// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /*! * Trait Resolution. See doc.rs. */ use middle::mem_categorization::Typer; use middle::subst; use middle::ty; use middle::typeck::infer::InferCtxt; use std::rc::Rc; use std::slice::Items; use syntax::ast; use syntax::codemap::{Span, DUMMY_SP}; pub use self::fulfill::FulfillmentContext; pub use self::select::SelectionContext; pub use self::select::SelectionCache; pub use self::util::supertraits; pub use self::util::transitive_bounds; pub use self::util::Supertraits; pub use self::util::search_trait_and_supertraits_from_bound; mod coherence; mod fulfill; mod select; mod util; /** * An `Obligation` represents some trait reference (e.g. `int:Eq`) for * which the vtable must be found. The process of finding a vtable is * called "resolving" the `Obligation`. This process consists of * either identifying an `impl` (e.g., `impl Eq for int`) that * provides the required vtable, or else finding a bound that is in * scope. The eventual result is usually a `Selection` (defined below). */ #[deriving(Clone)] pub struct Obligation { pub cause: ObligationCause, pub recursion_depth: uint, pub trait_ref: Rc, } /** * Why did we incur this obligation? Used for error reporting. */ #[deriving(Clone)] pub struct ObligationCause { pub span: Span, pub code: ObligationCauseCode } #[deriving(Clone)] pub enum ObligationCauseCode { /// Not well classified or should be obvious from span. MiscObligation, /// In an impl of trait X for type Y, type Y must /// also implement all supertraits of X. ItemObligation(ast::DefId), /// Obligation incurred due to an object cast. ObjectCastObligation(/* Object type */ ty::t), /// To implement drop, type must be sendable. DropTrait, /// Various cases where expressions must be sized/copy/etc: AssignmentLhsSized, // L = X implies that L is Sized StructInitializerSized, // S { ... } must be Sized VariableType(ast::NodeId), // Type of each variable must be Sized RepeatVec, // [T,..n] --> T must be Copy // Captures of variable the given id by a closure (span is the // span of the closure) ClosureCapture(ast::NodeId, Span), // Types of fields (other than the last) in a struct must be sized. FieldSized, } // An error has already been reported to the user, so no need to continue checking. #[deriving(Clone,Show)] pub struct ErrorReported; pub type Obligations = subst::VecPerParamSpace; pub type Selection = Vtable; #[deriving(Clone,Show)] pub enum SelectionError { Unimplemented, Overflow, OutputTypeParameterMismatch(Rc, ty::type_err) } pub struct FulfillmentError { pub obligation: Obligation, pub code: FulfillmentErrorCode } #[deriving(Clone)] pub enum FulfillmentErrorCode { CodeSelectionError(SelectionError), CodeAmbiguity, } /** * When performing resolution, it is typically the case that there * can be one of three outcomes: * * - `Ok(Some(r))`: success occurred with result `r` * - `Ok(None)`: could not definitely determine anything, usually due * to inconclusive type inference. * - `Err(e)`: error `e` occurred */ pub type SelectionResult = Result, SelectionError>; /** * Given the successful resolution of an obligation, the `Vtable` * indicates where the vtable comes from. Note that while we call this * a "vtable", it does not necessarily indicate dynamic dispatch at * runtime. `Vtable` instances just tell the compiler where to find * methods, but in generic code those methods are typically statically * dispatched -- only when an object is constructed is a `Vtable` * instance reified into an actual vtable. * * For example, the vtable may be tied to a specific impl (case A), * or it may be relative to some bound that is in scope (case B). * * * ``` * impl Clone for Option { ... } // Impl_1 * impl Clone for Box { ... } // Impl_2 * impl Clone for int { ... } // Impl_3 * * fn foo(concrete: Option>, * param: T, * mixed: Option) { * * // Case A: Vtable points at a specific impl. Only possible when * // type is concretely known. If the impl itself has bounded * // type parameters, Vtable will carry resolutions for those as well: * concrete.clone(); // Vtable(Impl_1, [Vtable(Impl_2, [Vtable(Impl_3)])]) * * // Case B: Vtable must be provided by caller. This applies when * // type is a type parameter. * param.clone(); // VtableParam(Oblig_1) * * // Case C: A mix of cases A and B. * mixed.clone(); // Vtable(Impl_1, [VtableParam(Oblig_1)]) * } * ``` * * ### The type parameter `N` * * See explanation on `VtableImplData`. */ #[deriving(Show,Clone)] pub enum Vtable { /// Vtable identifying a particular impl. VtableImpl(VtableImplData), /// Vtable automatically generated for an unboxed closure. The def /// ID is the ID of the closure expression. This is a `VtableImpl` /// in spirit, but the impl is generated by the compiler and does /// not appear in the source. VtableUnboxedClosure(ast::DefId), /// Successful resolution to an obligation provided by the caller /// for some type parameter. VtableParam(VtableParamData), /// Successful resolution for a builtin trait. VtableBuiltin(VtableBuiltinData), } /** * Identifies a particular impl in the source, along with a set of * substitutions from the impl's type/lifetime parameters. The * `nested` vector corresponds to the nested obligations attached to * the impl's type parameters. * * The type parameter `N` indicates the type used for "nested * obligations" that are required by the impl. During type check, this * is `Obligation`, as one might expect. During trans, however, this * is `()`, because trans only requires a shallow resolution of an * impl, and nested obligations are satisfied later. */ #[deriving(Clone)] pub struct VtableImplData { pub impl_def_id: ast::DefId, pub substs: subst::Substs, pub nested: subst::VecPerParamSpace } #[deriving(Show,Clone)] pub struct VtableBuiltinData { pub nested: subst::VecPerParamSpace } /** * A vtable provided as a parameter by the caller. For example, in a * function like `fn foo(...)`, if the `eq()` method is invoked * on an instance of `T`, the vtable would be of type `VtableParam`. */ #[deriving(PartialEq,Eq,Clone)] pub struct VtableParamData { // In the above example, this would `Eq` pub bound: Rc, } pub fn evaluate_obligation<'a,'tcx>(infcx: &InferCtxt<'a,'tcx>, param_env: &ty::ParameterEnvironment, obligation: &Obligation, typer: &Typer<'tcx>) -> bool { /*! * Attempts to resolve the obligation given. Returns `None` if * we are unable to resolve, either because of ambiguity or * due to insufficient inference. */ let mut selcx = select::SelectionContext::new(infcx, param_env, typer); selcx.evaluate_obligation(obligation) } pub fn select_inherent_impl<'a,'tcx>(infcx: &InferCtxt<'a,'tcx>, param_env: &ty::ParameterEnvironment, typer: &Typer<'tcx>, cause: ObligationCause, impl_def_id: ast::DefId, self_ty: ty::t) -> SelectionResult> { /*! * Matches the self type of the inherent impl `impl_def_id` * against `self_ty` and returns the resulting resolution. This * routine may modify the surrounding type context (for example, * it may unify variables). */ // This routine is only suitable for inherent impls. This is // because it does not attempt to unify the output type parameters // from the trait ref against the values from the obligation. // (These things do not apply to inherent impls, for which there // is no trait ref nor obligation.) // // Matching against non-inherent impls should be done with // `try_resolve_obligation()`. assert!(ty::impl_trait_ref(infcx.tcx, impl_def_id).is_none()); let mut selcx = select::SelectionContext::new(infcx, param_env, typer); selcx.select_inherent_impl(impl_def_id, cause, self_ty) } pub fn is_orphan_impl(tcx: &ty::ctxt, impl_def_id: ast::DefId) -> bool { /*! * True if neither the trait nor self type is local. Note that * `impl_def_id` must refer to an impl of a trait, not an inherent * impl. */ !coherence::impl_is_local(tcx, impl_def_id) } pub fn overlapping_impls(infcx: &InferCtxt, impl1_def_id: ast::DefId, impl2_def_id: ast::DefId) -> bool { /*! * True if there exist types that satisfy both of the two given impls. */ coherence::impl_can_satisfy(infcx, impl1_def_id, impl2_def_id) && coherence::impl_can_satisfy(infcx, impl2_def_id, impl1_def_id) } pub fn obligations_for_generics(tcx: &ty::ctxt, cause: ObligationCause, generics: &ty::Generics, substs: &subst::Substs) -> subst::VecPerParamSpace { /*! * Given generics for an impl like: * * impl ... * * and a substs vector like ``, yields a result like * * [[Foo for A0, Bar for B0, Qux for B0], [], []] */ util::obligations_for_generics(tcx, cause, 0, generics, substs) } pub fn obligation_for_builtin_bound(tcx: &ty::ctxt, cause: ObligationCause, source_ty: ty::t, builtin_bound: ty::BuiltinBound) -> Result { util::obligation_for_builtin_bound(tcx, cause, builtin_bound, 0, source_ty) } impl Obligation { pub fn new(cause: ObligationCause, trait_ref: Rc) -> Obligation { Obligation { cause: cause, recursion_depth: 0, trait_ref: trait_ref } } pub fn misc(span: Span, trait_ref: Rc) -> Obligation { Obligation::new(ObligationCause::misc(span), trait_ref) } pub fn self_ty(&self) -> ty::t { self.trait_ref.self_ty() } } impl ObligationCause { pub fn new(span: Span, code: ObligationCauseCode) -> ObligationCause { ObligationCause { span: span, code: code } } pub fn misc(span: Span) -> ObligationCause { ObligationCause { span: span, code: MiscObligation } } pub fn dummy() -> ObligationCause { ObligationCause { span: DUMMY_SP, code: MiscObligation } } } impl Vtable { pub fn iter_nested(&self) -> Items { match *self { VtableImpl(ref i) => i.iter_nested(), VtableUnboxedClosure(_) => (&[]).iter(), VtableParam(_) => (&[]).iter(), VtableBuiltin(ref i) => i.iter_nested(), } } pub fn map_nested(&self, op: |&N| -> M) -> Vtable { match *self { VtableImpl(ref i) => VtableImpl(i.map_nested(op)), VtableUnboxedClosure(d) => VtableUnboxedClosure(d), VtableParam(ref p) => VtableParam((*p).clone()), VtableBuiltin(ref i) => VtableBuiltin(i.map_nested(op)), } } pub fn map_move_nested(self, op: |N| -> M) -> Vtable { match self { VtableImpl(i) => VtableImpl(i.map_move_nested(op)), VtableUnboxedClosure(d) => VtableUnboxedClosure(d), VtableParam(p) => VtableParam(p), VtableBuiltin(i) => VtableBuiltin(i.map_move_nested(op)), } } } impl VtableImplData { pub fn iter_nested(&self) -> Items { self.nested.iter() } pub fn map_nested(&self, op: |&N| -> M) -> VtableImplData { VtableImplData { impl_def_id: self.impl_def_id, substs: self.substs.clone(), nested: self.nested.map(op) } } pub fn map_move_nested(self, op: |N| -> M) -> VtableImplData { let VtableImplData { impl_def_id, substs, nested } = self; VtableImplData { impl_def_id: impl_def_id, substs: substs, nested: nested.map_move(op) } } } impl VtableBuiltinData { pub fn iter_nested(&self) -> Items { self.nested.iter() } pub fn map_nested(&self, op: |&N| -> M) -> VtableBuiltinData { VtableBuiltinData { nested: self.nested.map(op) } } pub fn map_move_nested(self, op: |N| -> M) -> VtableBuiltinData { VtableBuiltinData { nested: self.nested.map_move(op) } } } impl FulfillmentError { fn new(obligation: Obligation, code: FulfillmentErrorCode) -> FulfillmentError { FulfillmentError { obligation: obligation, code: code } } pub fn is_overflow(&self) -> bool { match self.code { CodeAmbiguity => false, CodeSelectionError(Overflow) => true, CodeSelectionError(_) => false, } } }