//! The arena, a fast but limited type of allocator. //! //! Arenas are a type of allocator that destroy the objects within, all at //! once, once the arena itself is destroyed. They do not support deallocation //! of individual objects while the arena itself is still alive. The benefit //! of an arena is very fast allocation; just a pointer bump. //! //! This crate implements several kinds of arena. #![doc( html_root_url = "https://doc.rust-lang.org/nightly/", test(no_crate_inject, attr(deny(warnings))) )] #![feature(core_intrinsics)] #![feature(dropck_eyepatch)] #![feature(raw_vec_internals)] #![cfg_attr(test, feature(test))] #![allow(deprecated)] extern crate alloc; use rustc_data_structures::cold_path; use smallvec::SmallVec; use std::cell::{Cell, RefCell}; use std::cmp; use std::intrinsics; use std::marker::{PhantomData, Send}; use std::mem; use std::ptr; use std::slice; use alloc::raw_vec::RawVec; /// An arena that can hold objects of only one type. pub struct TypedArena<T> { /// A pointer to the next object to be allocated. ptr: Cell<*mut T>, /// A pointer to the end of the allocated area. When this pointer is /// reached, a new chunk is allocated. end: Cell<*mut T>, /// A vector of arena chunks. chunks: RefCell<Vec<TypedArenaChunk<T>>>, /// Marker indicating that dropping the arena causes its owned /// instances of `T` to be dropped. _own: PhantomData<T>, } struct TypedArenaChunk<T> { /// The raw storage for the arena chunk. storage: RawVec<T>, /// The number of valid entries in the chunk. entries: usize, } impl<T> TypedArenaChunk<T> { #[inline] unsafe fn new(capacity: usize) -> TypedArenaChunk<T> { TypedArenaChunk { storage: RawVec::with_capacity(capacity), entries: 0 } } /// Destroys this arena chunk. #[inline] unsafe fn destroy(&mut self, len: usize) { // The branch on needs_drop() is an -O1 performance optimization. // Without the branch, dropping TypedArena<u8> takes linear time. if mem::needs_drop::<T>() { let mut start = self.start(); // Destroy all allocated objects. for _ in 0..len { ptr::drop_in_place(start); start = start.offset(1); } } } // Returns a pointer to the first allocated object. #[inline] fn start(&self) -> *mut T { self.storage.ptr() } // Returns a pointer to the end of the allocated space. #[inline] fn end(&self) -> *mut T { unsafe { if mem::size_of::<T>() == 0 { // A pointer as large as possible for zero-sized elements. !0 as *mut T } else { self.start().add(self.storage.capacity()) } } } } // The arenas start with PAGE-sized chunks, and then each new chunk is twice as // big as its predecessor, up until we reach HUGE_PAGE-sized chunks, whereupon // we stop growing. This scales well, from arenas that are barely used up to // arenas that are used for 100s of MiBs. Note also that the chosen sizes match // the usual sizes of pages and huge pages on Linux. const PAGE: usize = 4096; const HUGE_PAGE: usize = 2 * 1024 * 1024; impl<T> Default for TypedArena<T> { /// Creates a new `TypedArena`. fn default() -> TypedArena<T> { TypedArena { // We set both `ptr` and `end` to 0 so that the first call to // alloc() will trigger a grow(). ptr: Cell::new(ptr::null_mut()), end: Cell::new(ptr::null_mut()), chunks: RefCell::new(vec![]), _own: PhantomData, } } } impl<T> TypedArena<T> { /// Allocates an object in the `TypedArena`, returning a reference to it. #[inline] pub fn alloc(&self, object: T) -> &mut T { if self.ptr == self.end { self.grow(1) } unsafe { if mem::size_of::<T>() == 0 { self.ptr.set(intrinsics::arith_offset(self.ptr.get() as *mut u8, 1) as *mut T); let ptr = mem::align_of::<T>() as *mut T; // Don't drop the object. This `write` is equivalent to `forget`. ptr::write(ptr, object); &mut *ptr } else { let ptr = self.ptr.get(); // Advance the pointer. self.ptr.set(self.ptr.get().offset(1)); // Write into uninitialized memory. ptr::write(ptr, object); &mut *ptr } } } #[inline] fn can_allocate(&self, additional: usize) -> bool { let available_bytes = self.end.get() as usize - self.ptr.get() as usize; let additional_bytes = additional.checked_mul(mem::size_of::<T>()).unwrap(); available_bytes >= additional_bytes } /// Ensures there's enough space in the current chunk to fit `len` objects. #[inline] fn ensure_capacity(&self, additional: usize) { if !self.can_allocate(additional) { self.grow(additional); debug_assert!(self.can_allocate(additional)); } } #[inline] unsafe fn alloc_raw_slice(&self, len: usize) -> *mut T { assert!(mem::size_of::<T>() != 0); assert!(len != 0); self.ensure_capacity(len); let start_ptr = self.ptr.get(); self.ptr.set(start_ptr.add(len)); start_ptr } /// Allocates a slice of objects that are copied into the `TypedArena`, returning a mutable /// reference to it. Will panic if passed a zero-sized types. /// /// Panics: /// /// - Zero-sized types /// - Zero-length slices #[inline] pub fn alloc_slice(&self, slice: &[T]) -> &mut [T] where T: Copy, { unsafe { let len = slice.len(); let start_ptr = self.alloc_raw_slice(len); slice.as_ptr().copy_to_nonoverlapping(start_ptr, len); slice::from_raw_parts_mut(start_ptr, len) } } #[inline] pub fn alloc_from_iter<I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T] { assert!(mem::size_of::<T>() != 0); let mut vec: SmallVec<[_; 8]> = iter.into_iter().collect(); if vec.is_empty() { return &mut []; } // Move the content to the arena by copying it and then forgetting // the content of the SmallVec unsafe { let len = vec.len(); let start_ptr = self.alloc_raw_slice(len); vec.as_ptr().copy_to_nonoverlapping(start_ptr, len); vec.set_len(0); slice::from_raw_parts_mut(start_ptr, len) } } /// Grows the arena. #[inline(never)] #[cold] fn grow(&self, additional: usize) { unsafe { // We need the element size to convert chunk sizes (ranging from // PAGE to HUGE_PAGE bytes) to element counts. let elem_size = cmp::max(1, mem::size_of::<T>()); let mut chunks = self.chunks.borrow_mut(); let mut new_cap; if let Some(last_chunk) = chunks.last_mut() { let used_bytes = self.ptr.get() as usize - last_chunk.start() as usize; last_chunk.entries = used_bytes / mem::size_of::<T>(); // If the previous chunk's capacity is less than HUGE_PAGE // bytes, then this chunk will be least double the previous // chunk's size. new_cap = last_chunk.storage.capacity(); if new_cap < HUGE_PAGE / elem_size { new_cap = new_cap.checked_mul(2).unwrap(); } } else { new_cap = PAGE / elem_size; } // Also ensure that this chunk can fit `additional`. new_cap = cmp::max(additional, new_cap); let chunk = TypedArenaChunk::<T>::new(new_cap); self.ptr.set(chunk.start()); self.end.set(chunk.end()); chunks.push(chunk); } } /// Clears the arena. Deallocates all but the longest chunk which may be reused. pub fn clear(&mut self) { unsafe { // Clear the last chunk, which is partially filled. let mut chunks_borrow = self.chunks.borrow_mut(); if let Some(mut last_chunk) = chunks_borrow.last_mut() { self.clear_last_chunk(&mut last_chunk); let len = chunks_borrow.len(); // If `T` is ZST, code below has no effect. for mut chunk in chunks_borrow.drain(..len - 1) { chunk.destroy(chunk.entries); } } } } // Drops the contents of the last chunk. The last chunk is partially empty, unlike all other // chunks. fn clear_last_chunk(&self, last_chunk: &mut TypedArenaChunk<T>) { // Determine how much was filled. let start = last_chunk.start() as usize; // We obtain the value of the pointer to the first uninitialized element. let end = self.ptr.get() as usize; // We then calculate the number of elements to be dropped in the last chunk, // which is the filled area's length. let diff = if mem::size_of::<T>() == 0 { // `T` is ZST. It can't have a drop flag, so the value here doesn't matter. We get // the number of zero-sized values in the last and only chunk, just out of caution. // Recall that `end` was incremented for each allocated value. end - start } else { (end - start) / mem::size_of::<T>() }; // Pass that to the `destroy` method. unsafe { last_chunk.destroy(diff); } // Reset the chunk. self.ptr.set(last_chunk.start()); } } unsafe impl<#[may_dangle] T> Drop for TypedArena<T> { fn drop(&mut self) { unsafe { // Determine how much was filled. let mut chunks_borrow = self.chunks.borrow_mut(); if let Some(mut last_chunk) = chunks_borrow.pop() { // Drop the contents of the last chunk. self.clear_last_chunk(&mut last_chunk); // The last chunk will be dropped. Destroy all other chunks. for chunk in chunks_borrow.iter_mut() { chunk.destroy(chunk.entries); } } // RawVec handles deallocation of `last_chunk` and `self.chunks`. } } } unsafe impl<T: Send> Send for TypedArena<T> {} pub struct DroplessArena { /// A pointer to the next object to be allocated. ptr: Cell<*mut u8>, /// A pointer to the end of the allocated area. When this pointer is /// reached, a new chunk is allocated. end: Cell<*mut u8>, /// A vector of arena chunks. chunks: RefCell<Vec<TypedArenaChunk<u8>>>, } unsafe impl Send for DroplessArena {} impl Default for DroplessArena { #[inline] fn default() -> DroplessArena { DroplessArena { ptr: Cell::new(ptr::null_mut()), end: Cell::new(ptr::null_mut()), chunks: Default::default(), } } } impl DroplessArena { #[inline(never)] #[cold] fn grow(&self, additional: usize) { unsafe { let mut chunks = self.chunks.borrow_mut(); let mut new_cap; if let Some(last_chunk) = chunks.last_mut() { // There is no need to update `last_chunk.entries` because that // field isn't used by `DroplessArena`. // If the previous chunk's capacity is less than HUGE_PAGE // bytes, then this chunk will be least double the previous // chunk's size. new_cap = last_chunk.storage.capacity(); if new_cap < HUGE_PAGE { new_cap = new_cap.checked_mul(2).unwrap(); } } else { new_cap = PAGE; } // Also ensure that this chunk can fit `additional`. new_cap = cmp::max(additional, new_cap); let chunk = TypedArenaChunk::<u8>::new(new_cap); self.ptr.set(chunk.start()); self.end.set(chunk.end()); chunks.push(chunk); } } /// Allocates a byte slice with specified size and alignment from the /// current memory chunk. Returns `None` if there is no free space left to /// satisfy the request. #[inline] fn alloc_raw_without_grow(&self, bytes: usize, align: usize) -> Option<&mut [u8]> { let ptr = self.ptr.get() as usize; let end = self.end.get() as usize; // The allocation request fits into the current chunk iff: // // let aligned = align_to(ptr, align); // ptr <= aligned && aligned + bytes <= end // // Except that we work with fixed width integers and need to be careful // about potential overflow in the calcuation. If the overflow does // happen, then we definitely don't have enough free and need to grow // the arena. let aligned = ptr.checked_add(align - 1)? & !(align - 1); let new_ptr = aligned.checked_add(bytes)?; if new_ptr <= end { self.ptr.set(new_ptr as *mut u8); unsafe { Some(slice::from_raw_parts_mut(aligned as *mut u8, bytes)) } } else { None } } #[inline] pub fn alloc_raw(&self, bytes: usize, align: usize) -> &mut [u8] { assert!(bytes != 0); loop { if let Some(a) = self.alloc_raw_without_grow(bytes, align) { break a; } // No free space left. Allocate a new chunk to satisfy the request. // On failure the grow will panic or abort. self.grow(bytes); } } #[inline] pub fn alloc<T>(&self, object: T) -> &mut T { assert!(!mem::needs_drop::<T>()); let mem = self.alloc_raw(mem::size_of::<T>(), mem::align_of::<T>()) as *mut _ as *mut T; unsafe { // Write into uninitialized memory. ptr::write(mem, object); &mut *mem } } /// Allocates a slice of objects that are copied into the `DroplessArena`, returning a mutable /// reference to it. Will panic if passed a zero-sized type. /// /// Panics: /// /// - Zero-sized types /// - Zero-length slices #[inline] pub fn alloc_slice<T>(&self, slice: &[T]) -> &mut [T] where T: Copy, { assert!(!mem::needs_drop::<T>()); assert!(mem::size_of::<T>() != 0); assert!(!slice.is_empty()); let mem = self.alloc_raw(slice.len() * mem::size_of::<T>(), mem::align_of::<T>()) as *mut _ as *mut T; unsafe { let arena_slice = slice::from_raw_parts_mut(mem, slice.len()); arena_slice.copy_from_slice(slice); arena_slice } } #[inline] unsafe fn write_from_iter<T, I: Iterator<Item = T>>( &self, mut iter: I, len: usize, mem: *mut T, ) -> &mut [T] { let mut i = 0; // Use a manual loop since LLVM manages to optimize it better for // slice iterators loop { let value = iter.next(); if i >= len || value.is_none() { // We only return as many items as the iterator gave us, even // though it was supposed to give us `len` return slice::from_raw_parts_mut(mem, i); } ptr::write(mem.add(i), value.unwrap()); i += 1; } } #[inline] pub fn alloc_from_iter<T, I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T] { let iter = iter.into_iter(); assert!(mem::size_of::<T>() != 0); assert!(!mem::needs_drop::<T>()); let size_hint = iter.size_hint(); match size_hint { (min, Some(max)) if min == max => { // We know the exact number of elements the iterator will produce here let len = min; if len == 0 { return &mut []; } let size = len.checked_mul(mem::size_of::<T>()).unwrap(); let mem = self.alloc_raw(size, mem::align_of::<T>()) as *mut _ as *mut T; unsafe { self.write_from_iter(iter, len, mem) } } (_, _) => { cold_path(move || -> &mut [T] { let mut vec: SmallVec<[_; 8]> = iter.collect(); if vec.is_empty() { return &mut []; } // Move the content to the arena by copying it and then forgetting // the content of the SmallVec unsafe { let len = vec.len(); let start_ptr = self .alloc_raw(len * mem::size_of::<T>(), mem::align_of::<T>()) as *mut _ as *mut T; vec.as_ptr().copy_to_nonoverlapping(start_ptr, len); vec.set_len(0); slice::from_raw_parts_mut(start_ptr, len) } }) } } } } /// Calls the destructor for an object when dropped. struct DropType { drop_fn: unsafe fn(*mut u8), obj: *mut u8, } unsafe fn drop_for_type<T>(to_drop: *mut u8) { std::ptr::drop_in_place(to_drop as *mut T) } impl Drop for DropType { fn drop(&mut self) { unsafe { (self.drop_fn)(self.obj) } } } /// An arena which can be used to allocate any type. /// Allocating in this arena is unsafe since the type system /// doesn't know which types it contains. In order to /// allocate safely, you must store a PhantomData<T> /// alongside this arena for each type T you allocate. #[derive(Default)] pub struct DropArena { /// A list of destructors to run when the arena drops. /// Ordered so `destructors` gets dropped before the arena /// since its destructor can reference memory in the arena. destructors: RefCell<Vec<DropType>>, arena: DroplessArena, } impl DropArena { #[inline] pub unsafe fn alloc<T>(&self, object: T) -> &mut T { let mem = self.arena.alloc_raw(mem::size_of::<T>(), mem::align_of::<T>()) as *mut _ as *mut T; // Write into uninitialized memory. ptr::write(mem, object); let result = &mut *mem; // Record the destructor after doing the allocation as that may panic // and would cause `object`'s destuctor to run twice if it was recorded before self.destructors .borrow_mut() .push(DropType { drop_fn: drop_for_type::<T>, obj: result as *mut T as *mut u8 }); result } #[inline] pub unsafe fn alloc_from_iter<T, I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T] { let mut vec: SmallVec<[_; 8]> = iter.into_iter().collect(); if vec.is_empty() { return &mut []; } let len = vec.len(); let start_ptr = self .arena .alloc_raw(len.checked_mul(mem::size_of::<T>()).unwrap(), mem::align_of::<T>()) as *mut _ as *mut T; let mut destructors = self.destructors.borrow_mut(); // Reserve space for the destructors so we can't panic while adding them destructors.reserve(len); // Move the content to the arena by copying it and then forgetting // the content of the SmallVec vec.as_ptr().copy_to_nonoverlapping(start_ptr, len); mem::forget(vec.drain(..)); // Record the destructors after doing the allocation as that may panic // and would cause `object`'s destuctor to run twice if it was recorded before for i in 0..len { destructors.push(DropType { drop_fn: drop_for_type::<T>, obj: start_ptr.offset(i as isize) as *mut u8, }); } slice::from_raw_parts_mut(start_ptr, len) } } #[macro_export] macro_rules! arena_for_type { ([][$ty:ty]) => { $crate::TypedArena<$ty> }; ([few $(, $attrs:ident)*][$ty:ty]) => { ::std::marker::PhantomData<$ty> }; ([$ignore:ident $(, $attrs:ident)*]$args:tt) => { $crate::arena_for_type!([$($attrs),*]$args) }; } #[macro_export] macro_rules! which_arena_for_type { ([][$arena:expr]) => { ::std::option::Option::Some($arena) }; ([few$(, $attrs:ident)*][$arena:expr]) => { ::std::option::Option::None }; ([$ignore:ident$(, $attrs:ident)*]$args:tt) => { $crate::which_arena_for_type!([$($attrs),*]$args) }; } #[macro_export] macro_rules! declare_arena { ([], [$($a:tt $name:ident: $ty:ty,)*], $tcx:lifetime) => { #[derive(Default)] pub struct Arena<$tcx> { pub dropless: $crate::DroplessArena, drop: $crate::DropArena, $($name: $crate::arena_for_type!($a[$ty]),)* } #[marker] pub trait ArenaAllocatable {} impl<T: Copy> ArenaAllocatable for T {} unsafe trait ArenaField<'tcx>: Sized { /// Returns a specific arena to allocate from. /// If `None` is returned, the `DropArena` will be used. fn arena<'a>(arena: &'a Arena<'tcx>) -> Option<&'a $crate::TypedArena<Self>>; } unsafe impl<'tcx, T> ArenaField<'tcx> for T { #[inline] default fn arena<'a>(_: &'a Arena<'tcx>) -> Option<&'a $crate::TypedArena<Self>> { panic!() } } $( #[allow(unused_lifetimes)] impl<$tcx> ArenaAllocatable for $ty {} unsafe impl<$tcx> ArenaField<$tcx> for $ty { #[inline] fn arena<'a>(_arena: &'a Arena<$tcx>) -> Option<&'a $crate::TypedArena<Self>> { $crate::which_arena_for_type!($a[&_arena.$name]) } } )* impl<'tcx> Arena<'tcx> { #[inline] pub fn alloc<T: ArenaAllocatable>(&self, value: T) -> &mut T { if !::std::mem::needs_drop::<T>() { return self.dropless.alloc(value); } match <T as ArenaField<'tcx>>::arena(self) { ::std::option::Option::Some(arena) => arena.alloc(value), ::std::option::Option::None => unsafe { self.drop.alloc(value) }, } } #[inline] pub fn alloc_slice<T: ::std::marker::Copy>(&self, value: &[T]) -> &mut [T] { if value.is_empty() { return &mut []; } self.dropless.alloc_slice(value) } pub fn alloc_from_iter<'a, T: ArenaAllocatable>( &'a self, iter: impl ::std::iter::IntoIterator<Item = T>, ) -> &'a mut [T] { if !::std::mem::needs_drop::<T>() { return self.dropless.alloc_from_iter(iter); } match <T as ArenaField<'tcx>>::arena(self) { ::std::option::Option::Some(arena) => arena.alloc_from_iter(iter), ::std::option::Option::None => unsafe { self.drop.alloc_from_iter(iter) }, } } } } } #[cfg(test)] mod tests;