// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Generalized type relating mechanism. A type relation R relates a //! pair of values (A, B). A and B are usually types or regions but //! can be other things. Examples of type relations are subtyping, //! type equality, etc. use hir::def_id::DefId; use ty::subst::{Kind, Substs}; use ty::{self, Ty, TyCtxt, TypeFoldable}; use ty::error::{ExpectedFound, TypeError}; use std::rc::Rc; use std::iter; use syntax::abi; use hir as ast; use rustc_data_structures::accumulate_vec::AccumulateVec; pub type RelateResult<'tcx, T> = Result>; #[derive(Clone, Debug)] pub enum Cause { ExistentialRegionBound, // relating an existential region bound } pub trait TypeRelation<'a, 'gcx: 'a+'tcx, 'tcx: 'a> : Sized { fn tcx(&self) -> TyCtxt<'a, 'gcx, 'tcx>; /// Returns a static string we can use for printouts. fn tag(&self) -> &'static str; /// Returns true if the value `a` is the "expected" type in the /// relation. Just affects error messages. fn a_is_expected(&self) -> bool; fn with_cause(&mut self, _cause: Cause, f: F) -> R where F: FnOnce(&mut Self) -> R { f(self) } /// Generic relation routine suitable for most anything. fn relate>(&mut self, a: &T, b: &T) -> RelateResult<'tcx, T> { Relate::relate(self, a, b) } /// Relate the two substitutions for the given item. The default /// is to look up the variance for the item and proceed /// accordingly. fn relate_item_substs(&mut self, item_def_id: DefId, a_subst: &'tcx Substs<'tcx>, b_subst: &'tcx Substs<'tcx>) -> RelateResult<'tcx, &'tcx Substs<'tcx>> { debug!("relate_item_substs(item_def_id={:?}, a_subst={:?}, b_subst={:?})", item_def_id, a_subst, b_subst); let opt_variances = self.tcx().variances_of(item_def_id); relate_substs(self, Some(&opt_variances), a_subst, b_subst) } /// Switch variance for the purpose of relating `a` and `b`. fn relate_with_variance>(&mut self, variance: ty::Variance, a: &T, b: &T) -> RelateResult<'tcx, T>; // Overrideable relations. You shouldn't typically call these // directly, instead call `relate()`, which in turn calls // these. This is both more uniform but also allows us to add // additional hooks for other types in the future if needed // without making older code, which called `relate`, obsolete. fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>>; fn regions(&mut self, a: ty::Region<'tcx>, b: ty::Region<'tcx>) -> RelateResult<'tcx, ty::Region<'tcx>>; fn binders(&mut self, a: &ty::Binder, b: &ty::Binder) -> RelateResult<'tcx, ty::Binder> where T: Relate<'tcx>; } pub trait Relate<'tcx>: TypeFoldable<'tcx> { fn relate<'a, 'gcx, R>(relation: &mut R, a: &Self, b: &Self) -> RelateResult<'tcx, Self> where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a; } /////////////////////////////////////////////////////////////////////////// // Relate impls impl<'tcx> Relate<'tcx> for ty::TypeAndMut<'tcx> { fn relate<'a, 'gcx, R>(relation: &mut R, a: &ty::TypeAndMut<'tcx>, b: &ty::TypeAndMut<'tcx>) -> RelateResult<'tcx, ty::TypeAndMut<'tcx>> where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a { debug!("{}.mts({:?}, {:?})", relation.tag(), a, b); if a.mutbl != b.mutbl { Err(TypeError::Mutability) } else { let mutbl = a.mutbl; let variance = match mutbl { ast::Mutability::MutImmutable => ty::Covariant, ast::Mutability::MutMutable => ty::Invariant, }; let ty = relation.relate_with_variance(variance, &a.ty, &b.ty)?; Ok(ty::TypeAndMut {ty: ty, mutbl: mutbl}) } } } pub fn relate_substs<'a, 'gcx, 'tcx, R>(relation: &mut R, variances: Option<&Vec>, a_subst: &'tcx Substs<'tcx>, b_subst: &'tcx Substs<'tcx>) -> RelateResult<'tcx, &'tcx Substs<'tcx>> where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a { let tcx = relation.tcx(); let params = a_subst.iter().zip(b_subst).enumerate().map(|(i, (a, b))| { let variance = variances.map_or(ty::Invariant, |v| v[i]); if let (Some(a_ty), Some(b_ty)) = (a.as_type(), b.as_type()) { Ok(Kind::from(relation.relate_with_variance(variance, &a_ty, &b_ty)?)) } else if let (Some(a_r), Some(b_r)) = (a.as_region(), b.as_region()) { Ok(Kind::from(relation.relate_with_variance(variance, &a_r, &b_r)?)) } else { bug!() } }); Ok(tcx.mk_substs(params)?) } impl<'tcx> Relate<'tcx> for ty::FnSig<'tcx> { fn relate<'a, 'gcx, R>(relation: &mut R, a: &ty::FnSig<'tcx>, b: &ty::FnSig<'tcx>) -> RelateResult<'tcx, ty::FnSig<'tcx>> where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a { if a.variadic != b.variadic { return Err(TypeError::VariadicMismatch( expected_found(relation, &a.variadic, &b.variadic))); } let unsafety = relation.relate(&a.unsafety, &b.unsafety)?; let abi = relation.relate(&a.abi, &b.abi)?; if a.inputs().len() != b.inputs().len() { return Err(TypeError::ArgCount); } let inputs_and_output = a.inputs().iter().cloned() .zip(b.inputs().iter().cloned()) .map(|x| (x, false)) .chain(iter::once(((a.output(), b.output()), true))) .map(|((a, b), is_output)| { if is_output { relation.relate(&a, &b) } else { relation.relate_with_variance(ty::Contravariant, &a, &b) } }).collect::, _>>()?; Ok(ty::FnSig { inputs_and_output: relation.tcx().intern_type_list(&inputs_and_output), variadic: a.variadic, unsafety, abi, }) } } impl<'tcx> Relate<'tcx> for ast::Unsafety { fn relate<'a, 'gcx, R>(relation: &mut R, a: &ast::Unsafety, b: &ast::Unsafety) -> RelateResult<'tcx, ast::Unsafety> where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a { if a != b { Err(TypeError::UnsafetyMismatch(expected_found(relation, a, b))) } else { Ok(*a) } } } impl<'tcx> Relate<'tcx> for abi::Abi { fn relate<'a, 'gcx, R>(relation: &mut R, a: &abi::Abi, b: &abi::Abi) -> RelateResult<'tcx, abi::Abi> where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a { if a == b { Ok(*a) } else { Err(TypeError::AbiMismatch(expected_found(relation, a, b))) } } } impl<'tcx> Relate<'tcx> for ty::ProjectionTy<'tcx> { fn relate<'a, 'gcx, R>(relation: &mut R, a: &ty::ProjectionTy<'tcx>, b: &ty::ProjectionTy<'tcx>) -> RelateResult<'tcx, ty::ProjectionTy<'tcx>> where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a { if a.item_def_id != b.item_def_id { Err(TypeError::ProjectionMismatched( expected_found(relation, &a.item_def_id, &b.item_def_id))) } else { let substs = relation.relate(&a.substs, &b.substs)?; Ok(ty::ProjectionTy { item_def_id: a.item_def_id, substs: &substs, }) } } } impl<'tcx> Relate<'tcx> for ty::ExistentialProjection<'tcx> { fn relate<'a, 'gcx, R>(relation: &mut R, a: &ty::ExistentialProjection<'tcx>, b: &ty::ExistentialProjection<'tcx>) -> RelateResult<'tcx, ty::ExistentialProjection<'tcx>> where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a { if a.item_def_id != b.item_def_id { Err(TypeError::ProjectionMismatched( expected_found(relation, &a.item_def_id, &b.item_def_id))) } else { let ty = relation.relate(&a.ty, &b.ty)?; let substs = relation.relate(&a.substs, &b.substs)?; Ok(ty::ExistentialProjection { item_def_id: a.item_def_id, substs: substs, ty, }) } } } impl<'tcx> Relate<'tcx> for Vec> { fn relate<'a, 'gcx, R>(relation: &mut R, a: &Vec>, b: &Vec>) -> RelateResult<'tcx, Vec>> where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a { // To be compatible, `a` and `b` must be for precisely the // same set of traits and item names. We always require that // projection bounds lists are sorted by trait-def-id and item-name, // so we can just iterate through the lists pairwise, so long as they are the // same length. if a.len() != b.len() { Err(TypeError::ProjectionBoundsLength(expected_found(relation, &a.len(), &b.len()))) } else { a.iter().zip(b) .map(|(a, b)| relation.relate(a, b)) .collect() } } } impl<'tcx> Relate<'tcx> for ty::TraitRef<'tcx> { fn relate<'a, 'gcx, R>(relation: &mut R, a: &ty::TraitRef<'tcx>, b: &ty::TraitRef<'tcx>) -> RelateResult<'tcx, ty::TraitRef<'tcx>> where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a { // Different traits cannot be related if a.def_id != b.def_id { Err(TypeError::Traits(expected_found(relation, &a.def_id, &b.def_id))) } else { let substs = relate_substs(relation, None, a.substs, b.substs)?; Ok(ty::TraitRef { def_id: a.def_id, substs: substs }) } } } impl<'tcx> Relate<'tcx> for ty::ExistentialTraitRef<'tcx> { fn relate<'a, 'gcx, R>(relation: &mut R, a: &ty::ExistentialTraitRef<'tcx>, b: &ty::ExistentialTraitRef<'tcx>) -> RelateResult<'tcx, ty::ExistentialTraitRef<'tcx>> where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a { // Different traits cannot be related if a.def_id != b.def_id { Err(TypeError::Traits(expected_found(relation, &a.def_id, &b.def_id))) } else { let substs = relate_substs(relation, None, a.substs, b.substs)?; Ok(ty::ExistentialTraitRef { def_id: a.def_id, substs: substs }) } } } impl<'tcx> Relate<'tcx> for Ty<'tcx> { fn relate<'a, 'gcx, R>(relation: &mut R, a: &Ty<'tcx>, b: &Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a { relation.tys(a, b) } } /// The main "type relation" routine. Note that this does not handle /// inference artifacts, so you should filter those out before calling /// it. pub fn super_relate_tys<'a, 'gcx, 'tcx, R>(relation: &mut R, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a { let tcx = relation.tcx(); let a_sty = &a.sty; let b_sty = &b.sty; debug!("super_tys: a_sty={:?} b_sty={:?}", a_sty, b_sty); match (a_sty, b_sty) { (&ty::TyInfer(_), _) | (_, &ty::TyInfer(_)) => { // The caller should handle these cases! bug!("var types encountered in super_relate_tys") } (&ty::TyError, _) | (_, &ty::TyError) => { Ok(tcx.types.err) } (&ty::TyNever, _) | (&ty::TyChar, _) | (&ty::TyBool, _) | (&ty::TyInt(_), _) | (&ty::TyUint(_), _) | (&ty::TyFloat(_), _) | (&ty::TyStr, _) if a == b => { Ok(a) } (&ty::TyParam(ref a_p), &ty::TyParam(ref b_p)) if a_p.idx == b_p.idx => { Ok(a) } (&ty::TyAdt(a_def, a_substs), &ty::TyAdt(b_def, b_substs)) if a_def == b_def => { let substs = relation.relate_item_substs(a_def.did, a_substs, b_substs)?; Ok(tcx.mk_adt(a_def, substs)) } (&ty::TyDynamic(ref a_obj, ref a_region), &ty::TyDynamic(ref b_obj, ref b_region)) => { let region_bound = relation.with_cause(Cause::ExistentialRegionBound, |relation| { relation.relate_with_variance( ty::Contravariant, a_region, b_region) })?; Ok(tcx.mk_dynamic(relation.relate(a_obj, b_obj)?, region_bound)) } (&ty::TyGenerator(a_id, a_substs, a_interior), &ty::TyGenerator(b_id, b_substs, b_interior)) if a_id == b_id => { // All TyGenerator types with the same id represent // the (anonymous) type of the same generator expression. So // all of their regions should be equated. let substs = relation.relate(&a_substs, &b_substs)?; let interior = relation.relate(&a_interior, &b_interior)?; Ok(tcx.mk_generator(a_id, substs, interior)) } (&ty::TyClosure(a_id, a_substs), &ty::TyClosure(b_id, b_substs)) if a_id == b_id => { // All TyClosure types with the same id represent // the (anonymous) type of the same closure expression. So // all of their regions should be equated. let substs = relation.relate(&a_substs, &b_substs)?; Ok(tcx.mk_closure_from_closure_substs(a_id, substs)) } (&ty::TyRawPtr(ref a_mt), &ty::TyRawPtr(ref b_mt)) => { let mt = relation.relate(a_mt, b_mt)?; Ok(tcx.mk_ptr(mt)) } (&ty::TyRef(a_r, ref a_mt), &ty::TyRef(b_r, ref b_mt)) => { let r = relation.relate_with_variance(ty::Contravariant, &a_r, &b_r)?; let mt = relation.relate(a_mt, b_mt)?; Ok(tcx.mk_ref(r, mt)) } (&ty::TyArray(a_t, sz_a), &ty::TyArray(b_t, sz_b)) => { let t = relation.relate(&a_t, &b_t)?; if sz_a == sz_b { Ok(tcx.mk_array(t, sz_a)) } else { Err(TypeError::FixedArraySize(expected_found(relation, &sz_a, &sz_b))) } } (&ty::TySlice(a_t), &ty::TySlice(b_t)) => { let t = relation.relate(&a_t, &b_t)?; Ok(tcx.mk_slice(t)) } (&ty::TyTuple(as_, a_defaulted), &ty::TyTuple(bs, b_defaulted)) => { if as_.len() == bs.len() { let defaulted = a_defaulted || b_defaulted; Ok(tcx.mk_tup(as_.iter().zip(bs).map(|(a, b)| relation.relate(a, b)), defaulted)?) } else if !(as_.is_empty() || bs.is_empty()) { Err(TypeError::TupleSize( expected_found(relation, &as_.len(), &bs.len()))) } else { Err(TypeError::Sorts(expected_found(relation, &a, &b))) } } (&ty::TyFnDef(a_def_id, a_substs), &ty::TyFnDef(b_def_id, b_substs)) if a_def_id == b_def_id => { let substs = relation.relate_item_substs(a_def_id, a_substs, b_substs)?; Ok(tcx.mk_fn_def(a_def_id, substs)) } (&ty::TyFnPtr(a_fty), &ty::TyFnPtr(b_fty)) => { let fty = relation.relate(&a_fty, &b_fty)?; Ok(tcx.mk_fn_ptr(fty)) } (&ty::TyProjection(ref a_data), &ty::TyProjection(ref b_data)) => { let projection_ty = relation.relate(a_data, b_data)?; Ok(tcx.mk_projection(projection_ty.item_def_id, projection_ty.substs)) } (&ty::TyAnon(a_def_id, a_substs), &ty::TyAnon(b_def_id, b_substs)) if a_def_id == b_def_id => { let substs = relate_substs(relation, None, a_substs, b_substs)?; Ok(tcx.mk_anon(a_def_id, substs)) } _ => { Err(TypeError::Sorts(expected_found(relation, &a, &b))) } } } impl<'tcx> Relate<'tcx> for &'tcx ty::Slice> { fn relate<'a, 'gcx, R>(relation: &mut R, a: &Self, b: &Self) -> RelateResult<'tcx, Self> where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a { if a.len() != b.len() { return Err(TypeError::ExistentialMismatch(expected_found(relation, a, b))); } let tcx = relation.tcx(); let v = a.iter().zip(b.iter()).map(|(ep_a, ep_b)| { use ty::ExistentialPredicate::*; match (*ep_a, *ep_b) { (Trait(ref a), Trait(ref b)) => Ok(Trait(relation.relate(a, b)?)), (Projection(ref a), Projection(ref b)) => Ok(Projection(relation.relate(a, b)?)), (AutoTrait(ref a), AutoTrait(ref b)) if a == b => Ok(AutoTrait(*a)), _ => Err(TypeError::ExistentialMismatch(expected_found(relation, a, b))) } }); Ok(tcx.mk_existential_predicates(v)?) } } impl<'tcx> Relate<'tcx> for ty::ClosureSubsts<'tcx> { fn relate<'a, 'gcx, R>(relation: &mut R, a: &ty::ClosureSubsts<'tcx>, b: &ty::ClosureSubsts<'tcx>) -> RelateResult<'tcx, ty::ClosureSubsts<'tcx>> where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a { let substs = relate_substs(relation, None, a.substs, b.substs)?; Ok(ty::ClosureSubsts { substs: substs }) } } impl<'tcx> Relate<'tcx> for ty::GeneratorInterior<'tcx> { fn relate<'a, 'gcx, R>(relation: &mut R, a: &ty::GeneratorInterior<'tcx>, b: &ty::GeneratorInterior<'tcx>) -> RelateResult<'tcx, ty::GeneratorInterior<'tcx>> where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a { let interior = relation.relate(&a.witness(), &b.witness())?; Ok(ty::GeneratorInterior::new(interior)) } } impl<'tcx> Relate<'tcx> for &'tcx Substs<'tcx> { fn relate<'a, 'gcx, R>(relation: &mut R, a: &&'tcx Substs<'tcx>, b: &&'tcx Substs<'tcx>) -> RelateResult<'tcx, &'tcx Substs<'tcx>> where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a { relate_substs(relation, None, a, b) } } impl<'tcx> Relate<'tcx> for ty::Region<'tcx> { fn relate<'a, 'gcx, R>(relation: &mut R, a: &ty::Region<'tcx>, b: &ty::Region<'tcx>) -> RelateResult<'tcx, ty::Region<'tcx>> where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a { relation.regions(*a, *b) } } impl<'tcx, T: Relate<'tcx>> Relate<'tcx> for ty::Binder { fn relate<'a, 'gcx, R>(relation: &mut R, a: &ty::Binder, b: &ty::Binder) -> RelateResult<'tcx, ty::Binder> where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a { relation.binders(a, b) } } impl<'tcx, T: Relate<'tcx>> Relate<'tcx> for Rc { fn relate<'a, 'gcx, R>(relation: &mut R, a: &Rc, b: &Rc) -> RelateResult<'tcx, Rc> where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a { let a: &T = a; let b: &T = b; Ok(Rc::new(relation.relate(a, b)?)) } } impl<'tcx, T: Relate<'tcx>> Relate<'tcx> for Box { fn relate<'a, 'gcx, R>(relation: &mut R, a: &Box, b: &Box) -> RelateResult<'tcx, Box> where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a { let a: &T = a; let b: &T = b; Ok(Box::new(relation.relate(a, b)?)) } } /////////////////////////////////////////////////////////////////////////// // Error handling pub fn expected_found<'a, 'gcx, 'tcx, R, T>(relation: &mut R, a: &T, b: &T) -> ExpectedFound where R: TypeRelation<'a, 'gcx, 'tcx>, T: Clone, 'gcx: 'a+'tcx, 'tcx: 'a { expected_found_bool(relation.a_is_expected(), a, b) } pub fn expected_found_bool(a_is_expected: bool, a: &T, b: &T) -> ExpectedFound where T: Clone { let a = a.clone(); let b = b.clone(); if a_is_expected { ExpectedFound {expected: a, found: b} } else { ExpectedFound {expected: b, found: a} } }