// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use middle::infer::InferCtxt; use middle::mem_categorization::Typer; use middle::ty::{mod, Ty}; use std::collections::HashSet; use std::collections::hash_map::{Occupied, Vacant}; use std::default::Default; use std::rc::Rc; use syntax::ast; use util::common::ErrorReported; use util::ppaux::Repr; use util::nodemap::NodeMap; use super::CodeAmbiguity; use super::CodeSelectionError; use super::FulfillmentError; use super::Obligation; use super::ObligationCause; use super::PredicateObligation; use super::Selection; use super::select::SelectionContext; use super::poly_trait_ref_for_builtin_bound; use super::Unimplemented; /// The fulfillment context is used to drive trait resolution. It /// consists of a list of obligations that must be (eventually) /// satisfied. The job is to track which are satisfied, which yielded /// errors, and which are still pending. At any point, users can call /// `select_where_possible`, and the fulfilment context will try to do /// selection, retaining only those obligations that remain /// ambiguous. This may be helpful in pushing type inference /// along. Once all type inference constraints have been generated, the /// method `select_all_or_error` can be used to report any remaining /// ambiguous cases as errors. pub struct FulfillmentContext<'tcx> { // a simple cache that aims to cache *exact duplicate obligations* // and avoid adding them twice. This serves a different purpose // than the `SelectionCache`: it avoids duplicate errors and // permits recursive obligations, which are often generated from // traits like `Send` et al. duplicate_set: HashSet>, // A list of all obligations that have been registered with this // fulfillment context. predicates: Vec>, // Remembers the count of trait obligations that we have already // attempted to select. This is used to avoid repeating work // when `select_new_obligations` is called. attempted_mark: uint, // A set of constraints that regionck must validate. Each // constraint has the form `T:'a`, meaning "some type `T` must // outlive the lifetime 'a". These constraints derive from // instantiated type parameters. So if you had a struct defined // like // // struct Foo { ... } // // then in some expression `let x = Foo { ... }` it will // instantiate the type parameter `T` with a fresh type `$0`. At // the same time, it will record a region obligation of // `$0:'static`. This will get checked later by regionck. (We // can't generally check these things right away because we have // to wait until types are resolved.) // // These are stored in a map keyed to the id of the innermost // enclosing fn body / static initializer expression. This is // because the location where the obligation was incurred can be // relevant with respect to which sublifetime assumptions are in // place. The reason that we store under the fn-id, and not // something more fine-grained, is so that it is easier for // regionck to be sure that it has found *all* the region // obligations (otherwise, it's easy to fail to walk to a // particular node-id). region_obligations: NodeMap>>, } pub struct RegionObligation<'tcx> { pub sub_region: ty::Region, pub sup_type: Ty<'tcx>, pub cause: ObligationCause<'tcx>, } impl<'tcx> FulfillmentContext<'tcx> { pub fn new() -> FulfillmentContext<'tcx> { FulfillmentContext { duplicate_set: HashSet::new(), predicates: Vec::new(), attempted_mark: 0, region_obligations: NodeMap::new(), } } pub fn register_builtin_bound(&mut self, tcx: &ty::ctxt<'tcx>, ty: Ty<'tcx>, builtin_bound: ty::BuiltinBound, cause: ObligationCause<'tcx>) { match poly_trait_ref_for_builtin_bound(tcx, builtin_bound, ty) { Ok(trait_ref) => { self.register_trait_ref(tcx, trait_ref, cause); } Err(ErrorReported) => { } } } pub fn register_trait_ref<'a>(&mut self, tcx: &ty::ctxt<'tcx>, trait_ref: Rc>, cause: ObligationCause<'tcx>) { /*! * A convenience function for registering trait obligations. */ let trait_obligation = Obligation { cause: cause, recursion_depth: 0, trait_ref: ty::Predicate::Trait(trait_ref) }; self.register_predicate(tcx, trait_obligation) } pub fn register_region_obligation(&mut self, tcx: &ty::ctxt<'tcx>, t_a: Ty<'tcx>, r_b: ty::Region, cause: ObligationCause<'tcx>) { register_region_obligation(tcx, t_a, r_b, cause, &mut self.region_obligations); } pub fn register_predicate<'a>(&mut self, tcx: &ty::ctxt<'tcx>, predicate: PredicateObligation<'tcx>) { if !self.duplicate_set.insert(predicate.trait_ref.clone()) { debug!("register_predicate({}) -- already seen, skip", predicate.repr(tcx)); return; } debug!("register_predicate({})", predicate.repr(tcx)); self.predicates.push(predicate); } pub fn region_obligations(&self, body_id: ast::NodeId) -> &[RegionObligation<'tcx>] { match self.region_obligations.get(&body_id) { None => Default::default(), Some(vec) => vec.as_slice(), } } pub fn select_all_or_error<'a>(&mut self, infcx: &InferCtxt<'a,'tcx>, param_env: &ty::ParameterEnvironment<'tcx>, typer: &Typer<'tcx>) -> Result<(),Vec>> { try!(self.select_where_possible(infcx, param_env, typer)); // Anything left is ambiguous. let errors: Vec = self.predicates .iter() .map(|o| FulfillmentError::new((*o).clone(), CodeAmbiguity)) .collect(); if errors.is_empty() { Ok(()) } else { Err(errors) } } /// Attempts to select obligations that were registered since the call to a selection routine. /// This is used by the type checker to eagerly attempt to resolve obligations in hopes of /// gaining type information. It'd be equally valid to use `select_where_possible` but it /// results in `O(n^2)` performance (#18208). pub fn select_new_obligations<'a>(&mut self, infcx: &InferCtxt<'a,'tcx>, param_env: &ty::ParameterEnvironment<'tcx>, typer: &Typer<'tcx>) -> Result<(),Vec>> { let mut selcx = SelectionContext::new(infcx, param_env, typer); self.select(&mut selcx, true) } pub fn select_where_possible<'a>(&mut self, infcx: &InferCtxt<'a,'tcx>, param_env: &ty::ParameterEnvironment<'tcx>, typer: &Typer<'tcx>) -> Result<(),Vec>> { let mut selcx = SelectionContext::new(infcx, param_env, typer); self.select(&mut selcx, false) } pub fn pending_obligations(&self) -> &[PredicateObligation<'tcx>] { self.predicates[] } /// Attempts to select obligations using `selcx`. If `only_new_obligations` is true, then it /// only attempts to select obligations that haven't been seen before. fn select<'a>(&mut self, selcx: &mut SelectionContext<'a, 'tcx>, only_new_obligations: bool) -> Result<(),Vec>> { debug!("select({} obligations, only_new_obligations={}) start", self.predicates.len(), only_new_obligations); let tcx = selcx.tcx(); let mut errors = Vec::new(); loop { let count = self.predicates.len(); debug!("select_where_possible({} obligations) iteration", count); let mut selections = Vec::new(); // If we are only attempting obligations we haven't seen yet, // then set `skip` to the number of obligations we've already // seen. let mut skip = if only_new_obligations { self.attempted_mark } else { 0 }; // First pass: walk each obligation, retaining // only those that we cannot yet process. { let region_obligations = &mut self.region_obligations; self.predicates.retain(|predicate| { // Hack: Retain does not pass in the index, but we want // to avoid processing the first `start_count` entries. let processed = if skip == 0 { process_predicate(selcx, predicate, &mut selections, &mut errors, region_obligations) } else { skip -= 1; false }; !processed }); } self.attempted_mark = self.predicates.len(); if self.predicates.len() == count { // Nothing changed. break; } // Now go through all the successful ones, // registering any nested obligations for the future. for selection in selections.into_iter() { selection.map_move_nested(|p| self.register_predicate(tcx, p)); } } debug!("select({} obligations, {} errors) done", self.predicates.len(), errors.len()); if errors.len() == 0 { Ok(()) } else { Err(errors) } } } fn process_predicate<'a,'tcx>(selcx: &mut SelectionContext<'a,'tcx>, predicate: &PredicateObligation<'tcx>, selections: &mut Vec>, errors: &mut Vec>, region_obligations: &mut NodeMap>>) -> bool { /*! * Processes a predicate obligation and modifies the appropriate * output array with the successful/error result. Returns `false` * if the predicate could not be processed due to insufficient * type inference. */ let tcx = selcx.tcx(); match predicate.trait_ref { ty::Predicate::Trait(ref trait_ref) => { let trait_obligation = Obligation { cause: predicate.cause, recursion_depth: predicate.recursion_depth, trait_ref: trait_ref.clone() }; match selcx.select(&trait_obligation) { Ok(None) => { false } Ok(Some(s)) => { selections.push(s); true } Err(selection_err) => { debug!("predicate: {} error: {}", predicate.repr(tcx), selection_err.repr(tcx)); errors.push( FulfillmentError::new( predicate.clone(), CodeSelectionError(selection_err))); true } } } ty::Predicate::Equate(ref binder) => { match selcx.infcx().equality_predicate(predicate.cause.span, binder) { Ok(()) => { } Err(_) => { errors.push( FulfillmentError::new( predicate.clone(), CodeSelectionError(Unimplemented))); } } true } ty::Predicate::RegionOutlives(ref binder) => { match selcx.infcx().region_outlives_predicate(predicate.cause.span, binder) { Ok(()) => { } Err(_) => { errors.push( FulfillmentError::new( predicate.clone(), CodeSelectionError(Unimplemented))); } } true } ty::Predicate::TypeOutlives(ref binder) => { // For now, we just check that there are no higher-ranked // regions. If there are, we will call this obligation an // error. Eventually we should be able to support some // cases here, I imagine (e.g., `for<'a> int : 'a`). if ty::count_late_bound_regions(selcx.tcx(), binder) != 0 { errors.push( FulfillmentError::new( predicate.clone(), CodeSelectionError(Unimplemented))); } else { let ty::OutlivesPredicate(t_a, r_b) = binder.0; register_region_obligation(tcx, t_a, r_b, predicate.cause, region_obligations); } true } } } impl<'tcx> Repr<'tcx> for RegionObligation<'tcx> { fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String { format!("RegionObligation(sub_region={}, sup_type={})", self.sub_region.repr(tcx), self.sup_type.repr(tcx)) } } fn register_region_obligation<'tcx>(tcx: &ty::ctxt<'tcx>, t_a: Ty<'tcx>, r_b: ty::Region, cause: ObligationCause<'tcx>, region_obligations: &mut NodeMap>>) { let region_obligation = RegionObligation { sup_type: t_a, sub_region: r_b, cause: cause }; debug!("register_region_obligation({})", region_obligation.repr(tcx)); match region_obligations.entry(region_obligation.cause.body_id) { Vacant(entry) => { entry.set(vec![region_obligation]); }, Occupied(mut entry) => { entry.get_mut().push(region_obligation); }, } }