import driver::session::session; import lib::llvm::llvm; import lib::llvm::{ValueRef, BasicBlockRef}; import pat_util::*; import build::*; import base::*; import syntax::ast; import syntax::ast_util; import syntax::ast_util::{dummy_sp}; import syntax::ast::def_id; import syntax::codemap::span; import syntax::print::pprust::pat_to_str; import back::abi; import resolve::def_map; import common::*; // An option identifying a branch (either a literal, a enum variant or a // range) enum opt { lit(@ast::expr), var(/* disr val */int, /* variant dids */{enm: def_id, var: def_id}), range(@ast::expr, @ast::expr) } fn opt_eq(a: opt, b: opt) -> bool { alt (a, b) { (lit(a), lit(b)) { ast_util::compare_lit_exprs(a, b) == 0 } (range(a1, a2), range(b1, b2)) { ast_util::compare_lit_exprs(a1, b1) == 0 && ast_util::compare_lit_exprs(a2, b2) == 0 } (var(a, _), var(b, _)) { a == b } _ { false } } } enum opt_result { single_result(result), range_result(result, result), } fn trans_opt(bcx: block, o: opt) -> opt_result { let ccx = bcx.ccx(), bcx = bcx; alt o { lit(l) { alt l.node { ast::expr_lit(@{node: ast::lit_str(s), _}) { let strty = ty::mk_str(bcx.tcx()); let cell = empty_dest_cell(); bcx = tvec::trans_str(bcx, s, by_val(cell)); add_clean_temp(bcx, *cell, strty); ret single_result(rslt(bcx, *cell)); } _ { ret single_result( rslt(bcx, trans_const_expr(ccx, l))); } } } var(disr_val, _) { ret single_result(rslt(bcx, C_int(ccx, disr_val))); } range(l1, l2) { ret range_result(rslt(bcx, trans_const_expr(ccx, l1)), rslt(bcx, trans_const_expr(ccx, l2))); } } } fn variant_opt(tcx: ty::ctxt, pat_id: ast::node_id) -> opt { let vdef = ast_util::variant_def_ids(tcx.def_map.get(pat_id)); let variants = ty::enum_variants(tcx, vdef.enm); for v: ty::variant_info in *variants { if vdef.var == v.id { ret var(v.disr_val, vdef); } } std::util::unreachable(); } type bind_map = [{ident: ast::ident, val: ValueRef}]; fn assoc(key: str, list: bind_map) -> option { for elt: {ident: ast::ident, val: ValueRef} in list { if str::eq(elt.ident, key) { ret some(elt.val); } } ret none; } type match_branch = @{pats: [@ast::pat], bound: bind_map, data: @{body: BasicBlockRef, guard: option<@ast::expr>, id_map: pat_id_map}}; type match = [match_branch]; fn has_nested_bindings(m: match, col: uint) -> bool { for br in m { alt br.pats[col].node { ast::pat_ident(_, some(_)) { ret true; } _ {} } } ret false; } fn expand_nested_bindings(m: match, col: uint, val: ValueRef) -> match { let result = []; for br in m { alt br.pats[col].node { ast::pat_ident(name, some(inner)) { let pats = vec::slice(br.pats, 0u, col) + [inner] + vec::slice(br.pats, col + 1u, br.pats.len()); result += [@{pats: pats, bound: br.bound + [{ident: path_to_ident(name), val: val}] with *br}]; } _ { result += [br]; } } } result } type enter_pat = fn(@ast::pat) -> option<[@ast::pat]>; fn enter_match(dm: def_map, m: match, col: uint, val: ValueRef, e: enter_pat) -> match { let result = []; for br: match_branch in m { alt e(br.pats[col]) { some(sub) { let pats = sub + vec::slice(br.pats, 0u, col) + vec::slice(br.pats, col + 1u, br.pats.len()); let self = br.pats[col]; let bound = alt self.node { ast::pat_ident(name, none) if !pat_is_variant(dm, self) { br.bound + [{ident: path_to_ident(name), val: val}] } _ { br.bound } }; result += [@{pats: pats, bound: bound with *br}]; } none { } } } ret result; } fn enter_default(dm: def_map, m: match, col: uint, val: ValueRef) -> match { enter_match(dm, m, col, val) {|p| alt p.node { ast::pat_wild | ast::pat_rec(_, _) | ast::pat_tup(_) { some([]) } ast::pat_ident(_, none) if !pat_is_variant(dm, p) { some([]) } _ { none } } } } fn enter_opt(tcx: ty::ctxt, m: match, opt: opt, col: uint, variant_size: uint, val: ValueRef) -> match { let dummy = @{id: 0, node: ast::pat_wild, span: dummy_sp()}; enter_match(tcx.def_map, m, col, val) {|p| alt p.node { ast::pat_enum(_, subpats) { if opt_eq(variant_opt(tcx, p.id), opt) { some(subpats) } else { none } } ast::pat_ident(_, none) if pat_is_variant(tcx.def_map, p) { if opt_eq(variant_opt(tcx, p.id), opt) { some([]) } else { none } } ast::pat_lit(l) { if opt_eq(lit(l), opt) { some([]) } else { none } } ast::pat_range(l1, l2) { if opt_eq(range(l1, l2), opt) { some([]) } else { none } } _ { some(vec::init_elt(variant_size, dummy)) } } } } fn enter_rec(dm: def_map, m: match, col: uint, fields: [ast::ident], val: ValueRef) -> match { let dummy = @{id: 0, node: ast::pat_wild, span: dummy_sp()}; enter_match(dm, m, col, val) {|p| alt p.node { ast::pat_rec(fpats, _) { let pats = []; for fname: ast::ident in fields { let pat = dummy; for fpat: ast::field_pat in fpats { if str::eq(fpat.ident, fname) { pat = fpat.pat; break; } } pats += [pat]; } some(pats) } _ { some(vec::init_elt(fields.len(), dummy)) } } } } fn enter_tup(dm: def_map, m: match, col: uint, val: ValueRef, n_elts: uint) -> match { let dummy = @{id: 0, node: ast::pat_wild, span: dummy_sp()}; enter_match(dm, m, col, val) {|p| alt p.node { ast::pat_tup(elts) { some(elts) } _ { some(vec::init_elt(n_elts, dummy)) } } } } fn enter_box(dm: def_map, m: match, col: uint, val: ValueRef) -> match { let dummy = @{id: 0, node: ast::pat_wild, span: dummy_sp()}; enter_match(dm, m, col, val) {|p| alt p.node { ast::pat_box(sub) { some([sub]) } _ { some([dummy]) } } } } fn enter_uniq(dm: def_map, m: match, col: uint, val: ValueRef) -> match { let dummy = @{id: 0, node: ast::pat_wild, span: dummy_sp()}; enter_match(dm, m, col, val) {|p| alt p.node { ast::pat_uniq(sub) { some([sub]) } _ { some([dummy]) } } } } fn get_options(ccx: crate_ctxt, m: match, col: uint) -> [opt] { fn add_to_set(&set: [opt], val: opt) { for l in set { if opt_eq(l, val) { ret; } } set += [val]; } let found = []; for br in m { let cur = br.pats[col]; if pat_is_variant(ccx.tcx.def_map, cur) { add_to_set(found, variant_opt(ccx.tcx, br.pats[col].id)); } else { alt cur.node { ast::pat_lit(l) { add_to_set(found, lit(l)); } ast::pat_range(l1, l2) { add_to_set(found, range(l1, l2)); } _ {} } } } ret found; } fn extract_variant_args(bcx: block, pat_id: ast::node_id, vdefs: {enm: def_id, var: def_id}, val: ValueRef) -> {vals: [ValueRef], bcx: block} { let ccx = bcx.fcx.ccx, bcx = bcx; let enum_ty_substs = alt check ty::get(node_id_type(bcx, pat_id)).struct { ty::ty_enum(id, tps) { assert id == vdefs.enm; tps } }; let blobptr = val; let variants = ty::enum_variants(ccx.tcx, vdefs.enm); let args = []; let size = ty::enum_variant_with_id(ccx.tcx, vdefs.enm, vdefs.var).args.len(); if size > 0u && (*variants).len() != 1u { let enumptr = PointerCast(bcx, val, T_opaque_enum_ptr(ccx)); blobptr = GEPi(bcx, enumptr, [0, 1]); } let i = 0u; let vdefs_tg = vdefs.enm; let vdefs_var = vdefs.var; while i < size { let r = GEP_enum(bcx, blobptr, vdefs_tg, vdefs_var, enum_ty_substs, i); bcx = r.bcx; args += [r.val]; i += 1u; } ret {vals: args, bcx: bcx}; } fn collect_record_fields(m: match, col: uint) -> [ast::ident] { let fields = []; for br: match_branch in m { alt br.pats[col].node { ast::pat_rec(fs, _) { for f: ast::field_pat in fs { if !vec::any(fields, bind str::eq(f.ident, _)) { fields += [f.ident]; } } } _ { } } } ret fields; } fn any_box_pat(m: match, col: uint) -> bool { for br: match_branch in m { alt br.pats[col].node { ast::pat_box(_) { ret true; } _ { } } } ret false; } fn any_uniq_pat(m: match, col: uint) -> bool { for br: match_branch in m { alt br.pats[col].node { ast::pat_uniq(_) { ret true; } _ { } } } ret false; } fn any_tup_pat(m: match, col: uint) -> bool { for br: match_branch in m { alt br.pats[col].node { ast::pat_tup(_) { ret true; } _ { } } } ret false; } type exit_node = {bound: bind_map, from: BasicBlockRef, to: BasicBlockRef}; type mk_fail = fn@() -> BasicBlockRef; fn pick_col(m: match) -> uint { fn score(p: @ast::pat) -> uint { alt p.node { ast::pat_lit(_) | ast::pat_enum(_, _) | ast::pat_range(_, _) { 1u } ast::pat_ident(_, some(p)) { score(p) } _ { 0u } } } let scores = vec::to_mut(vec::init_elt(m[0].pats.len(), 0u)); for br: match_branch in m { let i = 0u; for p: @ast::pat in br.pats { scores[i] += score(p); i += 1u; } } let max_score = 0u; let best_col = 0u; let i = 0u; for score: uint in scores { // Irrefutable columns always go first, they'd only be duplicated in // the branches. if score == 0u { ret i; } // If no irrefutable ones are found, we pick the one with the biggest // branching factor. if score > max_score { max_score = score; best_col = i; } i += 1u; } ret best_col; } fn compile_submatch(bcx: block, m: match, vals: [ValueRef], f: mk_fail, &exits: [exit_node]) { let bcx = bcx, tcx = bcx.tcx(), dm = tcx.def_map; if m.len() == 0u { Br(bcx, f()); ret; } if m[0].pats.len() == 0u { let data = m[0].data; alt data.guard { some(e) { // Temporarily set bindings. They'll be rewritten to PHI nodes // for the actual arm block. data.id_map.items {|key, val| let loc = local_mem(option::get(assoc(key, m[0].bound))); bcx.fcx.lllocals.insert(val, loc); }; let {bcx: guard_cx, val} = with_scope_result(bcx, "guard") {|bcx| trans_temp_expr(bcx, e) }; bcx = with_cond(guard_cx, Not(guard_cx, val)) {|bcx| compile_submatch(bcx, vec::tail(m), vals, f, exits); bcx }; } _ { } } if !bcx.unreachable { exits += [{bound: m[0].bound, from: bcx.llbb, to: data.body}]; } Br(bcx, data.body); ret; } let col = pick_col(m); let val = vals[col]; let m = if has_nested_bindings(m, col) { expand_nested_bindings(m, col, val) } else { m }; let vals_left = vec::slice(vals, 0u, col) + vec::slice(vals, col + 1u, vals.len()); let ccx = bcx.fcx.ccx; let pat_id = 0; for br: match_branch in m { // Find a real id (we're adding placeholder wildcard patterns, but // each column is guaranteed to have at least one real pattern) if pat_id == 0 { pat_id = br.pats[col].id; } } let rec_fields = collect_record_fields(m, col); // Separate path for extracting and binding record fields if rec_fields.len() > 0u { let rec_ty = node_id_type(bcx, pat_id); let fields = ty::get_fields(rec_ty); let rec_vals = []; for field_name: ast::ident in rec_fields { let ix = option::get(ty::field_idx(field_name, fields)); let r = GEP_tup_like(bcx, rec_ty, val, [0, ix as int]); rec_vals += [r.val]; bcx = r.bcx; } compile_submatch(bcx, enter_rec(dm, m, col, rec_fields, val), rec_vals + vals_left, f, exits); ret; } if any_tup_pat(m, col) { let tup_ty = node_id_type(bcx, pat_id); let n_tup_elts = alt ty::get(tup_ty).struct { ty::ty_tup(elts) { elts.len() } _ { ccx.sess.bug("non-tuple type in tuple pattern"); } }; let tup_vals = [], i = 0u; while i < n_tup_elts { let r = GEP_tup_like(bcx, tup_ty, val, [0, i as int]); tup_vals += [r.val]; bcx = r.bcx; i += 1u; } compile_submatch(bcx, enter_tup(dm, m, col, val, n_tup_elts), tup_vals + vals_left, f, exits); ret; } // Unbox in case of a box field if any_box_pat(m, col) { let box = Load(bcx, val); let unboxed = GEPi(bcx, box, [0, abi::box_field_body]); compile_submatch(bcx, enter_box(dm, m, col, val), [unboxed] + vals_left, f, exits); ret; } if any_uniq_pat(m, col) { let unboxed = Load(bcx, val); compile_submatch(bcx, enter_uniq(dm, m, col, val), [unboxed] + vals_left, f, exits); ret; } // Decide what kind of branch we need let opts = get_options(ccx, m, col); enum branch_kind { no_branch, single, switch, compare, } let kind = no_branch; let test_val = val; if opts.len() > 0u { alt opts[0] { var(_, vdef) { if (*ty::enum_variants(tcx, vdef.enm)).len() == 1u { kind = single; } else { let enumptr = PointerCast(bcx, val, T_opaque_enum_ptr(ccx)); let discrimptr = GEPi(bcx, enumptr, [0, 0]); test_val = Load(bcx, discrimptr); kind = switch; } } lit(l) { test_val = Load(bcx, val); let pty = node_id_type(bcx, pat_id); kind = if ty::type_is_integral(pty) { switch } else { compare }; } range(_, _) { test_val = Load(bcx, val); kind = compare; } } } for o: opt in opts { alt o { range(_, _) { kind = compare; break; } _ { } } } let else_cx = alt kind { no_branch | single { bcx } _ { sub_block(bcx, "match_else") } }; let sw = if kind == switch { Switch(bcx, test_val, else_cx.llbb, opts.len()) } else { C_int(ccx, 0) }; // Placeholder for when not using a switch // Compile subtrees for each option for opt: opt in opts { let opt_cx = sub_block(bcx, "match_case"); alt kind { single { Br(bcx, opt_cx.llbb); } switch { let res = trans_opt(bcx, opt); alt check res { single_result(r) { llvm::LLVMAddCase(sw, r.val, opt_cx.llbb); bcx = r.bcx; } } } compare { let t = node_id_type(bcx, pat_id); let {bcx: after_cx, val: matches} = with_scope_result(bcx, "compare_scope") {|bcx| alt trans_opt(bcx, opt) { single_result({bcx, val}) { trans_compare(bcx, ast::eq, test_val, t, val, t) } range_result({val: vbegin, _}, {bcx, val: vend}) { let {bcx, val: ge} = trans_compare(bcx, ast::ge, test_val, t, vbegin, t); let {bcx, val: le} = trans_compare(bcx, ast::le, test_val, t, vend, t); {bcx: bcx, val: And(bcx, ge, le)} } } }; bcx = sub_block(after_cx, "compare_next"); CondBr(after_cx, matches, opt_cx.llbb, bcx.llbb); } _ { } } let size = 0u; let unpacked = []; alt opt { var(_, vdef) { let args = extract_variant_args(opt_cx, pat_id, vdef, val); size = args.vals.len(); unpacked = args.vals; opt_cx = args.bcx; } lit(_) | range(_, _) { } } compile_submatch(opt_cx, enter_opt(tcx, m, opt, col, size, val), unpacked + vals_left, f, exits); } // Compile the fall-through case if kind == compare { Br(bcx, else_cx.llbb); } if kind != single { compile_submatch(else_cx, enter_default(dm, m, col, val), vals_left, f, exits); } } // Returns false for unreachable blocks fn make_phi_bindings(bcx: block, map: [exit_node], ids: pat_util::pat_id_map) -> bool { let our_block = bcx.llbb as uint; let success = true, bcx = bcx; ids.items {|name, node_id| let llbbs = []; let vals = []; for ex: exit_node in map { if ex.to as uint == our_block { alt assoc(name, ex.bound) { some(val) { llbbs += [ex.from]; vals += [val]; } none { } } } } if vals.len() > 0u { let local = Phi(bcx, val_ty(vals[0]), vals, llbbs); bcx.fcx.lllocals.insert(node_id, local_mem(local)); } else { success = false; } }; if success { // Copy references that the alias analysis considered unsafe ids.values {|node_id| if bcx.ccx().maps.copy_map.contains_key(node_id) { let local = alt bcx.fcx.lllocals.find(node_id) { some(local_mem(x)) { x } _ { bcx.tcx().sess.bug("someone \ forgot to document an invariant in \ make_phi_bindings"); } }; let e_ty = node_id_type(bcx, node_id); let {bcx: abcx, val: alloc} = alloc_ty(bcx, e_ty); bcx = copy_val(abcx, INIT, alloc, load_if_immediate(abcx, local, e_ty), e_ty); add_clean(bcx, alloc, e_ty); bcx.fcx.lllocals.insert(node_id, local_mem(alloc)); } }; } else { Unreachable(bcx); } ret success; } fn trans_alt(bcx: block, expr: @ast::expr, arms: [ast::arm], dest: dest) -> block { with_scope(bcx, "alt") {|bcx| trans_alt_inner(bcx, expr, arms, dest)} } fn trans_alt_inner(scope_cx: block, expr: @ast::expr, arms: [ast::arm], dest: dest) -> block { let bcx = scope_cx, tcx = bcx.tcx(); let bodies = [], match = []; let {bcx, val, _} = trans_temp_expr(bcx, expr); if bcx.unreachable { ret bcx; } for a in arms { let body = scope_block(bcx, "case_body"); body.block_span = some(a.body.span); let id_map = pat_util::pat_id_map(tcx.def_map, a.pats[0]); bodies += [body]; for p in a.pats { match += [@{pats: [p], bound: [], data: @{body: body.llbb, guard: a.guard, id_map: id_map}}]; } } // Cached fail-on-fallthrough block let fail_cx = @mutable none; fn mk_fail(bcx: block, sp: span, done: @mutable option) -> BasicBlockRef { alt *done { some(bb) { ret bb; } _ { } } let fail_cx = sub_block(bcx, "case_fallthrough"); trans_fail(fail_cx, some(sp), "non-exhaustive match failure");; *done = some(fail_cx.llbb); ret fail_cx.llbb; } let exit_map = []; let t = node_id_type(bcx, expr.id); let {bcx, val: spilled} = spill_if_immediate(bcx, val, t); compile_submatch(bcx, match, [spilled], bind mk_fail(scope_cx, expr.span, fail_cx), exit_map); let arm_cxs = [], arm_dests = [], i = 0u; for a in arms { let body_cx = bodies[i]; let id_map = pat_util::pat_id_map(tcx.def_map, a.pats[0]); if make_phi_bindings(body_cx, exit_map, id_map) { let arm_dest = dup_for_join(dest); arm_dests += [arm_dest]; let arm_cx = trans_block(body_cx, a.body, arm_dest); arm_cx = trans_block_cleanups(arm_cx, body_cx); arm_cxs += [arm_cx]; } i += 1u; } join_returns(scope_cx, arm_cxs, arm_dests, dest) } // Not alt-related, but similar to the pattern-munging code above fn bind_irrefutable_pat(bcx: block, pat: @ast::pat, val: ValueRef, make_copy: bool) -> block { let ccx = bcx.fcx.ccx, bcx = bcx; // Necessary since bind_irrefutable_pat is called outside trans_alt alt pat.node { ast::pat_ident(_,inner) { if pat_is_variant(bcx.tcx().def_map, pat) { ret bcx; } if make_copy || ccx.maps.copy_map.contains_key(pat.id) { let ty = node_id_type(bcx, pat.id); let llty = type_of::type_of(ccx, ty); let alloc = alloca(bcx, llty); bcx = copy_val(bcx, INIT, alloc, load_if_immediate(bcx, val, ty), ty); bcx.fcx.lllocals.insert(pat.id, local_mem(alloc)); add_clean(bcx, alloc, ty); } else { bcx.fcx.lllocals.insert(pat.id, local_mem(val)); } alt inner { some(pat) { bcx = bind_irrefutable_pat(bcx, pat, val, true); } _ {} } } ast::pat_enum(_, sub) { let vdefs = ast_util::variant_def_ids(ccx.tcx.def_map.get(pat.id)); let args = extract_variant_args(bcx, pat.id, vdefs, val); let i = 0; for argval: ValueRef in args.vals { bcx = bind_irrefutable_pat(bcx, sub[i], argval, make_copy); i += 1; } } ast::pat_rec(fields, _) { let rec_ty = node_id_type(bcx, pat.id); let rec_fields = ty::get_fields(rec_ty); for f: ast::field_pat in fields { let ix = option::get(ty::field_idx(f.ident, rec_fields)); // how to get rid of this check? let r = GEP_tup_like(bcx, rec_ty, val, [0, ix as int]); bcx = bind_irrefutable_pat(r.bcx, f.pat, r.val, make_copy); } } ast::pat_tup(elems) { let tup_ty = node_id_type(bcx, pat.id); let i = 0u; for elem in elems { let r = GEP_tup_like(bcx, tup_ty, val, [0, i as int]); bcx = bind_irrefutable_pat(r.bcx, elem, r.val, make_copy); i += 1u; } } ast::pat_box(inner) { let box = Load(bcx, val); let unboxed = GEPi(bcx, box, [0, abi::box_field_body]); bcx = bind_irrefutable_pat(bcx, inner, unboxed, true); } ast::pat_uniq(inner) { let val = Load(bcx, val); bcx = bind_irrefutable_pat(bcx, inner, val, true); } ast::pat_wild | ast::pat_lit(_) | ast::pat_range(_, _) { } } ret bcx; } // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: