutionVisitor<'a> { fn visit_block(&mut self, b: &Block) { resolve_block(self, b); } fn visit_item(&mut self, i: &Item) { resolve_item(self, i); } fn visit_fn(&mut self, fk: FnKind<'v>, fd: &'v FnDecl, b: &'v Block, s: Span, n: NodeId) { resolve_fn(self, fk, fd, b, s, n); } fn visit_arm(&mut self, a: &Arm) { resolve_arm(self, a); } fn visit_pat(&mut self, p: &Pat) { resolve_pat(self, p); } fn visit_stmt(&mut self, s: &Stmt) { resolve_stmt(self, s); } fn visit_expr(&mut self, ex: &Expr) { resolve_expr(self, ex); } fn visit_local(&mut self, l: &Local) { resolve_local(self, l); } } pub fn resolve_crate(sess: &Session, krate: &ast::Crate) -> RegionMaps { let maps = RegionMaps { scope_map: RefCell::new(FnvHashMap::new()), var_map: RefCell::new(NodeMap::new()), free_region_map: RefCell::new(FnvHashMap::new()), rvalue_scopes: RefCell::new(NodeMap::new()), terminating_scopes: RefCell::new(FnvHashSet::new()), }; { let mut visitor = RegionResolutionVisitor { sess: sess, region_maps: &maps, cx: Context { parent: None, var_parent: None } }; visit::walk_crate(&mut visitor, krate); } return maps; } pub fn resolve_inlined_item(sess: &Session, region_maps: &RegionMaps, item: &ast::InlinedItem) { let mut visitor = RegionResolutionVisitor { sess: sess, region_maps: region_maps, cx: Context { parent: None, var_parent: None } }; visit::walk_inlined_item(&mut visitor, item); }