// Copyright 2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Implementation of rustbuild, the Rust build system. //! //! This module, and its descendants, are the implementation of the Rust build //! system. Most of this build system is backed by Cargo but the outer layer //! here serves as the ability to orchestrate calling Cargo, sequencing Cargo //! builds, building artifacts like LLVM, etc. The goals of rustbuild are: //! //! * To be an easily understandable, easily extensible, and maintainable build //! system. //! * Leverage standard tools in the Rust ecosystem to build the compiler, aka //! crates.io and Cargo. //! * A standard interface to build across all platforms, including MSVC //! //! ## Architecture //! //! Although this build system defers most of the complicated logic to Cargo //! itself, it still needs to maintain a list of targets and dependencies which //! it can itself perform. Rustbuild is made up of a list of rules with //! dependencies amongst them (created in the `step` module) and then knows how //! to execute each in sequence. Each time rustbuild is invoked, it will simply //! iterate through this list of steps and execute each serially in turn. For //! each step rustbuild relies on the step internally being incremental and //! parallel. Note, though, that the `-j` parameter to rustbuild gets forwarded //! to appropriate test harnesses and such. //! //! Most of the "meaty" steps that matter are backed by Cargo, which does indeed //! have its own parallelism and incremental management. Later steps, like //! tests, aren't incremental and simply run the entire suite currently. //! //! When you execute `x.py build`, the steps which are executed are: //! //! * First, the python script is run. This will automatically download the //! stage0 rustc and cargo according to `src/stage0.txt`, or using the cached //! versions if they're available. These are then used to compile rustbuild //! itself (using Cargo). Finally, control is then transferred to rustbuild. //! //! * Rustbuild takes over, performs sanity checks, probes the environment, //! reads configuration, builds up a list of steps, and then starts executing //! them. //! //! * The stage0 libstd is compiled //! * The stage0 libtest is compiled //! * The stage0 librustc is compiled //! * The stage1 compiler is assembled //! * The stage1 libstd, libtest, librustc are compiled //! * The stage2 compiler is assembled //! * The stage2 libstd, libtest, librustc are compiled //! //! Each step is driven by a separate Cargo project and rustbuild orchestrates //! copying files between steps and otherwise preparing for Cargo to run. //! //! ## Further information //! //! More documentation can be found in each respective module below, and you can //! also check out the `src/bootstrap/README.md` file for more information. #![deny(warnings)] #[macro_use] extern crate build_helper; extern crate cmake; extern crate filetime; extern crate gcc; extern crate getopts; extern crate num_cpus; extern crate rustc_serialize; extern crate toml; use std::collections::HashMap; use std::cmp; use std::env; use std::ffi::OsString; use std::fs::{self, File}; use std::path::{Component, PathBuf, Path}; use std::process::Command; use build_helper::{run_silent, output, mtime}; use util::{exe, libdir, add_lib_path}; mod cc; mod channel; mod check; mod clean; mod compile; mod metadata; mod config; mod dist; mod doc; mod flags; mod install; mod native; mod sanity; mod step; pub mod util; #[cfg(windows)] mod job; #[cfg(not(windows))] mod job { pub unsafe fn setup() {} } pub use config::Config; pub use flags::{Flags, Subcommand}; /// A structure representing a Rust compiler. /// /// Each compiler has a `stage` that it is associated with and a `host` that /// corresponds to the platform the compiler runs on. This structure is used as /// a parameter to many methods below. #[derive(Eq, PartialEq, Clone, Copy, Hash, Debug)] pub struct Compiler<'a> { stage: u32, host: &'a str, } /// Global configuration for the build system. /// /// This structure transitively contains all configuration for the build system. /// All filesystem-encoded configuration is in `config`, all flags are in /// `flags`, and then parsed or probed information is listed in the keys below. /// /// This structure is a parameter of almost all methods in the build system, /// although most functions are implemented as free functions rather than /// methods specifically on this structure itself (to make it easier to /// organize). pub struct Build { // User-specified configuration via config.toml config: Config, // User-specified configuration via CLI flags flags: Flags, // Derived properties from the above two configurations cargo: PathBuf, rustc: PathBuf, src: PathBuf, out: PathBuf, release: String, unstable_features: bool, ver_hash: Option, short_ver_hash: Option, ver_date: Option, version: String, package_vers: String, local_rebuild: bool, release_num: String, prerelease_version: String, // Probed tools at runtime lldb_version: Option, lldb_python_dir: Option, // Runtime state filled in later on cc: HashMap)>, cxx: HashMap, crates: HashMap, is_sudo: bool, } #[derive(Debug)] struct Crate { name: String, deps: Vec, path: PathBuf, doc_step: String, build_step: String, test_step: String, bench_step: String, } /// The various "modes" of invoking Cargo. /// /// These entries currently correspond to the various output directories of the /// build system, with each mod generating output in a different directory. #[derive(Clone, Copy)] pub enum Mode { /// This cargo is going to build the standard library, placing output in the /// "stageN-std" directory. Libstd, /// This cargo is going to build libtest, placing output in the /// "stageN-test" directory. Libtest, /// This cargo is going to build librustc and compiler libraries, placing /// output in the "stageN-rustc" directory. Librustc, /// This cargo is going to some build tool, placing output in the /// "stageN-tools" directory. Tool, } impl Build { /// Creates a new set of build configuration from the `flags` on the command /// line and the filesystem `config`. /// /// By default all build output will be placed in the current directory. pub fn new(flags: Flags, config: Config) -> Build { let cwd = t!(env::current_dir()); let src = flags.src.clone().or_else(|| { env::var_os("SRC").map(|x| x.into()) }).unwrap_or(cwd.clone()); let out = cwd.join("build"); let stage0_root = out.join(&config.build).join("stage0/bin"); let rustc = match config.rustc { Some(ref s) => PathBuf::from(s), None => stage0_root.join(exe("rustc", &config.build)), }; let cargo = match config.cargo { Some(ref s) => PathBuf::from(s), None => stage0_root.join(exe("cargo", &config.build)), }; let local_rebuild = config.local_rebuild; let is_sudo = match env::var_os("SUDO_USER") { Some(sudo_user) => { match env::var_os("USER") { Some(user) => user != sudo_user, None => false, } } None => false, }; Build { flags: flags, config: config, cargo: cargo, rustc: rustc, src: src, out: out, release: String::new(), unstable_features: false, ver_hash: None, short_ver_hash: None, ver_date: None, version: String::new(), local_rebuild: local_rebuild, package_vers: String::new(), cc: HashMap::new(), cxx: HashMap::new(), crates: HashMap::new(), lldb_version: None, lldb_python_dir: None, is_sudo: is_sudo, release_num: String::new(), prerelease_version: String::new(), } } /// Executes the entire build, as configured by the flags and configuration. pub fn build(&mut self) { unsafe { job::setup(); } if let Subcommand::Clean = self.flags.cmd { return clean::clean(self); } self.verbose("finding compilers"); cc::find(self); self.verbose("running sanity check"); sanity::check(self); self.verbose("collecting channel variables"); channel::collect(self); // If local-rust is the same major.minor as the current version, then force a local-rebuild let local_version_verbose = output( Command::new(&self.rustc).arg("--version").arg("--verbose")); let local_release = local_version_verbose .lines().filter(|x| x.starts_with("release:")) .next().unwrap().trim_left_matches("release:").trim(); if local_release.split('.').take(2).eq(self.release.split('.').take(2)) { self.verbose(&format!("auto-detected local-rebuild {}", local_release)); self.local_rebuild = true; } self.verbose("updating submodules"); self.update_submodules(); self.verbose("learning about cargo"); metadata::build(self); step::run(self); } /// Updates all git submodules that we have. /// /// This will detect if any submodules are out of date an run the necessary /// commands to sync them all with upstream. fn update_submodules(&self) { struct Submodule<'a> { path: &'a Path, state: State, } enum State { // The submodule may have staged/unstaged changes MaybeDirty, // Or could be initialized but never updated NotInitialized, // The submodule, itself, has extra commits but those changes haven't been commited to // the (outer) git repository OutOfSync, } if !self.config.submodules { return } if fs::metadata(self.src.join(".git")).is_err() { return } let git = || { let mut cmd = Command::new("git"); cmd.current_dir(&self.src); return cmd }; let git_submodule = || { let mut cmd = Command::new("git"); cmd.current_dir(&self.src).arg("submodule"); return cmd }; // FIXME: this takes a seriously long time to execute on Windows and a // nontrivial amount of time on Unix, we should have a better way // of detecting whether we need to run all the submodule commands // below. let out = output(git_submodule().arg("status")); let mut submodules = vec![]; for line in out.lines() { // NOTE `git submodule status` output looks like this: // // -5066b7dcab7e700844b0e2ba71b8af9dc627a59b src/liblibc // +b37ef24aa82d2be3a3cc0fe89bf82292f4ca181c src/compiler-rt (remotes/origin/..) // e058ca661692a8d01f8cf9d35939dfe3105ce968 src/jemalloc (3.6.0-533-ge058ca6) // // The first character can be '-', '+' or ' ' and denotes the `State` of the submodule // Right next to this character is the SHA-1 of the submodule HEAD // And after that comes the path to the submodule let path = Path::new(line[1..].split(' ').skip(1).next().unwrap()); let state = if line.starts_with('-') { State::NotInitialized } else if line.starts_with('+') { State::OutOfSync } else if line.starts_with(' ') { State::MaybeDirty } else { panic!("unexpected git submodule state: {:?}", line.chars().next()); }; submodules.push(Submodule { path: path, state: state }) } self.run(git_submodule().arg("sync")); for submodule in submodules { // If using llvm-root then don't touch the llvm submodule. if submodule.path.components().any(|c| c == Component::Normal("llvm".as_ref())) && self.config.target_config.get(&self.config.build) .and_then(|c| c.llvm_config.as_ref()).is_some() { continue } if submodule.path.components().any(|c| c == Component::Normal("jemalloc".as_ref())) && !self.config.use_jemalloc { continue } // `submodule.path` is the relative path to a submodule (from the repository root) // `submodule_path` is the path to a submodule from the cwd // use `submodule.path` when e.g. executing a submodule specific command from the // repository root // use `submodule_path` when e.g. executing a normal git command for the submodule // (set via `current_dir`) let submodule_path = self.src.join(submodule.path); match submodule.state { State::MaybeDirty => { // drop staged changes self.run(git().current_dir(&submodule_path) .args(&["reset", "--hard"])); // drops unstaged changes self.run(git().current_dir(&submodule_path) .args(&["clean", "-fdx"])); }, State::NotInitialized => { self.run(git_submodule().arg("init").arg(submodule.path)); self.run(git_submodule().arg("update").arg(submodule.path)); }, State::OutOfSync => { // drops submodule commits that weren't reported to the (outer) git repository self.run(git_submodule().arg("update").arg(submodule.path)); self.run(git().current_dir(&submodule_path) .args(&["reset", "--hard"])); self.run(git().current_dir(&submodule_path) .args(&["clean", "-fdx"])); }, } } } /// Clear out `dir` if `input` is newer. /// /// After this executes, it will also ensure that `dir` exists. fn clear_if_dirty(&self, dir: &Path, input: &Path) { let stamp = dir.join(".stamp"); if mtime(&stamp) < mtime(input) { self.verbose(&format!("Dirty - {}", dir.display())); let _ = fs::remove_dir_all(dir); } else if stamp.exists() { return } t!(fs::create_dir_all(dir)); t!(File::create(stamp)); } /// Prepares an invocation of `cargo` to be run. /// /// This will create a `Command` that represents a pending execution of /// Cargo. This cargo will be configured to use `compiler` as the actual /// rustc compiler, its output will be scoped by `mode`'s output directory, /// it will pass the `--target` flag for the specified `target`, and will be /// executing the Cargo command `cmd`. fn cargo(&self, compiler: &Compiler, mode: Mode, target: &str, cmd: &str) -> Command { let mut cargo = Command::new(&self.cargo); let out_dir = self.stage_out(compiler, mode); cargo.env("CARGO_TARGET_DIR", out_dir) .arg(cmd) .arg("-j").arg(self.jobs().to_string()) .arg("--target").arg(target); // FIXME: Temporary fix for https://github.com/rust-lang/cargo/issues/3005 // Force cargo to output binaries with disambiguating hashes in the name cargo.env("__CARGO_DEFAULT_LIB_METADATA", "1"); let stage; if compiler.stage == 0 && self.local_rebuild { // Assume the local-rebuild rustc already has stage1 features. stage = 1; } else { stage = compiler.stage; } // Customize the compiler we're running. Specify the compiler to cargo // as our shim and then pass it some various options used to configure // how the actual compiler itself is called. // // These variables are primarily all read by // src/bootstrap/bin/{rustc.rs,rustdoc.rs} cargo.env("RUSTBUILD_NATIVE_DIR", self.native_dir(target)) .env("RUSTC", self.out.join("bootstrap/debug/rustc")) .env("RUSTC_REAL", self.compiler_path(compiler)) .env("RUSTC_STAGE", stage.to_string()) .env("RUSTC_DEBUGINFO", self.config.rust_debuginfo.to_string()) .env("RUSTC_DEBUGINFO_LINES", self.config.rust_debuginfo_lines.to_string()) .env("RUSTC_CODEGEN_UNITS", self.config.rust_codegen_units.to_string()) .env("RUSTC_DEBUG_ASSERTIONS", self.config.rust_debug_assertions.to_string()) .env("RUSTC_SNAPSHOT", &self.rustc) .env("RUSTC_SYSROOT", self.sysroot(compiler)) .env("RUSTC_LIBDIR", self.rustc_libdir(compiler)) .env("RUSTC_SNAPSHOT_LIBDIR", self.rustc_snapshot_libdir()) .env("RUSTC_RPATH", self.config.rust_rpath.to_string()) .env("RUSTDOC", self.out.join("bootstrap/debug/rustdoc")) .env("RUSTDOC_REAL", self.rustdoc(compiler)) .env("RUSTC_FLAGS", self.rustc_flags(target).join(" ")); // Enable usage of unstable features cargo.env("RUSTC_BOOTSTRAP", "1"); self.add_rust_test_threads(&mut cargo); // Ignore incremental modes except for stage0, since we're // not guaranteeing correctness acros builds if the compiler // is changing under your feet.` if self.flags.incremental && compiler.stage == 0 { let incr_dir = self.incremental_dir(compiler); cargo.env("RUSTC_INCREMENTAL", incr_dir); } let verbose = cmp::max(self.config.verbose, self.flags.verbose); cargo.env("RUSTC_VERBOSE", format!("{}", verbose)); // Specify some various options for build scripts used throughout // the build. // // FIXME: the guard against msvc shouldn't need to be here if !target.contains("msvc") { cargo.env(format!("CC_{}", target), self.cc(target)) .env(format!("AR_{}", target), self.ar(target).unwrap()) // only msvc is None .env(format!("CFLAGS_{}", target), self.cflags(target).join(" ")); } if self.config.channel == "nightly" && compiler.is_final_stage(self) { cargo.env("RUSTC_SAVE_ANALYSIS", "api".to_string()); } // Environment variables *required* needed throughout the build // // FIXME: should update code to not require this env var cargo.env("CFG_COMPILER_HOST_TRIPLE", target); if self.config.verbose() || self.flags.verbose() { cargo.arg("-v"); } // FIXME: cargo bench does not accept `--release` if self.config.rust_optimize && cmd != "bench" { cargo.arg("--release"); } if self.config.vendor || self.is_sudo { cargo.arg("--frozen"); } return cargo } /// Get a path to the compiler specified. fn compiler_path(&self, compiler: &Compiler) -> PathBuf { if compiler.is_snapshot(self) { self.rustc.clone() } else { self.sysroot(compiler).join("bin").join(exe("rustc", compiler.host)) } } /// Get the specified tool built by the specified compiler fn tool(&self, compiler: &Compiler, tool: &str) -> PathBuf { self.cargo_out(compiler, Mode::Tool, compiler.host) .join(exe(tool, compiler.host)) } /// Get the `rustdoc` executable next to the specified compiler fn rustdoc(&self, compiler: &Compiler) -> PathBuf { let mut rustdoc = self.compiler_path(compiler); rustdoc.pop(); rustdoc.push(exe("rustdoc", compiler.host)); return rustdoc } /// Get a `Command` which is ready to run `tool` in `stage` built for /// `host`. fn tool_cmd(&self, compiler: &Compiler, tool: &str) -> Command { let mut cmd = Command::new(self.tool(&compiler, tool)); self.prepare_tool_cmd(compiler, &mut cmd); return cmd } /// Prepares the `cmd` provided to be able to run the `compiler` provided. /// /// Notably this munges the dynamic library lookup path to point to the /// right location to run `compiler`. fn prepare_tool_cmd(&self, compiler: &Compiler, cmd: &mut Command) { let host = compiler.host; let mut paths = vec![ self.sysroot_libdir(compiler, compiler.host), self.cargo_out(compiler, Mode::Tool, host).join("deps"), ]; // On MSVC a tool may invoke a C compiler (e.g. compiletest in run-make // mode) and that C compiler may need some extra PATH modification. Do // so here. if compiler.host.contains("msvc") { let curpaths = env::var_os("PATH").unwrap_or(OsString::new()); let curpaths = env::split_paths(&curpaths).collect::>(); for &(ref k, ref v) in self.cc[compiler.host].0.env() { if k != "PATH" { continue } for path in env::split_paths(v) { if !curpaths.contains(&path) { paths.push(path); } } } } add_lib_path(paths, cmd); } /// Get the space-separated set of activated features for the standard /// library. fn std_features(&self) -> String { let mut features = "panic-unwind".to_string(); if self.config.debug_jemalloc { features.push_str(" debug-jemalloc"); } if self.config.use_jemalloc { features.push_str(" jemalloc"); } if self.config.backtrace { features.push_str(" backtrace"); } return features } /// Get the space-separated set of activated features for the compiler. fn rustc_features(&self) -> String { let mut features = String::new(); if self.config.use_jemalloc { features.push_str(" jemalloc"); } return features } /// Component directory that Cargo will produce output into (e.g. /// release/debug) fn cargo_dir(&self) -> &'static str { if self.config.rust_optimize {"release"} else {"debug"} } /// Returns the sysroot for the `compiler` specified that *this build system /// generates*. /// /// That is, the sysroot for the stage0 compiler is not what the compiler /// thinks it is by default, but it's the same as the default for stages /// 1-3. fn sysroot(&self, compiler: &Compiler) -> PathBuf { if compiler.stage == 0 { self.out.join(compiler.host).join("stage0-sysroot") } else { self.out.join(compiler.host).join(format!("stage{}", compiler.stage)) } } /// Get the directory for incremental by-products when using the /// given compiler. fn incremental_dir(&self, compiler: &Compiler) -> PathBuf { self.out.join(compiler.host).join(format!("stage{}-incremental", compiler.stage)) } /// Returns the libdir where the standard library and other artifacts are /// found for a compiler's sysroot. fn sysroot_libdir(&self, compiler: &Compiler, target: &str) -> PathBuf { self.sysroot(compiler).join("lib").join("rustlib") .join(target).join("lib") } /// Returns the root directory for all output generated in a particular /// stage when running with a particular host compiler. /// /// The mode indicates what the root directory is for. fn stage_out(&self, compiler: &Compiler, mode: Mode) -> PathBuf { let suffix = match mode { Mode::Libstd => "-std", Mode::Libtest => "-test", Mode::Tool => "-tools", Mode::Librustc => "-rustc", }; self.out.join(compiler.host) .join(format!("stage{}{}", compiler.stage, suffix)) } /// Returns the root output directory for all Cargo output in a given stage, /// running a particular comipler, wehther or not we're building the /// standard library, and targeting the specified architecture. fn cargo_out(&self, compiler: &Compiler, mode: Mode, target: &str) -> PathBuf { self.stage_out(compiler, mode).join(target).join(self.cargo_dir()) } /// Root output directory for LLVM compiled for `target` /// /// Note that if LLVM is configured externally then the directory returned /// will likely be empty. fn llvm_out(&self, target: &str) -> PathBuf { self.out.join(target).join("llvm") } /// Output directory for all documentation for a target fn doc_out(&self, target: &str) -> PathBuf { self.out.join(target).join("doc") } /// Returns true if no custom `llvm-config` is set for the specified target. /// /// If no custom `llvm-config` was specified then Rust's llvm will be used. fn is_rust_llvm(&self, target: &str) -> bool { match self.config.target_config.get(target) { Some(ref c) => c.llvm_config.is_none(), None => true } } /// Returns the path to `llvm-config` for the specified target. /// /// If a custom `llvm-config` was specified for target then that's returned /// instead. fn llvm_config(&self, target: &str) -> PathBuf { let target_config = self.config.target_config.get(target); if let Some(s) = target_config.and_then(|c| c.llvm_config.as_ref()) { s.clone() } else { self.llvm_out(&self.config.build).join("bin") .join(exe("llvm-config", target)) } } /// Returns the path to `FileCheck` binary for the specified target fn llvm_filecheck(&self, target: &str) -> PathBuf { let target_config = self.config.target_config.get(target); if let Some(s) = target_config.and_then(|c| c.llvm_config.as_ref()) { let llvm_bindir = output(Command::new(s).arg("--bindir")); Path::new(llvm_bindir.trim()).join(exe("FileCheck", target)) } else { let base = self.llvm_out(&self.config.build).join("build"); let exe = exe("FileCheck", target); if self.config.build.contains("msvc") { base.join("Release/bin").join(exe) } else { base.join("bin").join(exe) } } } /// Directory for libraries built from C/C++ code and shared between stages. fn native_dir(&self, target: &str) -> PathBuf { self.out.join(target).join("native") } /// Root output directory for rust_test_helpers library compiled for /// `target` fn test_helpers_out(&self, target: &str) -> PathBuf { self.native_dir(target).join("rust-test-helpers") } /// Adds the compiler's directory of dynamic libraries to `cmd`'s dynamic /// library lookup path. fn add_rustc_lib_path(&self, compiler: &Compiler, cmd: &mut Command) { // Windows doesn't need dylib path munging because the dlls for the // compiler live next to the compiler and the system will find them // automatically. if cfg!(windows) { return } add_lib_path(vec![self.rustc_libdir(compiler)], cmd); } /// Adds the `RUST_TEST_THREADS` env var if necessary fn add_rust_test_threads(&self, cmd: &mut Command) { if env::var_os("RUST_TEST_THREADS").is_none() { cmd.env("RUST_TEST_THREADS", self.jobs().to_string()); } } /// Returns the compiler's libdir where it stores the dynamic libraries that /// it itself links against. /// /// For example this returns `/lib` on Unix and `/bin` on /// Windows. fn rustc_libdir(&self, compiler: &Compiler) -> PathBuf { if compiler.is_snapshot(self) { self.rustc_snapshot_libdir() } else { self.sysroot(compiler).join(libdir(compiler.host)) } } /// Returns the libdir of the snapshot compiler. fn rustc_snapshot_libdir(&self) -> PathBuf { self.rustc.parent().unwrap().parent().unwrap() .join(libdir(&self.config.build)) } /// Runs a command, printing out nice contextual information if it fails. fn run(&self, cmd: &mut Command) { self.verbose(&format!("running: {:?}", cmd)); run_silent(cmd) } /// Prints a message if this build is configured in verbose mode. fn verbose(&self, msg: &str) { if self.flags.verbose() || self.config.verbose() { println!("{}", msg); } } /// Returns the number of parallel jobs that have been configured for this /// build. fn jobs(&self) -> u32 { self.flags.jobs.unwrap_or(num_cpus::get() as u32) } /// Returns the path to the C compiler for the target specified. fn cc(&self, target: &str) -> &Path { self.cc[target].0.path() } /// Returns a list of flags to pass to the C compiler for the target /// specified. fn cflags(&self, target: &str) -> Vec { // Filter out -O and /O (the optimization flags) that we picked up from // gcc-rs because the build scripts will determine that for themselves. let mut base = self.cc[target].0.args().iter() .map(|s| s.to_string_lossy().into_owned()) .filter(|s| !s.starts_with("-O") && !s.starts_with("/O")) .collect::>(); // If we're compiling on OSX then we add a few unconditional flags // indicating that we want libc++ (more filled out than libstdc++) and // we want to compile for 10.7. This way we can ensure that // LLVM/jemalloc/etc are all properly compiled. if target.contains("apple-darwin") { base.push("-stdlib=libc++".into()); } // This is a hack, because newer binutils broke things on some vms/distros // (i.e., linking against unknown relocs disabled by the following flag) // See: https://github.com/rust-lang/rust/issues/34978 match target { "i586-unknown-linux-gnu" | "i686-unknown-linux-musl" | "x86_64-unknown-linux-musl" => { base.push("-Wa,-mrelax-relocations=no".into()); }, _ => {}, } return base } /// Returns the path to the `ar` archive utility for the target specified. fn ar(&self, target: &str) -> Option<&Path> { self.cc[target].1.as_ref().map(|p| &**p) } /// Returns the path to the C++ compiler for the target specified, may panic /// if no C++ compiler was configured for the target. fn cxx(&self, target: &str) -> &Path { match self.cxx.get(target) { Some(p) => p.path(), None => panic!("\n\ntarget `{}` is not configured as a host, only as a target\n\n", target), } } /// Returns flags to pass to the compiler to generate code for `target`. fn rustc_flags(&self, target: &str) -> Vec { // New flags should be added here with great caution! // // It's quite unfortunate to **require** flags to generate code for a // target, so it should only be passed here if absolutely necessary! // Most default configuration should be done through target specs rather // than an entry here. let mut base = Vec::new(); if target != self.config.build && !target.contains("msvc") && !target.contains("emscripten") { base.push(format!("-Clinker={}", self.cc(target).display())); } return base } /// Returns the "musl root" for this `target`, if defined fn musl_root(&self, target: &str) -> Option<&Path> { self.config.target_config.get(target) .and_then(|t| t.musl_root.as_ref()) .or(self.config.musl_root.as_ref()) .map(|p| &**p) } /// Path to the python interpreter to use fn python(&self) -> &Path { self.config.python.as_ref().unwrap() } /// Tests whether the `compiler` compiling for `target` should be forced to /// use a stage1 compiler instead. /// /// Currently, by default, the build system does not perform a "full /// bootstrap" by default where we compile the compiler three times. /// Instead, we compile the compiler two times. The final stage (stage2) /// just copies the libraries from the previous stage, which is what this /// method detects. /// /// Here we return `true` if: /// /// * The build isn't performing a full bootstrap /// * The `compiler` is in the final stage, 2 /// * We're not cross-compiling, so the artifacts are already available in /// stage1 /// /// When all of these conditions are met the build will lift artifacts from /// the previous stage forward. fn force_use_stage1(&self, compiler: &Compiler, target: &str) -> bool { !self.config.full_bootstrap && compiler.stage >= 2 && self.config.host.iter().any(|h| h == target) } } impl<'a> Compiler<'a> { /// Creates a new complier for the specified stage/host fn new(stage: u32, host: &'a str) -> Compiler<'a> { Compiler { stage: stage, host: host } } /// Returns whether this is a snapshot compiler for `build`'s configuration fn is_snapshot(&self, build: &Build) -> bool { self.stage == 0 && self.host == build.config.build } /// Returns if this compiler should be treated as a final stage one in the /// current build session. /// This takes into account whether we're performing a full bootstrap or /// not; don't directly compare the stage with `2`! fn is_final_stage(&self, build: &Build) -> bool { let final_stage = if build.config.full_bootstrap { 2 } else { 1 }; self.stage >= final_stage } }